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Abstract: Pluvial floods are the most frequent natural hazard impacting urban cities because 

of extreme rainfall intensity within short duration. Owing to the complex interaction between 

rainfall, drainage systems and overland flow, pluvial flood warning poses a challenge for 

many metropolises. Although physical-based flood inundation models could identify 

inundated locations, hydrodynamic modeling is limited in terms of computational costs and 

sophisticated calibration. Thus, herein, a quick pluvial flood warning system using rainfall 

thresholds for central Taipei is developed. A tabu search algorithm is implemented with 

hydrological-analysis-based initial boundary conditions to optimize rainfall thresholds. 

Furthermore, a cross test is adopted to evaluate the effect of each rainfall event on rainfall 

threshold optimization. Urban sewer flood is simulated via hydrodynamic modeling with 

calibration using crowdsourced data. The locations and time of occurrence of pluvial floods 

can be obtained to increase the quality of observed data that dominate the accuracy of pluvial 

flood warning when using rainfall thresholds. The optimization process is a tabu search based 

on flood reports and observed data for six flood-prone districts in central Taipei. The results 

show that optimum rainfall thresholds can be efficiently determined through tabu search and 

the accuracy of the issued flood warnings can be significantly improved. 

Keywords: tabu search; urban sewer; pluvial flood; rainfall threshold; crowdsourced data; 

flood warning 

 

1. Introduction 

Pluvial flooding can be a serious problem in cities with a densely populated urban area. It 

is typically caused by intensive rainfall and drainage capacity exceedance can result in severe 

impacts on the drainage systems in cities. Torrential rainfalls have caused serious flooding 

damages in the Taipei metropolitan area in recent decades, often induced by typhoon or 

rainstorm events [1–5]. For disaster preparedness and mitigation, providing timely and 

effective information to individuals exposed to a hazard is an important task to reduce their 

risk and avoid flood damage. To deliver effective flood warning information for the general 

public, the rainfall threshold approach is commonly used. For a given period of time, rainfall 
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threshold is defined as a cumulative rainfall depth that can generate the critical runoff to cause 

flood disasters. Thus, the value of the rainfall threshold is used as a preliminary reference to 

issue flood warnings, in lieu of more sophisticated hydrodynamic simulations [6,7]. Complex 

numerical models can be adopted to calculate pluvial flooding for detailed hydrodynamic 

phenomena in an urban sewer drainage system. However, numerical simulations for pluvial 

flood forecasting are rather computationally costly. In contrast, the rainfall threshold approach 

is relatively simple and effective and it has been adopted in several applications of disaster 

operations such as providing flood, landslide or debris flow warnings [8–10]. 

Researchers have developed various flood inundation models for providing pluvial flood 

warning information in urban areas [11–13]. Several studies have established rainfall 

thresholds for townships with high levels of urbanization and dense population in Taiwan 

[1,7,14]. Wu and Wang (2009) [1] used cumulative rainfalls and local historical flood records to 

empirically determine rainfall thresholds; however, the study lacked statistical analysis, 

instead relying on qualitative judgments to determine the thresholds on the basis of flood 

observation information. Jang (2015) [7] developed multiple rainfall thresholds for urban flood 

warnings. The multiple values of rainfall threshold at a specific township were updated 

according to the cumulative rainfall records of the latest flood event. In the updating process, 

the rainfall threshold was raised when the event encountered a non-flooding situation with 

rainfall larger than the previous one and vice versa. However, it is inconvenient that the 

proposed multiple rainfall thresholds need to be updated at least three times a year. Yang et al. 

(2016) [14] integrated rainfall thresholds and ensemble precipitation forecasting to issue flood 

warnings and estimate urban inundation risk. Collectively, these studies show that the rainfall 

threshold approach is able to activate flood warnings for pluvial flooding. 

The rainfall threshold approach has proven to be useful in identifying flash flood events 

in many cases [15,16]. Whereas the rainfall threshold approach should not be considered as a 

replacement for a hydrodynamic model because of its simplicity, a rainfall threshold approach 

to develop a flood warning system can be an immediately useful tool for a variety of decision 

makers interested in early warnings for flash floods [17]. Several previous studies have applied 

rainfall thresholds to evaluate urban inundation risk [7,18]. The Water Resource Agency (WRA) 

of Taiwan has established rainfall thresholds for over 400 districts and townships in Taiwan. The 

procedures used to determine the WRA rainfall thresholds (WRTs) are illustrated in Figure 1 [1]. 

First of all, the WRA collects historical flood records, including typhoons, heavy rains and other 

rainfall events that cause flooding, before selecting rain gauges that are in proximity to the 

flooding locations and then evaluates the relationship between 1-, 3-, 6-, 12- and 24-h 

cumulative rainfalls and flood occurrence. The setup of the initial rainfall thresholds can be 

decided by adjusting the cumulative rainfalls. Finally, rainfall thresholds are modified through 

local drainage capacity, rainfall return period and other local infrastructures before judgment 

by professional experts. However, the WRTs need more adjustment because false alarms may 

happen frequently. 
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Figure 1. The procedures for determining Water Resource Agency rainfall thresholds (WRTs). 

Several algorithms such as simulated annealing, genetic algorithm and tabu search (TS) 

are often applied to deal with optimization problems. Among the algorithms, TS has provided 

better solutions than the others [19–22]. Thus, the study adopts TS to solve optimization 

problems of rainfall thresholds. TS was first introduced in 1986 [23–26]. Several hydrology-

related issues have been using this superior algorithm to solve optimization problems, such as 

groundwater [27–29], reservoir operation [30] and river flow [31]. The advantages of TS are that 

it can efficiently deal with highly nonlinear problems [32], allows solutions to move 

temporarily to worse solutions that might be routed to global optimal solution [33] and has few 

parameters [28]. In order to improve the flood warnings via rainfall thresholds, the optimal 

rainfall thresholds (ORTs) are determined via TS. In addition, the simulated results from 

hydrodynamic modeling will be applied to improve the quality of inputs for TS. 

Due to increasingly attractive simulation solutions, hydrodynamic numerical modeling 

techniques with large computing capabilities in recent years have become popular. 

Hydrodynamic numerical models include the SOBEK model [34], FLO-2D [35] and 2D-DOFM 

[36]. SOBEK is an integrated modeling framework for river, estuary and storm sewer water 

systems, which is capable of simulating hydrodynamics of flood inundation phenomena. The 

model can estimate pluvial flooding coupled with a hydrological model for flood retardation 

and damage mitigation. For determining the start time of manhole overflow in inundation 

areas, urban sewer flood simulation performed by SOBEK model is adopted to this study. 

Several studies have used the SOBEK model to deal with hydrodynamics issues  

[37–42]. The water level variations of storm water systems and flood inundation extents are 

simulated by the SOBEK model, which is calibrated and validated with observed data.  

Recently, exploiting crowdsourced natural disaster data has garnered a great deal of 

attention. There is often a lack of sufficient monitoring sensors or measuring equipment and 

information describing the field conditions and consequences is rarely available in real time. 

However, due to the availability of mobile devices, observation information contributed by 

individuals via social media is conveniently valuable to document flood events directly. The 

social media content based on eyewitness observations can be retrieved by searching and 

sorting keywords such as flooding location, time and water depth [43,44]. This information 

source should be explored and implemented in a more effective way which improves the 
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information basis for disaster assessment and response [45,46]. Therefore, the crowdsourced 

observation data related to flooding will be utilized for model calibration in this study.  

