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Abstract: The sizing of the stormwater reservoir, as the design of its properties, usually requires
simulations of a basin runoff for a long rainfall series using a hydrodynamic model. In the case of
insufficient observations, the rainfall series can be reproduced using empirical approaches. One of
the crucial elements in the sizing of the stormwater reservoir is determination of duration time
and intensity of rainfall (design rainfall event), for which the maximum reservoir capacity is being
obtained. The outcome is, however, affected by significant uncertainty of runoff modeling. The aim
of the study is to analyze the effect of the uncertainty of a rainfall-runoff model on calculated
capacities of stormwater reservoirs, along with estimated duration times of the design rainfall.
The characteristics of the rainfall events—intensity, duration, and frequency—were reproduced using
an empirical approach of IDF (Intensity–Duration–Frequency). The basin response to the precipitation
was modeled using the SWMM (Storm Water Management Model) and its uncertainty was estimated
on the basis of the GLUE (Generalized Likelihood Uncertainty Estimation) method. The obtained
probabilistic solution was compared with the deterministic one, neglecting the uncertainty. Duration
times of the design rainfall determined in respect of the reservoir outflow using the probabilistic
model were longer than those found with a deterministic approach. This has an effect on the desired
capacities of the stormwater reservoir, which were overestimated when uncertainty was neglected.

Keywords: stormwater reservoir; Generalized Likelihood Uncertainty Estimation (GLUE); design
rainfall event; Storm Water Management Model (SWMM)

1. Introduction

Intensive precipitation might result in inflows exceeding the capacity of stormwater drainage,
causing flooding and releases of stormwater to the recipient (i.e., river). One of the possible solutions
is attenuating stormwater discharges with storage reservoirs, built within sewer systems. The problem
of designing these structures have attracted many researchers [1,2]. Their main focus are methods for
finding the required reservoir capacity, ensuring proper reduction of flood flows. The problem can be
also stated in respect of desired reduction of pollutant load in stormwaters [3].

The storage reservoirs are usually designed to operate as overflow reservoirs. Their main
advantage is maintaining a constant outflow [4–6]. Many theoretical studies were devoted to
methodology of designing this type of the reservoir [7–10]. Its capacity is usually determined
for so-called design rainfall. Its duration is found to maximize required reservoir capacity, that
allows for maintenance of the desired outflow [11]. The determination of the design rainfall duration
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is usually done on the basis of many simplifications to the runoff model and description of the
stochasticity of the rain events. In practice, it is done using nomograms of the rainfall duration
and required reservoir capacity, elaborated for the given physio-geographic properties of the basin,
drainage standards, and outflow devices [4,6,11]. Capacities obtained in such a graphical approach
are considered to be affected with high uncertainty, because of very rough parametrization of the
basin. A more detailed representation of the basin response to the rainfall can be obtained using
hydrodynamic modeling [7,12–14]. In such an approach, reservoir capacities are calculated on the
basis of so-called continuous simulations [2,7,12], where the input consists of long precipitation time
series (around 30 years long). In the case where an observation period is significantly shorter than
30 years, available time series can be used to develop a synthetic precipitation generator that allows
for extension of the series length artificially [15,16]. Recently, multidimensional probability density
distributions parametrized with copula functions [17,18] are gaining popularity for precipitation
generators, allowing high resolution of simulated time series to be obtained (below 5 min). In such
an approach, in a precipitation time series, rainfall events are identified and then parametrized in
a sense of height and duration, assuming usually the rectangular shape of the precipitation graph.
On the basis of empirical distributions of these precipitation parameters, two dimensional functionals
are being developed, which can be used in precipitation simulations. In other approaches, the
dependency between the precipitation and duration is explained using the correlation coefficient, and
then the rainfall events can be generated using the Iman-Conover method [19]. In many successful
studies, duration and the rainfall height were considered as independent variables. One of the most
sophisticated methods for a rainfall model includes canonical microsaccades, based on the fractal
theory [12].