The study proposes a pluvial flood warning model using TS to find ORTs and adjusted 

ORTs via a hydrodynamic modeling that provides the start time of floods. The first step is to 

define rainfall events via inter-event times and cumulative rainfall criteria. Then, the start time 

of floods is determined by the hydrodynamic modeling based on completely divided rainfall 

events. Finally, ORTs, cross test ORTs and adjusted ORTs are computed via TS. The results 

show that ORTs based on TS can be used in urban flood warnings and the adjusted ORTs can 

yield even more warning time. 

2. Study Area and Data 

2.1. Central Area of Taipei  

The study area located in the central area of Taipei is densely populated and highly 

developed as the political and economic center of Taiwan. As shown in Figure 2, it is 

surrounded by the Tamsui River on the west, the Xindian River on the south, the Keelung River 

on the north and hills on the southeast and east. This study area has six flood-prone districts 

protected by the high raised levees along the rivers and dozens of pumping stations, all of 

which were built for flood control. Because the study area is protected by 200-year return-

period-designed flood levees, the major type of flooding is pluvial, which occurs when a heavy 

rain exceeds the discharge capacity of the urban sewer systems. 

Five rain gauges are used to issue flood warnings in central Taipei and the location, start 

time and number of rainfall events are shown in Figure 2 and Table 1. The number of rainfall 

events ranges from 686 to 957 collected from 2012 to 2017. Each rain gauge can trigger an alert 

to the inundation area.  

 

Figure 2. Flood warning districts and rain gauge locations in central Taipei. 
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Table 1. The rain gauges in central Taipei and WRTs of the five rain gauges for flood warnings 

to six districts within central Taipei. 

Name ID 
Warning 

District 

WRA Rainfall Threshold of 

Each Duration (mm) 
No. of Rainfall 

Events (2012–2017) 
1 h 3 h 6 h 

Taiping A1A9X0 Datong 60 110 160 686 

Jianguo A1AB50 Zhongshan 60 100 150 704 

Minsheng A1A9Y0 Songshan 60 110 170 730 

Shuangyuan A1AB20 Wanhua 60 120 150 713 

Gongguan C1A730 Zhongzheng 60 120 150 957 

Gongguan C1A730 Daan 60 100 140 957 

2.2. WRA Pluvial Flood Warning 

The WRA has established 754 sets of rainfall thresholds based on 500 rain gauges, 

including those in central Taipei, for 368 districts in Taiwan. Each set is composed of 1-, 3- and 

6-h rainfall thresholds that are determined from flood records. In this study, six sets of rainfall 

thresholds based on five rain gauges are shown in Table 1. According to Table 1, the 1-h rainfall 

thresholds of all rain gauges are the same, whereas the 3-h and 6-h rainfall thresholds vary 

from 100 mm to 120 mm and from 140 mm to 170 mm, respectively. These values correspond 

to the status of the drainage systems in Taipei, for which the design capacity is 78.8 mm/hr. In 

order to improve the accuracy of pluvial flood warning, this study refers to FFG [47] to select 

the 1-, 3-, 6-, 12- and 24-h rainfall thresholds herein. 

2.3. Flood Events 

From 2012 to 2017, 23 flood events including 14 heavy rains and nine typhoons caused 

inundation in six districts of central Taipei as shown in Table 2. According to Table 2, most of 

the heavy rains were stationary fronts, called Mei-yu fronts, which occurred during May and 

June and five of the heavy rains were thundershowers, which tend to produce a lot of rain 

within a very brief timeframe. Also, nine typhoons were selected to optimize the rainfall 

thresholds. These typhoons, including Typhoon Saola, Typhoon Trami, Typhoon Soudelor, 

Typhon Dujuan and Typhoon Megi, caused over 200 mm of rainfall in 24 hours as shown in 

Figure 3. According to Figure 3, the 3-, 6-, 12- and 24-h cumulative rainfalls of thundershower 

events, such as Heavy rain 0814 and Heavy rain 0822 in 2013 and Heavy rain 0723, Heavy rain 

0818 and Heavy rain 0827 in 2015, are always similar because thundershowers produce a large 

amount of rain very quickly. The long-duration rainfall events always occur in typhoons or 

Mei-yu fronts. As a result, the cumulative rainfalls for 1-, 3-, 6-, 12- and 24-h durations at each 

Mei-yu front and typhoon can be quite different. Four events, including Heavy rain 0519 in 

2014, Heavy rain 0723 in 2015 and Typhoon Soudelor in 2015 and Heavy rain 0602 in 2017, were 

selected to conduct urban flood simulations that determine the start time of floods to adjust 

rainfall thresholds. 
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Table 2. Historical flood events for central Taipei from 2012 to 2018. 

No. Event Date 
Warning District 

Datong Zhongshan Songshan Wanhua Zhongzheng Daan 

E01 Heavy rain 0502 2012/05/02 0 0 0 0 1 0 

E02 Heavy rain 0610  2012/06/10 0 1 1 1 0 1 

T01 Typhoon Saola 2012/08/02 0 1 0 0 1 1 

T02 Typhoon Soulik 2013/07/11 0 0 1 0 0 1 

E03 Heavy rain 0814  2013/08/14 1 1 0 1 0 0 

T03 Typhoon Trami 2013/08/20 0 1 1 1 0 1 

E04 Heavy rain 0822  2013/08/22 1 0 1 1 1 1 

T04 Typhoon Kong-rey 2013/08/28 0 1 0 1 1 0 

T05 Typhoon Fitow 2013/10/06 1 0 0 0 0 0 

E05 Heavy rain 0515  2014/05/15 0 0 1 0 0 0 

E06 Heavy rain 0519  2014/05/19 0 1 1 1 1 1 

E07 Heavy rain 0605 2014/06/05 0 0 1 0 0 0 

E08 Heavy rain 0614  2015/06/14 0 0 1 0 1 1 

T06 Typhoon Chan-hom 2015/07/09 0 0 1 0 0 0 

E09 Heavy rain 0723  2015/07/23 1 1 0 0 0 1 

T07 Typhoon Soudelor 2015/08/07 1 1 1 1 1 1 

E10 Heavy rain 0818  2015/08/18 1 0 0 0 0 1 

E11 Heavy rain 0827  2015/08/27 0 1 0 0 1 0 

T08 Typhoon Dujuan 2015/09/28 0 0 1 0 1 0 

E12 Heavy rain 0617  2016/06/17 0 1 1 0 0 1 

T09 Typhoon Megi 2016/09/25 0 1 0 0 0 1 

E13 Heavy rain 0602  2017/06/02 1 1 1 1 1 1 

E14 Heavy rain 0613  2017/06/13 0 1 0 0 0 0 

E15 Heavy rain 0908  2018/09/08 1 1 1 1 1 1 

Total 8 14 14 9 11 14 

(a) (b) 
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(c) (d) 

(e) (f) 

 

  

Figure 3. The maximum cumulative rainfalls for 1-, 3-, 6-, 12- and 24-h durations in six districts: 

(a) Datong; (b) Zhongshan; (c) Songshan; (d) Wanhua; (e) Zhongzheng; and (f) Daan. 

3. Methodology 

3.1. Urban Sewer Flood Simulation  

3.1.1. Hydrodynamic Modeling 

Overflow occurs when water is lost from the sewer conduit to the ground surface. When 

sewer water overflows to the ground surface, it runs as overland flow to cause flood 

inundation. In order to understand the hydrodynamic phenomena, the overflow process and 

flood inundation in the study area were simulated by the SOBEK model. The model solves the 

Saint–Venant equations by integrating the one-dimensional (1D) sewer flow and the two-

dimensional (2D) overland flow modeling with a rainfall-runoff calculation. The model is 

applied to simulate the variable flow velocities, water levels and inundation extents associated 

with flooding events in urban sewer systems. Since the study area consists of both rivers and 

sewer systems in Taipei, we divided the simulation domain into rivers, urban sewer areas and 

surface runoff catchments. In the rainfall-runoff calculation, the Soil Conservation Service 

curve number (CN) is adopted according to land use in the catchment areas and a rational 

formula is used in the urban sewer areas. Roughness (n) along the rivers and sewer systems is 
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calculated using the Manning formula. The linkage of the integrated model includes the 

following: (1) for the 1D sewer flow model, the hydrographs of overflow rate are calculated at 

each manhole when the surface runoff exceeds the design capacity of the sewer system; (2) for 

the 2D overland flow model, overland flow is calculated to obtain water depth and velocity by 

using the overflow hydrographs as sources. Historical rainfall and flooding records are used 

in calibrating some parameters such as the CN and Manning roughness. 

3.1.2. Validation Using Crowdsourced Data 

In situ observations of flooding locations and inundation depth by local people were 

reported through the Emergency Management Information Cloud (EMIC) system developed 

in 2015 that utilizes cloud computing technology and cross-agency disaster-related information 

for the support of decision making at the Central Emergency Operation Center, Taiwan. These 

reported data contain the location, time and water depth within the period of flooding. From 

the reported observations, the times during which manholes were under overflow conditions 

in flood inundation areas can be identified. Although only a limited amount of flood 

information data could be retrieved from the EMIC, the crowdsourced data will be useful for 

model validation.  

High rainfall intensity during the Heavy rain 0602 (2017) and Heavy rain 0723 (2015) 

events caused pluvial flooding in central Taipei. The rainfall records of these two flood events 

shown in  Figure 4;  Figure 5 are used to calibrate the parameters in the SOBEK model. The 

model calibration process consisted of modifying the input parameters until the output from 

the model matched the observed data. By using digital elevation model data with a spatial 

resolution of 10 m × 10 m (grid size) in the simulation domains, at each grid, the simulated 

results of water depth greater than 0.1 m was considered as flooding. The simulated overflow 

hydrographs of discharge and water level at the manholes in the sewer system were obtained. 

In Figure 4a, the water level hydrograph is plotted for Heavy rain 0602 (2017) event. From the 

limited flood information retrieved from EMIC, four reported flooding observations at various 

times in Datong district are marked and plotted in Figure 4a. As shown in Figure 4a, at 12:08, 

the first report of flooding is close to the peak time of the water level hydrograph and the rest 

of the reported data are around the period of time when the water was overflowing from the 

sewer conduit to the ground surface. A comparison of the observed and simulated overflow 

times reveals that the pluvial flooding situations can be properly modeled by the SOBEK 

model, as plotted in Figures 4 and 5. The parameter values of CN and n should affect the 

simulated values for sewer system depth and velocity and flood inundation depth and extent 

under overflow situations. From the model calibration for optimal values, the CN and n 

parameters range from 39 to 98 and from 0.015 to 0.035, respectively, which are similar to those 

of previous studies [41,42]. 
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Figure 4. Simulated flood inundation depth and extent during Heavy rain 0602 (2017) in (a) 

Datong district, (b) Zhongshan district, (c) Daan district and (d) Zhongzheng district. 
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Figure 5. Simulated flood inundation depth and extent during Heavy rain 0723 (2015) in (a) 

Datong district and (b) Zhongshan district. 

In 2018, the social media analysis (SMA) system was developed by the program on 

Applying Science and Technology for Disaster Reduction which is sponsored by the Taiwan 

Ministry of Science and Technology. In the resent study, the system was employed to retrieve 

disaster-related information from various crowdsourced data Internet platforms such as news 

media and Internet forums. Individuals may contribute information which cannot be captured 

by sensors if the sensors are not available. Although these reported data might not be accurate 

enough, they are still practically applicable to provide, with photos or videos, approximate 

data regarding the location and time of flooding, overflow situations and so forth. By 

comparison with the flood information provided by the EMIC, these SMA data should also be 

helpful for model validation. In the Heavy rain 0908 (2018) event, high rainfall intensity also 

caused pluvial flooding in central Taipei. The crowdsourced data were retrieved from EMIC 

and SMA every 10 min, in terms of social media post volume (number of posts) related to EMIC 

report, news media and Internet forums. Using the rainfall recorders for the Heavy rain 0908 

(2018) event as input, the simulated water level hydrograph results are plotted in Figure 6 on 

Keelung Road in Daan district. As shown in Figure 6a, the social media post volume reached 

the highest when the water level was above the ground surface. When water level retreated, 

the social media post volume dropped simultaneously and the rainfall gradually eased. Several 

photos with their corresponding locations obtained from SMA are shown in Figure 6b. From 

the above analysis, the flooding simulation analysis is determined to be consistent with reality. 
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Figure 6. A comparison of simulation results with crowdsourced data for Heavy rain 0908 

(2018) along Keelung Road: (a) rainfall, water level and social media post volume; and (b) 

crowdsourced data of flooding locations with photos captured in situ. 

3.2. Definition of a Rainfall Event 

3.2.1. Inter-Event Time 

The rainfall events can be delimited by inter-event time (IET). Each rainfall event is located 

between two IETs, the periods without rains [48,49]. Conventionally, the beginning of a rainfall 

event is defined as when the hourly rainfall becomes greater than 0.5 mm and the end of a 

rainfall event is marked by 4 hours that is continuously without rain [50] as shown in Figure 7. 

 

Figure 7. Rainfall events and inter-event time (IET). 

The jth event of the ith rain gauge, Event�,�, can be expressed in Equation (1) as: 

Event�,� = �r�,�,������
, r�,�,��������, … , r�,�,�, … , r�,�,������

, r�,�,����
�
r�,�,������

≥ 0.5

r�,�,������
= 0

�, 

for i = 1, … ,5 and k = 1, … ,4, 

(1) 

where r�,�,� is observed rainfall in the jth event of the ith rain gauge at time t. 
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3.2.2. Cumulative Rainfall Criteria 

The relationship between rainfall and flooding has been discussed in several papers [51–

54]. The occurrence probability of rain-related hazards like flooding is influenced by the 

amount of rainfall. The Central Weather Bureau (CWB) has analyzed the relationship between 

disasters and rainfall amount and it defines “heavy rain” as that having a rainfall intensity of 

at least 80 mm/24 h or 40 mm/h. The CWB also classifies heavy rainfall events into four 

categories, namely, heavy rain (80 mm/24 h or 40 mm/h), extremely heavy rain (200 mm/24 h 

or 100 mm/3 h), torrential rain (350 mm/24 h) and extremely torrential rain (500 mm/24 h). 

Therefore, the requirement of maximum cumulative rainfall should be satisfied if it meets the 

following criteria and the process could be denoted as: 

����,�,� = max
������,��������,�����

� � ��,�,�

�����

���

� , for � = 1, 24. (2) 

����,� = �
1  �� ����,�,� ≥ 40 �� ����,�,�� ≥ 80

0                                                                     
� (3) 

where j and i represent the event and rain gauge, respectively; D is the duration of the 

cumulative rainfall; and ����,� is the cumulative rainfall criteria result for the jth event at the 

ith rain gauge. If ����,� is equal to 0, this rainfall event at this rain gauge is not suitable for 

optimizing the rainfall thresholds. Thus, some unsuitable rainfall events can be removed by the 

procedure described in Equations (2) and (3). 