In practical studies, usually there is a lack of observed time series. The design rainfall can be
determined using regional precipitation models, which on the basis of empirical relationships allows
for estimation of its height for the given duration and occurrence frequency [20,21]. The approach
takes a form of so-called Intensity–Duration–Frequency (IDF) curves and can be also used for a rainfall
generator. Because the observation series of precipitation are rare in engineering applications, IDF
approach is often used for the design of hydraulic structures in sewer systems [8,22].

Runoff models used in the design of the storage reservoirs are affected with strong
uncertainty [23–26]. Surprisingly, its effect on the design of sewer system devices is, however, rarely
analyzed. Kiczko et al. [27] showed that it significantly affects the determined capacities of the storage
reservoir. This study included the design of the stormwater reservoir for a single rainfall event, using
SWMM model. The model uncertainty was estimated using the well-known hydrology method of
Generalized Likelihood Uncertainty Estimation (GLUE) [28]. However, the study focused on a single
event, and did not address the problem of dependency of the design uncertainty on precipitation
height and duration (in a result, the rainfall probability).

The aim of the present study was to develop a general method for the design of a stormwater
reservoir in respect to the runoff model uncertainty, using the IDF approach for the design rainfall.
It analyzes the effect of the model uncertainty for different probabilities of the design rain and shows
its significance on the determination of duration times for the rainfall event that maximizes the
reservoir capacity. As in the previous study, model uncertainty was assessed using the GLUE approach.
Reservoir capacities obtained in respect of the model uncertainty were compared with those calculated
neglecting it. The study utilizes IDF curves developed for Poland.

2. Materials and Methods

2.1. Object of Study

The analyzed catchment is located in the central-eastern part of Kielce and its area is 62 ha
(Figure 1). The total area of the City Kielce is 109 km2, with the population reaching 200,000 (density
21.4 people/ha). The highest point of the catchment is 271.20 m above sea level and the lowest one
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is 260 m above sea level. The total length of the sewer network is 5583 m, of which the main canal
is 1569 m long and its diameter from top to outlet varies between 600–1250 mm. The main channel
receives rainwater from 17 side channels, whose diameters vary in the range of 300–1000 mm. The total
volume of pipes with stormwater wells is 2032 m3. The drop of the collector in individual sections
varies from 0.04% to 3.90%, while the drop of side channels is 2.61% maximum. The area is covered
with housing estates, public utility buildings, as well as main and side streets. The catchment contains
6 types of runoff areas: roofs (14.3%), pavements (8.4%), roads (17.7%), parking lots (11.2%), greenery
(47.2%), and school pitches (1.3%). Road density in the basin is about 108 m/ha. More detailed data
concerning the characteristics of the catchment are described by Dąbkowski et al. [29].

According to the DWA A-117 (2006) method, the annual number of rainfall events in the
observation period (2008–2016) was around 36–58. The total rainfall height and its duration were
varying in ranges of 3.0–45.2 mm and 20–2366 min, respectively. The duration of rainless periods was
from 0.16 to 60 days. Annual precipitation heights in the observation period were changing between
537–757 mm, with rainfall days 155–266. The annual air temperature was 8.1–9.6 ◦C and the number
of days with snowfall 36–84.

A stormwater treatment plant (STP) is located on the outflow from the catchment. At a distance
of approximately 4.0 m from the distribution chamber (DC), an ultrasonic flow meter MES1 is installed
in channel S1. The MES1 ultrasonic flow meter measures the filling and flow of stormwater in a 1-min
step. Obtained time series of the discharge (MES1 point in Figure 1) were used for the identification of
the runoff model.
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Figure 1. Location of the analyzed catchment and model diagram in Storm Water Management Model
(SWMM) software.

The catchment, considered in operation, has already been the subject of numerous studies, in
which surface runoff, stormwater quality, storm overflow, and stormwater treatment plant operation
were modelled [3,16]. As part of these analyses, the model was calibrated using the trial and error
method, where a set of parameters determining satisfactory results of calculations was searched for.