3.3. Description of the Rainfall Threshold Model 

3.3.1. Assessment Criteria 

Several papers have discussed the relationship between flood warnings and flood events 

[7,17,55,56] as shown in Table 3. 

Table 3. The relationship between warnings and floods. 

Action Taken Flood No Flood 

Warning Hit False alarm 

No Warning Missed alarm Correct rejection 

Table 3 lists all possible combinations in the relationship between flood warnings and 

flood events. Hit and Correct rejection represent the correct actions but the Missed alarm and False 

alarm represent the incorrect actions. The meaning of Hit is that the cumulative rainfalls exceed 

or reach rainfall thresholds and pluvial floods also occur; the meaning of Missed alarm is that 

pluvial floods occur without warning; False alarm means that the cumulative rainfalls reach the 

rainfall thresholds but pluvial floods do not occur; and Correct rejection means that cumulative 

rainfalls are lower than the rainfall thresholds and pluvial floods do not occur. Therefore, by 

applying Equations (2) and (3), each rainfall event can be classified into one of the four 

situations shown in Table 3 and this process can be expressed as: 

���,� =

⎩
⎪
⎨

⎪
⎧

1  �� ( � � � 1 �� � ��,�,�

�����

���

≥ ���,� ��� �����

0                                                                 

�

����,�����

 �� ������,����,�,�,��,��

 ≥ 1)

0                                                                                                                                     ⎭
⎪
⎬

⎪
⎫

 (4) 

���,� =

⎩
⎪
⎨

⎪
⎧

1  �� ( � � �1 �� � ��,�,�

�����

���

< ���,� ��� �����

0                                                               

�

����,�����

 �� ������,����,�,�,��,��

 ≥ 1)

0                                                                                                                                  ⎭
⎪
⎬

⎪
⎫

 (5) 
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���,� =

⎩
⎪
⎨

⎪
⎧

1  �� ( � � �1 �� � ��,�,�

�����

���

≥ ���,� ��� �� �����

0                                                                     

�

����,�����

 �� ������,����,�,�,��,��

 ≥ 1)

0                                                                                                                                         ⎭
⎪
⎬

⎪
⎫

 (6) 

���,� =

⎩
⎪
⎨

⎪
⎧

1  �� ( � � �1 �� � ��,�,�

�����

���

< ���,� ��� �� �����

0                                                                     

�

����,�����

 �� ������,����,�,�,��,��

 ≥ 1)

0                                                                                                                                         ⎭
⎪
⎬

⎪
⎫

 (7) 

where ���,�, ���,�, ���,� and ���,� mean that the rainfall events belong to Hit, Missed alarm, 

False alarm and Correct rejection, respectively and ���,� is the rainfall threshold of the ith rain 

gauge with duration of D. The duration of D can be 1 h, 3 hr, 6 h, 12 h or 24 h. With Equation 

(4), the event is classified into ���,� when one of rainfall thresholds is met or exceeded. This 

study will focus on the occurrence frequency of ���,� because this is the situation in which the 

residents have enough time for preparation and evacuation. The situation of ���,� is the most 

dangerous because pluvial flooding occurs without any issued warnings. The situation of ���,� 

reduces warning reliability. According to Equation (4) through Equation (7), the ORTs are 

based on three criteria as follows: 

CSI =
∑ ���,�

�
���

∑ ���,�
�
��� �∑ ���,�

�
��� �∑ ���,�

�
���

 (8) 

POD =
∑ ���,�

�
���

∑ ���,�
�
��� �∑ ���,�

�
���

 (9) 

FAR =
∑ ���,�

�
���

∑ ���,�
�
��� �∑ ���,�

�
���

  (10) 

The critical success index (CSI) or threat score includes three possible situations and can 

range from 0 to 1, with 0 indicating complete failure and 1 indicating perfect performance. The 

probability of detection (POD) gives the likelihood that a pluvial flood will be observed with a 

correct warning, with 1 indicating that each of the pluvial floods has been correctly warned 

and 0 indicating that none of the pluvial floods have been detected by using rainfall thresholds. 

The false alarm ratio (FAR) is the ratio of false alarms to all events that trigger a warning. The 

FAR ranges from 0, indicating that no false alarms were generated, to 1, indicating that no flood 

events occurred and all of the warnings issued were false alarms. 

3.3.2. Initial Boundary 

The initial boundary affects how much computational time the model consumes. With a 

wide boundary range, the model can be computationally inefficient. However, with a narrow 

boundary, some optimal solutions might be ignored. Therefore, it is necessary to select an 

effective boundary in order to compute the optimal solutions effectively. The minimum 

boundary for duration at each station could be denoted as: 

�����,� = �( min
����������� �����

�����,�,��) − 10� , ��� � = 1, 3, 6, 12, 24, (11) 

where �����,� indicates the minimum boundary of the ith rain gauge with D-h duration. The 

maximum boundaries are determined by frequency analysis with a 5-year return period of 

rainfalls because the design capacity of the drainage systems for each district is based upon this 

return period. The frequency analysis can compute the annual maximum rainfall [57–58]. Five 

types of probability density function (PDF), namely, Gaussian Distribution (G), Lognormal 

Distribution (LN), Extreme Value Type 1 (EV1), Pearson Type III Distribution (PT3) and Log-

Pearson Type III Distribution (LPT3), were selected for the frequency analysis in this study and 

the rainfall pattern of each rain gauge was arranged with a suitable PDF. Thus, the maximum 

boundaries for each station could be denoted as: 
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�����,�,� = � + ���, ��� � = 1, 3, 6, 12, 24, (12) 

where T is the 5-year return period; u is the average value of D-h annual maximum cumulative 

rainfall; �  is the standard deviation of annual rainfall; and KT is a frequency factor. The 

resulting maximum and minimum boundaries are shown in Figure 8. 

 

Figure 8. The minimum boundaries and maximum boundaries for rainfall thresholds. 

3.3.3. Tabu Search (TS) for Rainfall Thresholds 

TS, which was first proposed by Glover (1986), has the ability to escape the local solutions 

to reach the global optimal solution. Zheng et al. (1996) [59] applied TS to find the optimal flow 

and transport parameters in a groundwater model. Three years later, Zheng et al. (1999) [60] 

proposed an innovating method of TS that can be used to combine global optimal solutions in 

hydraulic problems. Tung and Chou (2002) [61] applied TS to optimize the parameters of 

groundwater simulation; their result shows that TS can find the best parameters for an optimal 

simulation. Li et al. (2006) [33] used TS to determine individual weights for rain gauges and 

estimate the seasonal rainfall. Leahy et al. (2008) [62] combined simulated annealing with TS to 

further optimize the parameters of artificial neural networks in predicting the river level. 

Huang et al. (2015) [32] applied TS in combination with a backpropagation neural network 

(BPNN) to compute the optimal planning solution for urban flood mitigation. 

Five parameters are adjusted for TS: the number of initial solutions, the number of 

iterations, the search space, the tabu list length and the stopping criterion. The number of initial 

solutions is 500 groups of rainfall thresholds. An infinite number of iterations is required in 

order to ensure that the neighborhood solutions of the criteria are no longer improving. The 

search space is one because the units of rainfall threshold are millimeters. The tabu list length 

is 25 rounds. The essence of a tabu list is to forbid repeating solutions; according to the rules, if 

a few groups of rainfall thresholds have the same criteria results, they will be forbidden with 

25 rounds. The stopping criterion is such that if the neighborhood solutions are no longer 

improving, the algorithm will stop.  

The objective function is given in Equation (8) through Equation (10). Equation (8) is 

considered firstly to optimize the rainfall thresholds because it can allow TS to widely search 

based on three situations with Hit, Missed alarm and False alarm. Then, with secondary priority 

given to Equation (9), TS can focus on the Missed alarm situation because a Missed alarm results 

in unwarned flooding. Lastly, Equation (10) is given tertiary priority because a False alarm is 
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not as serious as a Missed alarm and Equation (10) simply enhances the confidence of rainfall 

threshold. Five variables (X1, X2, X3, X4 and X5) represent the rainfall thresholds for different 

rain durations (1, 3, 6, 12 and 24 h). The constraints are shown in Equation (13) through 

Equation (22): 

�����,� < �� < �����,�,� (13) 

�����,� < �� < �����,�,� (14) 

�����,� < �� < �����,�,� (15) 

�����,�� < �� < �����,��,� (16) 

�����,�� < �� < �����,��,� (17) 

3�� > �� (18) 

2�� > �� (19) 

2�� > �� (20) 

2�� > �� (21) 

�� > �� > �� > �� > �� (22) 

The above equations illustrate the fact that the short- and long-duration rainfall thresholds 

are complementary to each other. The flowchart for the overall process is shown in Figure 9. 
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Figure 9. The flowchart of the study process. 
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4. Results and Discussion 

4.1. Performance of TS and the Rainfall Threshold Model 

The performance of TS for escaping local solutions to reach the optimal solution is 

illustrated in Figure 10. Figure 10a shows the results of CSI under constant values of ORTs with 

6-, 12- and 24-h duration with variables of 1-h and 3-h rainfall thresholds at the Gongguan 

(C1A730) rain gauge in the Daan district. According to Figure 10a, TS is able to escape the local 

solutions located in the flat surface between 59 and 69 mm of the 1-h rainfall threshold and 95 

and 121 mm of the 3-h rainfall threshold. Thus, TS was adopted to build the rainfall threshold 

model. 

TS was used to optimize the rainfall thresholds at five rain gauges for warning six of the 

high inundation potential areas in central Taipei and the results, including ORTs, warning 

results of event number and performance of assessment criteria, are shown in Tables 4−6. The 

results show that the 1-h short-duration ORTs of the five rain gauges are higher than the WRTs, 

whereas the 3-h and 6-h ORTs are lower than the WRTs, except for the 3-h optimal rainfall 

threshold at the Jianguo rain gauge (Table 4). The differences between the ORTs and the WRTs 

of the 1-h, 3-h and 6-h durations are 1 to 15 mm, −23 to 8 mm and −46 to −3 mm, respectively. 

According to the warning ability of rainfall thresholds, the frequency of False alarm events and 

Hit events would decrease if the rainfall thresholds were to increase. Therefore, the ORTs could 

effectively represent the characteristics of the hazardous extreme rainfalls in central Taipei. As 

a result, rising 1-h rainfall threshold by TS could decrease False alarms more than Hit events 

because most of the non-flooding events are shorter than 3 hours in central Taipei. In relation 

to the rise of 1-h ORT, the decrease of the 3-h and 6-h ORTs shows that the impacts of rainfall 

events longer than 3 hours on floods are more significant to the city. For example, Typhoon 

Soudelor in 2015 would be alarmed by the 6-h ORT, as shown in Figure 11. Additionally, 

Typhoon Saola in 2012 would be alarmed by the 12-h ORT, whereas the WRA missed this flood 

event, as shown in Figure 12. These results indicate that the long-duration rainfall thresholds 

could improve the accuracy of flood warning. 

In Table 5, the warning results show that the ORTs make it possible to increase the number 

of flood warning events and reduce the number of False alarm events. For the Taiping rain gauge 

in the Datong district, the performances of the ORTs and the WRTs are almost the same. For 

the other districts, the frequency of Hit events could be improved by ORTs. The greatest 

improvements in the number of Hit events occurred at the Gongguan rain gauge in the Daan 

district and at the Jianguo rain gauge in the Zhongshan district. The numbers of Hit events 

improved from 6 to 11 for the Daan district and from 4 to 9 for the Zhongshan district. The CSI, 

POD and FAR criteria are presented in Table 6 to quantify the performances of different rainfall 

thresholds. Because POD is the ratio of Hit events to all flood events, the increase of Hit events 

would enhance the POD more significantly based on fewer flood events as evidenced by the 

changes in the Daan and Zhongshan districts. Both of those districts have five more Hit events 

via ORT but the POD of the Daan district is higher than that of the Zhongshan district. Also, 

the overall performances in terms of CSI, POD and FAR of the ORTs are better than those of 

the WRTs. In the Daan district, the ORTs improve CSI by 95.6% (from the 0.375 of the WRTs to 

the 0.733 of the ORTs). Meanwhile, POD and FAR are improved by 125.0% in the Zhongshan 

district and 66.7% in the Wanhua district, respectively. 
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(a) (b) 

(c) (d) 

  

Figure 10. The CSI results at the Gongguan (C1A730) rain gauge in the Daan district: (a) the 

rainfall thresholds with 1-h and 3-h durations with constant values of ORTs with 6-, 12- and 

24-h durations; (b) the rainfall threshold with 1-h duration; (c) the rainfall threshold with 3-h 

duration; (d) the rainfall threshold with 1-h and 3-h durations. 

 

Figure 11. The warning process for the Gongguan (C1A730) rain gauge during Typhoon 

Soudelor in the Daan district. 
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Figure 12. The warning process for the Jianguo (A1AB50) rain gauge during Typhoon Saola in 

the Zhongshan district. 
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Table 4. Optimal and adjusted rainfall thresholds of 1-, 3-, 6-, 12- and 24-h durations. 

Warning District Reference Rain Gauge 

Optimal Rainfall Threshold of 

Each Duration 

Difference between WRTs 

and ORTs 

Adjusted Optimal Rainfall 

Threshold of Each Duration 

Difference Between WRTs and 

Adjusted ORTs 

1 h 3 h 6 h 12 h 24 h 1 h 3 h 6 h 12 h 24 h 1 h 3 h 6 h 12 h 24 h 1 h 3 h 6 h 12 h 24 h 

Datong Taiping 61 98 142 214 259 1 −12 −18 - - 61 98 142 191 245 1 −12 −18 - - 

Zhongshan Jianguo  67 108 114 119 232 7 8 −36 - - 65 69 110 116 211 5 −31 −40 - - 

Songshan Minsheng 65 97 124 164 221 5 −13 −46 - - 57 75 109 140 233 −3 −35 −61 - - 

Wanhua Shuangyuan 61 97 147 173 191 1 −23 −3 - - 61 85 87 192 218 1 −35 −63 - - 

Zhongzheng Gongguan 76 103 135 152 257 16 −17 −15 - - 75 98 135 207 252 15 −22 −15 - - 

Daan Gongguan 75 91 106 149 192 15 −9 −34 - - 75 91 106 133 284 15 −9 −34 - - 

Table 5. Warning results of optimal rainfall thresholds (ORTs), adjusted ORTs and WRTs. 