2.2. Methodology

In the absence of continuous, long-term rainfall data, the storage reservoir capacity is determined
on the basis of the calculated rainfall frequency (C = 1, 2, 5, 10), using the category of drainage
standard [11,30]. The calculation diagram of the developed method is presented in Figure 2.
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Figure 2. Calculation diagram of the method of dimensioning the retention capacity (where
I(t, C, tr)—reservoir inflow hydrograph for given rain duration time (tr) and occurrence probability
C, m = 1, 2, 3, . . . , N—subsequent Monte Carlo simulations with varying parameters
[α,dimp, dperv, nimp, nperv, nn, γ, β], for which reservoir inflow hydrograph is compute,
Qout,max—maximal allowed outflow form the reservoir, V(C)max—maximal reservoir retention capacity
for given values of C and Qout,max).

The computational data adopted in the study include the physical and geographical characteristics
of the catchment and rainfall and flow measurements used to calibrate the hydrodynamic model.
In order to determine the storage capacity of the reservoir, it is necessary to transform the calculated
rainfall depth values with Equation (3) in the outflow values. In order to take into account the
uncertainty of the catchment model, the Monte Carlo method is used to simulate the model parameters
for the assumed ranges of their variability. Then, on the basis of measurements, the identification of
distributions of analyzed parameters is performed with the GLUE method [31]. In this way the basin
outflow hydrograph is determined, and using the balance of Equation (7), the reservoir capacity is
calculated. In order to determine the maximum capacity of the reservoir for the assumed standard
of drainage (C) and assumed outflow (Qout,max), it is necessary to perform calculations for different
(m) rainfall duration (tr) in order to determine the extremum of variability of V = f (C, tr, Qout,max)

and to determine the duration of the determining rain, where V → max{(C, trd, Qout,max)} (where:
trd—design rainfall event). The values of the outflow from the retention reservoir (Qout,max) and the
determined accumulation capacities V(C)max were normalized by reference of the above variables to
the impermeable area of the catchment (Fimp) and determination of the unit capacity index (Vq) and
unit outflow (q).
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2.3. Dimensioning the Retention Reservoir

A review of the literature [5–7,27] shows that the most common task of the retention reservoir
in the stormwater system is to reduce the maximum flow at the outflow from the catchment and
to improve the quality of the stormwater. At the reservoir design stage it is necessary to meet the
condition that for the assumed return period at a given time period of rainfall (assumed repeatability
of rainfall over a given period of time) and at its maximum filling H = Hmax, the outflow value
Qout ≤ Qout,max (design flow) does not lead to overloading of the stormwater treatment plant.
Exceeding the Hmax value leads to an increase in outflow from the reservoir (Qout ≥ Qout,max) and
discharges with emergency overflow (OV, Figure 2). Therefore, the determination of the reservoir
capacity is limited to the determination of the combination of Pmax and tr values, for which the desired
capacity reaches the maximum value.

2.4. Uncertainty Analysis by the GLUE Method

Uncertainty analysis was performed using a method popular in hydrology: Generalized
Likelihood Uncertainty Estimation (GLUE) [28,31]. It is based on the probabilistic formulation of the
parameter identification problem, where instead of a single parameter set, as in the deterministic
approach, a distribution of parameters is estimated. The uncertainty is modeled by the parameter
variability. Because the output distribution is conditioned with the observations, a total model
uncertainty is obtained. The method uses the Bayes formula:

P(Q/Θ) =
L(Q/Θ)·P(Θ)∫

L(Q/Θ)·P(Θ)d(Θ)
(1)

where P(Θ) denotes a priori parameter distribution, L(Q/Θ) likelihood function, and P(Q/Θ) the a
posteriori distribution, as the result of the parameter identification. In practical cases, the assumption
on the a priori distribution is weak and usually takes a form of the uniform distribution limited to the
parameter physical variability. Therefore, the choice of the likelihood function is crucial. In the present
study the following function was used [32]:

L(Q/Θ) = exp

[
−∑N

i=1
(
Qi − Q̂i

)2

κ·σ2

]
(2)

with Qi and Q̂i standing for modeled and observed discharge in the time step i, σ2 the variance of the
model residua, κ the factor used to control the variance of the a posteriori distribution. The value of the
κ factor was estimated in order to maximize the likelihood of the observations in the output discharge
distribution, ensuring that 95% of observation points were enclosed by 95% confidence intervals.
For the Q̂i flow rates measured with the ultrasonic flow meter, MES1 (at S1, Figure 1) were used.

2.5. Rainfall Depth

In engineering practice, IDF curves are widely used in the dimensioning of sewer systems and
design of objects located on it (overflows, reservoirs, etc.) [4,8,14,22]. These curves describe the relation
between the duration of rainfall (tr) and the frequency of its occurrence (C), which can be generally
written with the relation:

J = f(tr, C, ξ) (3)

in which ξ—regional parameter differentiating the variability of the obtained curves, J—mean rain
intensity in dm3·(ha·s)−1, expressed as J = 166.7·Pmax.

Due to a number of conditions, such as the genesis of rainfall, climatic conditions, land use, the
length of rainfall measurements, etc., the relationships described by Equation (1) may take different
forms [20,33,34]. Taking into account the above remarks and the climate conditions in Poland, which
was reflected in a series of works [20,35] aimed at developing empirical rainfall models, the formula
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of Bogdanowicz and Stachy [32] was used in the analyses to determine the maximum rainfall depth
(Pmax) for the assumed precipitation frequency:

Pmax = 1.42·t0.33
r + ξ(R, tr)·(−lnp)0.584 (4)

where tr—duration of rain (min), p—probability of rainfall exceeding (p = 1/C), ξ(R, tr)—regional
parameter determined depending on the location and duration of rainfall.

The above relationship was developed on the basis of 60 years of precipitation measurements in
Poland and is now used in engineering practice [4,5]. For the region covered by the research, i.e., the
Świętokrzyskie Voivodship and the city of Kielce, the values of parameter ξ are determined on the
basis of equations:

ξ(R.tr < 120 min) = 4.693· ln(tr + 1)− 1.249 (5)

ξ(R.tr < 1080 min) = 2.223· ln(tr + 1) + 10.639 (6)

In further considerations at the stage of reservoir dimensioning for C = 2, 5, 10, the rainfall
duration was considered in the range of tr = 15–240 min [9]. The results for C = 1 were omitted in
the analyses, as they lead to an underestimation of reservoir sizes, which was reported in various
studies [4,5,9].

2.6. Surface Runoff Modelling

One of the factors determining the capacity of the reservoir and the type of drains designed is the
outflow from the catchment. This outflow is the result of the runoff on the surface of the catchment
area, and then of the flow of stormwater through the sewer system. In this paper, the SWMM model
was used to simulate the drain from the catchment. This model is used commonly to simulate the
quantity and quality of stormwater and the phenomenon of rainfall–runoff is modelled in it, taking
into account non-linear reservoirs, where infiltration and surface runoff are simulated [36].

Due to the complex process of wastewater accumulation in the overflow reservoir, requiring
large calculation outlays in the SWMM model, a simplified model for the reservoir was used in the
conducted analyses [5,6,9]. In this model, the overflow reservoir capacity can be determined on the
basis of the differential equation of the wastewater volume balance of the form:

dV(t)
dt

= S·dH(t)
dt

= I(t)−Q(t)out (7)

where S—surface area of the reservoir in the projection, H(t)—reservoir depth, I(t)—inflow to the
reservoir determined on the basis of SWMM simulations, Q(t)out—outflow from the reservoir, with
negligible error that can be assumed to be constant [36].