Warning District Reference Rain Gauge 
WRTs for Flood Warning ORTs for Flood Warning Adjusted ORTs for Flood Warning 

A B C D A B C D A B C D 

Datong Taiping 5 1 2 679 5 1 1 680 5 1 1 680 

Zhongshan Jianguo  4 6 3 692 9 1 5 690 10 0 6 689 

Songshan Minsheng 5 5 1 720 7 3 2 719 8 2 4 717 

Wanhua Shuangyuan 5 3 3 703 7 1 1 705 8 0 5 701 

Zhongzheng Gongguan 6 3 4 945 7 2 3 946 6 3 1 948 

Daan Gongguan 6 6 4 942 11 1 3 943 11 1 2 944 

A: Hit; B: Missed alarm; C: False alarm; D: Correct rejection. 
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Table 6. Performance of the ORTs, adjusted ORTs and WRTs evaluated in terms of probability of 

detection (POD), false alarm ratio (FAR) and critical success index (CSI). 

Warning District Reference Rain Gauge 

WRTs For Flood 

Warning 

ORTs for Flood 

Warning 

Adjusted ORTs for 

Flood Warning 

CSI POD FAR CSI POD FAR CSI POD FAR 

Datong Taiping 0.625 0.833 0.286 0.714 0.833 0.167 0.714 0.833 0.167 

Zhongshan Jianguo 0.308 0.400 0.429 0.600 0.900 0.357 0.625 1.000 0.375 

Songshan Minsheng 0.455 0.500 0.167 0.583 0.700 0.222 0.571 0.800 0.333 

Wanhua Shuangyuan 0.455 0.625 0.375 0.778 0.875 0.125 0.615 1.000 0.385 

Zhongzheng Gongguan 0.462 0.667 0.400 0.583 0.778 0.300 0.600 0.667 0.143 

Daan Gongguan 0.375 0.500 0.400 0.733 0.917 0.214 0.786 0.917 0.154 

4.2. The Impacts of Data Quality on the Rainfall Threshold Model via TS 

The study evaluates the impact of data quality on rainfall thresholds by a cross test that retests 

the rainfall thresholds by TS using a part of flood events except for a single event in rotation. The 

cross test results in terms of ORTs, POD, FAR, CSI, warning results and the warning process are 

shown in  Table 7 Table 8 Table 9 Table 10. The results show that the characteristics of rainfalls are 

the dominant factor in the performance of the TS optimization. 

At the Taiping (A1A9X0) rain gauge in the Datong district, each optimal rainfall threshold is 

unable to alert for Heavy rain 0818 in 2015 (Table 7) because the cumulative rainfalls of the event are 

insufficient. A similar situation occurs with the floods induced by Typhoon Soulik in 2013 in the Daan 

district, Typhoon Kong-rey in 2013 in the Wanhua and Zhongzheng districts and Typhoon Chan-

hom in 2015 in the Songshan district. 

Some flood events have high cumulative rainfalls. If these events were not considered during 

the optimization, the TS would produce low rainfall thresholds. For example, the maximum 

cumulative rainfall values of Heavy rain 0602 in 2017 are 80 mm/h and 140 mm/3 h, the largest among 

the events, so the values of ORTs produced by the optimization without Heavy rain 0602 for 1-, 3-, 6- 

and 24-h durations are the smallest among those in the Songshan district. Therefore, although 

Typhoon Soulik in 2012 only brought 79-mm rainfalls in 6 hours in the Songshan district, it still could 

be alerted via the 6-h rainfall threshold (72 mm), as shown in Table 7. In addition, Heavy rain 0614 in 

2015 had the highest cumulative rainfall of all the events (105 mm/h; 188 mm/3 h); the values of the 

3-h optimal rainfall threshold (86 mm) produced by the optimization without that event are the 

smallest among the other rainfall thresholds in the Zhongzheng district. These results show that the 

values of ORTs would become small because small cumulative rainfalls from flood events limit the 

ability of TS to find appropriate ORTs.  

In contrast, without flood events that have low cumulative rainfalls, TS will find higher values 

of ORTs. In Table 7, the ORTs in the Zhongshan district show that the values of ORTs produced by 

an optimization without Heavy rain 0814 in 2013, Typhoon Kong-rey in 2013 or Typhoon Megi in 

2016 are larger than the others due to the relatively small cumulative rainfalls. The minimum 

cumulative rainfalls of 1-, 3-, 6- and 12-h durations are 22 mm, 52 mm (Typhoon Megi), 70 mm 

(Typhoon Kong-rey) and 97 mm (Heavy rain 0814 ), respectively. Therefore, the maximum rainfall 

thresholds would appear in each optimization as shown in Table 8. These results show that the 

rainfall thresholds produced by optimizations without the smaller cumulative rainfalls would be 

rather large because the small rainfalls influence the TS. Without the constrictive effect of the small 

rainfalls, TS is allowed to produce high values of rainfall thresholds. 

Furthermore, although Heavy rain 0822 in 2013, Heavy rain 0519 in 2014 and Typhoon Soudelor 

in 2015 do not have particularly large or low cumulative rainfalls among all events, these three events 

are more sensitive than others for alerting Typhoon Trami in 2013 in the Wanhua district. In fact, the 

rain gauge at Shuangyuan (A1AB20) is unable to alert the typhoon if the optimization is performed 
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without those three flood events, as shown in Table 7. Furthermore, as shown in Tables 9 and 10, the 

Hit, CSI, POD and FAR values of the three events are the same or worse at 5, 0.625, 0.714 and 0.167, 

respectively. Consequently, those events are also important for the ability of TS to find ORTs. 

Table 7. Warning process results of the cross test for the six districts with partial flood events. 

No. Event Date 
Datong Zhongshan Songshan Wanhua Zhongzheng Daan 

E10 E03 T04 T09 T02 E08 T06 T03 T04 E10 E03 T04 T09 T02 E08 

E01 Heavy rain 0502 2012/05/02                

E02 Heavy rain 0610  2012/06/10  1 1 1 0 0 0 1 0    1 0 1 

T01 Typhoon Saola 2012/08/02  1 1 1      −1 0 0 −1 0 0 

T02 Typhoon Soulik 2013/07/11     −1 0 0      0 −1 0 

E03 Heavy rain 0814  2013/08/14 0 −1 1 0    1 0       

T03 Typhoon Trami 2013/08/20  1 1 1 0 1 0 −1 0    1 0 1 

E04 Heavy rain 0822  2013/08/22 0       0 0 0 0 0 1 0 0 

T04 Typhoon Kong-rey 2013/08/28  0 −1 0    1 −1 0 −1 0    

T05 Typhoon Fitow 2013/10/06                

E05 Heavy rain 0515  2014/05/15                

E06 Heavy rain 0519  2014/05/19  1 1 1 0 1 0 0 0 1 0 0 1 0 1 

E07 Heavy rain 0605 2014/06/05     0 0 0         

E08 Heavy rain 0614  2015/06/14     0 −1 0   1 0 1 0 0 0 

T06 Typhoon Chan-hom 2015/07/09     0 1 −1         

E09 Heavy rain 0723  2015/07/23 0 1 1 −1            

T07 Typhoon Soudelor 2015/08/07 0 1 1 1    0 0 1 0 0 1 0 0 

E10 Heavy rain 0818  2015/08/18 −1            1 0 −1 

E11 Heavy rain 0827  2015/08/27          0 0 −1    

T08 Typhoon Dujuan 2015/09/28     0 0 0   0 0 0    

E12 Heavy rain 0617  2016/06/17     0 1 0      1 0 0 

T09 Typhoon Megi 2016/09/25  0 0 1         1 0 0 

E13 Heavy rain 0602  2017/06/02 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 

E14 Heavy rain 0613  2017/06/13                

1: Hit; 0: Missed alarm; −1: Removed Event. 