3. Results

On the basis of SWMM model calculation results and literature data, the ranges of variability
of individual model parameters were determined (Table 1). Due to strong interactions between the
calibrated parameters and their significant influence on the results of surface runoff calculations, the
following modification coefficients were introduced at the calculation stage: coefficient (α) for the flow
path of width (Wj), coefficients (dimp; dperv) for the retention depth of impervious and pervious areas,
coefficients (nimp; nperv) of roughness of impervious and pervious areas, coefficients (nn) of roughness
of sewer, coefficient (γ) for the share of impervious areas (Impj) in the whole catchment area, coefficient
(β) for the average slope of a partial catchment (Ij). In order to reduce the multidimensionality of the
solution and limit the outlays of calculations, it was assumed that the flow path width is determined
as W = α·A0.5. The values of coefficients (β, γ) are used to correct the value of the sealed area (Impj)
and the slope of the catchment (I = β·Ij), where j—the number of partial catchments.
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Table 1. Ranges of variability of model parameters for the a priori uniform distribution [16].

Parameters Unit Range

Coefficient for flow path width (α) - 2.7–4.7
Retention of impervious areas (dimp) mm 0.8–4.8

Retention of pervious areas (dperv) mm 0.8–6.8
Roughness coefficient for impervious areas (nimp) m−1/3·s 0.01–0.022

Roughness coefficient for pervious areas (nperv) m−1/3·s 0.16–0.20
Roughness coefficient of sewer channels (nn) m−1/3·s 0.01–0.048

Correction coefficient for percentage of impervious areas (γ) - 0.7–1.275
Correction coefficient for sub-catchments slope (β) - 0.8–1.375

The Monte Carlo sample was conditioned using a likelihood function (Equation (7)) on two
sets of observations: for 15 September 2010 (time and total rainfall depth equal to tr = 107 min and
Ptot = 9.2 mm, volume of runoff Vtot = 2221 m3), and 7 August 2011 (tr = 60 min; Ptot = 8.6 mm,
volume of the runoff Vtot = 1733 m3), events [37]. The scaling factor κ was adjusted in order to ensure
that 95% of observations in calibration sets are enclosed in 95% confidence intervals. In Figure 3,
resulting parameter distributions in respect of the likelihood measure (Equation (8)) are showed
as box-plots. The total variability of the likelihood function is presented with dashed lines extents.
A red center line denotes the median value and 25th and 75th quantiles are indicated by box edges.
Box-plots are used instead of dot-plots, found in Kiczko et al. [27], as they provide a more precise
characterization of the a posteriori distribution. For α, nperv, nimp, dperv, and γ, the model response is
almost uniform—similar high and low likelihood values were found in the whole parameter span
(Figure 3a–c,e,g). It is different in the case of remaining parameters, dimp, β, and nn (Figure 3d,f,h).
This suggests that the model is more sensitive to the second parameter set, as it is possible to spot the
dependency of the likelihood function on parameter values. For example, it is clear that the highest
model likelihood was obtained for β values close to 0.9 (Figure 3f). Figure 4 presents verification of
the probabilistic solution for an independent data set. On the basis of the simulations performed
(Figure 4), it can be stated that the measured and modelled outflow hydrographs for the calibration
set are characterized by a high adjustment for high intensity rainfall (time and total rainfall depth
equal to tr = 270 min and Ptot = 16.5 mm, which results in rainfall intensity q = 10.19 dm3·(ha·s)−1 at
the volume of Vtot = 3415 m3 hydrograph).

Using the simulation results obtained with the Monte Carlo method and a posteriori distributions
of the model parameters (Table 1), hydrograph calculations of outflow from the catchment were
performed for precipitation tr = 10–240 min and C = 1, 2, 5, 10, determined on the basis of IDF
curves described with Equations (4)–(6). Next, on the basis of Equation (7) for the assumed design
flows (Qout,max = 0.1–1.0 m3·s−1), capacities of retention reservoirs were determined, thus obtaining
a probabilistic solution and determining for individual values of V(tr, C, q) the mean value and 95%
confidence interval, respectively.
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Figure 4. Exemplary results of calculations and measurements for the confidence interval of 95% using
the Generalized Likelihood Uncertainty Estimation (GLUE) method for the hydrograph of outflow
from the catchment (30 July 2010).

The results were compared with the reservoir capacities obtained neglecting the uncertainty, for
a single parameter set, ensuring satisfactory simulation results. This approach is commonly used in
engineering practice and is called the deterministic solution. The results of calculations obtained in
this way allowed to assess the influence of uncertainty of the calibrated parameters of the SWMM
model on the determined reservoir capacities.

Using the above remarks and based on simulations performed with the SWMM model, the
influence of the uncertainty of the hydrodynamic model of the catchment and unit outflow on the
design rainfall duration used to dimension the reservoir and the unit reservoir capacity was analyzed.
On the basis of performed calculations, the dependence Vq = f (tr) for selected values of q was first
determined; an example of the dependence Vq = f (tr) for C = 5 and q = 17 dm3·(ha·s)−1 and q = 6
dm3·(ha·s)−1 is shown in Figure 5.
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From the results obtained it can be concluded that the uncertainty of the hydrodynamic model
of the catchment influences the unit accumulation capacity of the reservoir, which is confirmed by
the range of variability of the confidence interval of 95% for individual values of Vq = f (tr) and by
the dependence of Vq = f (q, C) shown in Figure 8. Moreover, it was found that the reservoir capacity
determined taking into account the model uncertainty (median) is smaller than the value obtained in
the deterministic solution, which is also indicated by the variability of Vq values illustrated in Figure 5.
Due to the fact that curves in Figure 5 were prepared for selected values of q, it is impossible to
generalize them for the remaining unit values of reservoir outflows. For this purpose, it was necessary
to analyze the relations between unit reservoir capacities obtained for tprob

rd and tdet
rd and the assumed

outflows (q) and the assumed rainfall frequency (C), which is discussed in the further part of the paper.
On the basis of the curves shown in Figure 5 and determined for q = 6 dm3·(ha·s)−1 and

q = 17 dm3·(ha·s)−1, it is possible to determine the influence of the SWMM model uncertainty on
the duration of the design rainfall used to dimension the reservoir in the deterministic and probabilistic
solutions. On the basis of the presented curves, it can be stated that the value of the design rainfall
duration in the deterministic solution (tdet

rd ) is shorter than the value obtained in the probabilistic one

(median)—tprob
rd . In the first solution for q = 17 dm3·(ha·s)−1, the trd value is 56 min and is 19 min

shorter than in the second one, and the tprob
rd
tdet
rd

ratio is 1.33, while for q = 6 dm3·(ha·s)−1 the shift between

rain duration in the considered solutions is shortened to 8 min and the tprob
rd
tdet
rd

of 1.09 decreases accordingly.

The obtained result indicates that the smaller the unit outflow from the reservoir (q), the value of the
shift between the duration of rainfall obtained in deterministic and probabilistic solutions decreases,
which translates into the size of the required storage capacity of the reservoir. Bearing in mind the
need to carry out a detailed evaluation of the model uncertainty influence on individual aspects of

reservoir capacity selection and its operation, on the basis of the obtained results the tprob
rd
tdet
rd