 



Water 2019, 11, 348 23 of 30 

  

 

Table 8. ORTs with cross test. 

No. Event Date 
Datong Zhongshan Songshan Wanhua Zhongzheng Daan 

1 h 3 h 6 h 12 h 24 h 1 h 3 h 6 h 12 h 24 h 1 h 3 h 6 h 12 h 24 h 1 h 3 h 6 h 12 h 24 h 1 h 3 h 6 h 12 h 24 h 1 h 3 h 6 h 12 h 24 h 

E01 Heavy rain 0502 2012/05/02                               

E02 Heavy rain 0610  2012/06/10      48 76 93 103 204 66 96 124 156 181 61 91 157 175 185      75 91 101 176 282 

T01 Typhoon Saola 2012/08/02      65 71 110 117 265           75 120 162 204 260 75 91 164 168 251 

T02 Typhoon Soulik 2013/07/11           64 95 116 188 205           75 91 154 175 214 

E03 Heavy rain 0814  2013/08/14 77 101 134 181 231 68 109 130 144 148      61 99 150 167 198           

T03 Typhoon Trami 2013/08/20      65 69 111 116 173 60 75 104 161 225 67 98 155 197 203      76 91 107 140 214 

E04 Heavy rain 0822  2013/08/22 61 104 147 208 254           66 119 151 191 259 78 106 150 234 246 75 94 136 157 236 

T04 Typhoon Kong-rey 2013/08/28      71 107 136 161 198      61 97 150 188 191 76 118 144 211 290      

T05 Typhoon Fitow 2013/10/06                               

E05 Heavy rain 0515  2014/05/15                               

E06 Heavy rain 0519  2014/05/19      67 84 110 117 177 64 75 133 193 246 66 119 154 168 256 79 126 127 200 203 80 91 106 134 255 

E07 Heavy rain 0605 2014/06/05           65 98 135 181 243                

E08 Heavy rain 0614  2015/06/14           65 95 103 162 197      76 86 135 154 232 78 91 167 178 239 

T06 Typhoon Chan-hom 2015/07/09           64 75 98 151 233                

E09 Heavy rain 0723  2015/07/23 68 120 152 184 251 65 73 110 116 199                     

T07 Typhoon Soudelor 2015/08/07 64 105 139 197 239 56 85 100 107 264      67 94 161 211 212 75 104 155 174 195 76 93 124 133 293 

E10 Heavy rain 0818  2015/08/18 61 99 135 183 231                     75 91 131 136 255 

E11 Heavy rain 0827  2015/08/27                     76 113 172 190 215      

T08 Typhoon Dujuan 2015/09/28           66 99 118 183 187      75 99 137 213 252      

E12 Heavy rain 0617  2016/06/17           61 75 109 144 179           75 99 135 152 257 

T09 Typhoon Megi 2016/09/25      71 103 150 191 204                75 92 135 160 216 

E13 Heavy rain 0602  2017/06/02 67 101 149 211 237 65 75 93 105 268 57 67 72 149 171 61 102 159 166 176 76 123 141 229 288 75 91 149 159 218 

E14 Heavy rain 0613  2017/06/13                               
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Table 9. Performance of cross test as evaluated by the criteria POD, FAR and CSI. 

No. Event Date 
Datong Zhongshan Songshan Wanhua Zhongzheng Daan 

CSI POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI POD FAR 

E01 Heavy rain 0502 2012/05/02                   

E02 Heavy rain 0610  2012/06/10    0.529 1.000 0.471 0.545 0.667 0.250 0.750 0.857 0.143    0.714 0.909 0.231 

T01 Typhoon Saola 2012/08/02    0.643 1.000 0.357       0.667 0.750 0.143 0.750 0.818 0.100 

T02 Typhoon Soulik 2013/07/11       0.636 0.778 0.222       0.750 0.818 0.100 

E03 Heavy rain 0814  2013/08/14 0.667 0.800 0.200 0.571 0.889 0.385    0.750 0.857 0.143       

T03 Typhoon Trami 2013/08/20    0.600 1.000 0.400 0.538 0.778 0.364 0.750 0.857 0.143    0.769 0.909 0.167 

E04 Heavy rain 0822  2013/08/22 0.667 0.800 0.200       0.625 0.714 0.167 0.500 0.625 0.286 0.750 0.818 0.100 

T04 Typhoon Kong-rey 2013/08/28    0.583 0.778 0.300    0.875 1.000 0.125 0.667 0.750 0.143    

T05 Typhoon Fitow 2013/10/06                   

E05 Heavy rain 0515  2014/05/15                   

E06 Heavy rain 0519  2014/05/19    0.600 1.000 0.400 0.636 0.778 0.222 0.625 0.714 0.167 0.500 0.750 0.400 0.769 0.909 0.167 

E07 Heavy rain 0605 2014/06/05       0.600 0.667 0.143          

E08 Heavy rain 0614  2015/06/14       0.583 0.778 0.300    0.583 0.875 0.364 0.667 0.727 0.111 

T06 Typhoon Chan-hom 2015/07/09       0.615 0.889 0.333          

E09 Heavy rain 0723  2015/07/23 0.667 0.800 0.200 0.600 1.000 0.400             

T07 Typhoon Soudelor 2015/08/07 0.667 0.800 0.200 0.563 1.000 0.438    0.625 0.714 0.167 0.500 0.750 0.400 0.692 0.818 0.182 

E10 Heavy rain 0818  2015/08/18 0.833 1.000 0.167             0.769 0.909 0.167 

E11 Heavy rain 0827  2015/08/27             0.600 0.750 0.250    

T08 Typhoon Dujuan 2015/09/28       0.545 0.667 0.250    0.556 0.625 0.167    

E12 Heavy rain 0617  2016/06/17       0.538 0.778 0.364       0.750 0.818 0.100 

T09 Typhoon Megi 2016/09/25    0.636 0.778 0.222          0.750 0.818 0.100 

E13 Heavy rain 0602  2017/06/02 0.667 0.800 0.200 0.600 1.000 0.400 0.533 0.889 0.429 0.750 0.857 0.143 0.556 0.625 0.167 0.750 0.818 0.100 

E14 Heavy rain 0613  2017/06/13                   
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Table 10. Warning results of the cross test for the six districts. 

No. Event Date 
Datong Zhongshan Songshan. Wanhua  Zhongzheng Daan 

A B C D A B C D A B C D A B C D A B C D A B C D 

E01 Heavy rain 0502 2012/05/02                         

E02 Heavy rain 0610  2012/06/10     9 0 8 687 6 3 2 719 6 1 1 705     10 1 3 943 

T01 Typhoon Saola 2012/08/02     9 0 5 690         6 2 1 948 9 2 1 945 

T02 Typhoon Soulik 2013/07/11         7 2 2 719         9 2 1 945 

E03 Heavy rain 0814  2013/08/14 4 1 1 680 8 1 5 690     6 1 1 705         

T03 Typhoon Trami 2013/08/20     9 0 6 689 7 2 4 717 6 1 1 705     10 1 2 944 

E04 Heavy rain 0822  2013/08/22 4 1 1 680         5 2 1 705 5 3 2 947 9 2 1 945 

T04 Typhoon Kong-rey 2013/08/28     7 2 3 692     7 0 1 705 6 2 1 948     

T05 Typhoon Fitow 2013/10/06                         

E05 Heavy rain 0515  2014/05/15                         

E06 Heavy rain 0519  2014/05/19     9 0 6 689 7 2 2 719 5 2 1 705 6 2 4 945 10 1 2 944 

E07 Heavy rain 0605 2014/06/05         6 3 1 72             

E08 Heavy rain 0614  2015/06/14         7 2 3 718     7 1 4 945 8 3 1 945 

T06 Typhoon Chan-hom 2015/07/09         8 1 4 717             

E09 Heavy rain 0723  2015/07/23 4 1 1 680 9 0 6 689                 

T07 Typhoon Soudelor 2015/08/07 4 1 1 680 9 0 7 688     5 2 1 705 6 2 4 945 9 2 2 944 

E10 Heavy rain 0818  2015/08/18 5 0 1 680                 10 1 2 944 

E11 Heavy rain 0827  2015/08/27                 6 2 2 947     

T08 Typhoon Dujuan 2015/09/28         6 3 2 719     5 3 1 948     

E12 Heavy rain 0617  2016/06/17         7 2 4 717         9 2 1 945 

T09 Typhoon Megi 2016/09/25     7 2 2 693             9 2 1 945 

E13 Heavy rain 0602  2017/06/02 4 1 1 680 9 0 6 689 8 1 6 715 6 1 1 705 5 3 1 948 9 2 1 945 

E14 Heavy rain 0613  2017/06/13                         

A: Hit; B: Missed alarm; C: False alarm; D: Correct rejection. 

4.3. Improvement Gained by Applying Hydrodynamic Modeling to the Rainfall Threshold Model 

The SOBEK model is applied to simulate hydrodynamics for the relationship between rainfall 

and urban floods and to find the start time of manhole overflowing. The concept of applying the start 

time of manhole flooding to the rainfall threshold model is illustrated in Figure 13. In Figure 13, each 

observed rainfall before the start time of manhole flooding is important to the ability to issue a 

warning in time. Therefore, the start time of manhole flooding could help to identify the crucial 

rainfall period for optimizing the rainfall thresholds. 

In this study, the flooding processes of four flood events are simulated by the hydrodynamic 

modeling due to the relatively large flooding areas. The four simulated events with start time of 

manhole flooding and other flood events are all considered in the TS to find the adjusted ORTs. The 

start times of manhole flooding are shown in Table 11. Heavy rain 0723 is a thundershower with a 

short duration and the flood occurred quickly, within 3 hours in the Datong, Zhongshan and Daan 

districts. Induced by a Mei-yu front, Heavy rain 0519 and Heavy rain 0602 have long rainfall 

durations and flooding occurred within 8 to 19 hours. The earliest start time of manhole flooding of 

Typhoon Soudelor for each district is approximately 8 to 19 hours after the rain event begins.  

Table 12 shows the difference in alert time between the ORTs and the adjusted ORTs. The results 

reveal that adding the start time of manhole flooding from the flood routing simulation to TS could 

improve the early warning time. The improvement of warning time is from 1 to 3 hours ahead and 

some flood events can be altered after adjusting the ORTs. Except for the Zhongzheng district in 

which one event is missed and has a shorter warning time, most of the districts have better 

performance in warning time with the adjusted ORTs than with the original ORTs. The maximum 

improvement of warning time is 3 h, which occurred for Heavy rain 0610 in 2012 in the Zhongshan, 

Songshan and Wanhua districts, Heavy rain 0519 in 2014 in the Zhongshan district and Typhoon 
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Soudelor in 2015 in the Wanhua district. There was a 2-h improvement in warning time for Heavy 

rain 0519 in 2014 and Heavy rain 0605 in 2014 in the Songshan district. The majority of events had a 

1-h improvement in warning time. Three additional flood events could be altered by adjusting the 

ORTs; those events are Heavy rain 0814 in 2013 in the Zhongshan district, Typhoon Kong-rey in 2013 

in the Wanhua district and Heavy rain 0614 in 2015 in the Songshan district. 

. 

Figure 13. The relationship between warning, rainfall and flood duration. 

Table 11. The hydrodynamic modeling output for each event’s start time of manhole flooding after 

the onset of rainfall for the six districts. 

No. Event 
Warning District 

Datong Zhongshan Songshan Wanhua Zhongzheng Daan 

E06 Heavy rain 0519   18 18 17 20 21 

E09 Heavy rain 0723  3 3    1 

T07 Typhoon Soudelor 16 9 8 8 15 19 

E13 Heavy rain 0602  9 9 10 11 11 11 

Units: hours. 

Table 12. The improvements in early warning time in the adjusted vs. original ORTs. 

No. Event Date Datong Zhongshan Songshan Wanhua Zhongzheng Daan 

E01 Heavy rain 0502 2012/05/02       

E02 Heavy rain 0610  2012/06/10  3 3 3  0 

T01 Typhoon Saola 2012/08/02  0   No alert 1 

T02 Typhoon Soulik 2013/07/11   X   X 

E03 Heavy rain 0814  2013/08/14 0 Alert  0   

T03 Typhoon Trami 2013/08/20  0 1 1  0 

E04 Heavy rain 0822  2013/08/22 0   0 0 0 

T04 Typhoon Kong-rey 2013/08/28  1  Alert X  

T05 Typhoon Fitow 2013/10/06       

E05 Heavy rain 0515  2014/05/15       

E06 Heavy rain 0519  2014/05/19  3 2 0 -1 0 

E07 Heavy rain 0605 2014/06/05   2    

E08 Heavy rain 0614  2015/06/14   Alert  0 0 
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T06 Typhoon Chan-hom 2015/07/09   X    

E09 Heavy rain 0723  2015/07/23 0 0     

T07 Typhoon Soudelor 2015/08/07 0 1  3 0 0 

E10 Heavy rain 0818  2015/08/18 X     0 

E11 Heavy rain 0827  2015/08/27     X  

T08 Typhoon Dujuan 2015/09/28   1  0  

E12 Heavy rain 0617  2016/06/17   1   0 

T09 Typhoon Megi 2016/09/25  0    0 

E13 Heavy rain 0602  2017/06/02 0 0 0 0 0 0 

E14 Heavy rain 0613  2017/06/13       

Alert: Adjusted produces alert but original does not; No alert: Adjusted does not produce alert but 

original does; X: Neither produce alert. 

5. Conclusion 

Herein, a method for pluvial flood warning via rainfall thresholds has been developed for central 

Taipei, using the TS algorithm to optimize the rainfall thresholds. The results of the study show that 

ORTs have better performance on warning issues than WRTs and the adjusted ORTs produce even 

more warning time. However, the ORTs are influenced by some particular events, as evidenced by 

the cross test. These influences will need to be carefully accounted for. As measured by the 

assessment criteria CSI and POD, the overall adjusted ORTs have better performances than the ORTs 

and WRTs. Furthermore, with the small 3- and 6-h ORTs, the chances of advanced warning for pluvial 

floods are substantially improved. Also, the adjusted ORTs based on hydrodynamic modeling 

simulating the start time of manhole flooding produce more warning time than ORTs. The maximum 

improvement in warning time is 3 h and some flood events can be altered after adjusting the ORTs. 

Therefore, by applying TS and a hydrodynamic modeling adjustment, the flood warning system for 

central Taipei could be substantially improved. In future studies, radar data could be applied to 

improve the observations of the rain gauge network for the rainfall threshold model; this might be 

beneficial because we found that the spatial distribution of some extreme rainfall events is uneven 

and the rain gauge network could not always detect the “hot zone” of a hazardous area. 
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