= f (q, C)

and
Vprob

q

Vdet
q

= f ( tprob
rd
tdet
rd

, C) curves were prepared and shown in Figures 6 and 7.
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On the basis of the data in Figure 6, it can be stated that the difference in the shift between the
rain duration determined in the probabilistic and deterministic solutions for designing the retention
reservoir is influenced by the unit outflow (q) and the rainfall frequency (C). The results of calculations
shown in Figure 6 showed that the highest relative difference between the trd time obtained in the
deterministic and probabilistic solution was obtained for q = 21 dm3·(ha·s)−1 for C = 2–10, and it
is the highest for C = 2 and exceeds 35%. However, for the value of C = 10, it is smaller than for
C = 5 and C = 2, and is 1.15. A further increase in the unit value of the outflow from the reservoir (q)
leads to a decrease in the time lag between the duration of rainfall obtained in the deterministic and
probabilistic solutions. The issue discussed above is important from the point of view of the reservoir
design, because identification of the most unfavorable distribution of tprob

rd values in relation to the
deterministic solution defines the area of operation of the reservoir, in which it is most exposed to
potential underestimation.
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Taking into account the above considerations, the variability of
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= f ( tprob
rd
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, C), allowing for

determination of the effect of the relative shift between the trd value determined for deterministic and
probabilistic solutions on the unit storage capacity, is presented in Figure 7. Analyzing the shape of
the curves, it can be stated that the increase in the relative shift between the design rainfall duration
obtained in the deterministic and probabilistic solution (median) relative to the maximum value of
tprob
rd
tdet
rd

corresponding to q = 15 dm3·(ha·s)−1 (C = 2–10) leads to a decrease in the relative difference in

the capacity of reservoirs obtained in the SWMM model and taking into account the uncertainty, and

reaches the value equal to
Vprob

q

Vdet
q

= 0.8. As a result of a decrease in the tprob
rd
tdet
rd

value, which is related to the

increase in the outflow from the reservoir (Figure 5), the
Vprob

q

Vdet
q

quotient decreases further, the value of

which indicates an underestimation of the storage capacity in the probabilistic solution (the median is
a search solution) in relation to the value obtained only by the calibrated SWMM model.



Water 2019, 11, 321 12 of 16

In the next stage of analyses, on the basis of calculations carried out with the SWMM program,
curves were determined (Figure 8) showing the influence of the unit outflow from the reservoir (q) on
the unit maximum accumulation capacity (Vq) at preset values C for the design rainfall duration (trd).
The calculations done showed that the size of the unit storage capacity of the reservoir (Vq) determined
in the deterministic solution is larger than the median obtained in the probabilistic solution, and
its value decreases with the increase of the unit outflow from the reservoir, which is also confirmed
by the variability of Vq = f (tr, C) in Figure 8. This result indicates that the unit storage capacity of
the reservoir (Vq) obtained in the deterministic solution is overestimated in relation to the capacity
obtained in the probabilistic solution (median), which means that the reservoir may be oversized.
From the point of view of the reliability of the reservoir operation, this is a beneficial solution, however,
taking into account the 95% confidence interval, it is difficult to draw far-reaching generalizations, as it
may turn out that the capacity of the reservoir designed on the basis of a deterministic solution may
still be insufficient.
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Therefore, further analyses are necessary in this respect, all the more so as retention reservoirs are
important objects on the stormwater networks and the appropriate selection of their dimensions is of
key importance for the high reliability of the drainage systems operation.

The analysis of the obtained curves Vq = f (q, C) indicates an increase in the relative unit difference
of reservoir capacities obtained in deterministic and probabilistic solutions, depending on the value of
q. For example, for C = 2 an increase in the value from q = 6.8 dm3·(ha·s)−1 to q = 13.7 dm3·(ha·s)−1

leads to an increase in the relative difference in reservoir capacity from 6% to 19%. Referring the
obtained result to the above analyses, it can be stated that with the increase in the amount of outflow
from the reservoir, the degree of its oversizing (taking the probabilistic solution as the starting point)
increases, which from the point of view of economy and operation of the stormwater system below,
the reservoir is unfavorable.

Based on Figure 8, it can be concluded that an increase in the unit outflow from the reservoir (q)
leads to a reduction in the required unit accumulation capacity (Vq). This means that the uncertainty of



Water 2019, 11, 321 13 of 16

the model is important for the selection of discount devices. Comparing the values of unit outflows
from the reservoir for the assumed unit accumulation capacity, it can be stated that for the deterministic
solution the outflows, q are greater than taking into account the uncertainty. This is important when
designing the reservoir, as omitting the uncertainty leads to an overstatement of the outflow with the
drain, which may lead to unfavorable phenomena (system overload) in the stormwater system located
below the outlet from the reservoir.

4. Summary and Conclusions

The paper presents a methodology of reservoir dimensioning taking into account the uncertainty
of identification of parameters calibrated in the hydrodynamic model. The calculations made in the
paper showed that the uncertainty of the model has a significant impact on the design of the retention
reservoir. The simulations showed that due to the increase of the unit outflow from the reservoir to q
= 20 dm3·(ha·s)−1, the design rainfall duration taken into account when dimensioning the reservoir
(probabilistic solution) is longer than in the deterministic solution. Simultaneously, with the increase
of q, the difference in the values of the design rainfall duration determined in the probabilistic and
deterministic solutions increases. On the other hand, after exceeding a certain limit, a further increase
in q leads to a decrease in the difference between precipitation duration obtained in the probabilistic
and deterministic solutions.

On the basis of the analyses carried out, it was found that in the case under consideration, the unit
storage capacity of the reservoir (median) obtained taking into account the uncertainty is smaller than
that determined in the probabilistic solution. At the same time, it was shown that with the increase
in unit outflow (q), the absolute difference in reservoir capacity (median) obtained in deterministic
and probabilistic solutions increases. Therefore, the reservoir capacity (median value) determined on
the basis of the hydrodynamic model simulation, where the uncertainty of the model was omitted,
is underestimated compared to the deterministic solution. From the point of view of reliability of
reservoir operation, this is a positive result, as the reservoir will not be overfilled. However, due to the
range of variability of the established 95% confidence interval and the fact that these analyses were
performed for a single catchment, it is difficult to draw far-reaching guidelines and generalizations.
Therefore, further analyses for urban catchments with diversified physico-geographical characteristics
are advisable.
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Abbreviations

A subcatchment area in the runoff model, ha;
C rainfall frequency;
dimp retention depth of impervious areas in the runoff model, mm;
dperv retention depth of pervious areas in the runoff model, mm;
Fimp impermeable of the catchment, ha;
H(t) reservoir depth, m;
Hmax maximum reservoir depth, m;
I(t) inflow to reservoir, m3·s−1;
I subcatchments slope in the runoff model;
Imp percentage impervious areas in the runoff model;
L(Q/Θ) likelihood function;
nimp roughness coefficient for impervious areas in the runoff model, m−1/3·s;
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nn roughness coefficient for sewer channels in the runoff model, m−1/3·s;
nperv roughness coefficient for pervious areas in the runoff model, m−1/3·s;
P(Θ) denotes a priori parameter distribution;
P(Q/Θ) the a posteriori distribution;
Pmax maximum rainfall depth, mm;
Ptot rainfall depth in an episode, mm;
p probability of rainfall exceeding;
Qout outflow from stormwater reservoir, m3·s−1;
Qout,max maximum outflow from stormwater reservoir, m3·s−1

q unit outflow from reservoir; dm3·(ha·s)−1

S surface area of the reservoir in the projection, m2;
tr rainfall duration, min;
tdet
rd design rainfall event—deterministic solution, min;

tprob
rd design rainfall event—probabilistic solution, min;

Vq unit capacity index, m3·ha−1;
Vdet

q unit capacity index—deterministic solution, m3·ha−1;

Vprob
q unit capacity index—probabilistic solution, m3·ha−1;

Vtot volume of runoff, m3;
W flow path width in the runoff model, m;
α coefficient for flow path width in the runoff model;
β correction coefficient for the percentage of impervious areas;
γ correction coefficient for subcatchments slope in the runoff model;
κ the factor used to control the variance of the a posteriori distribution.
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