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Abstract: Current and future urban flooding is influenced by changes in short-duration rainfall 

intensities. Conventional approaches to projecting rainfall extremes are based on precipitation 

projections taken from General Circulation Models (GCM) or Regional Climate Models (RCM). 

However, these and more complex and reliable climate simulations are not yet available for many 

locations around the world. In this work, we test an approach that projects future rainfall extremes 

by scaling the empirical relation between dew-point temperature and hourly rainfall and projected 

changes in dew-point temperature from the EC-Earth GCM. These projections are developed for the 

RCP 8.5 scenario and are applied to a case study in the Netherlands. The shift in intensity-duration-

frequency (IDF) curves shows that a 100-year (hourly) rainfall event today could become a 73-year 

event (GCM), but could become as frequent as a 30-year (temperature-scaling) in the period 2071–

2100. While more advanced methods can help to further constrain future changes in rainfall 

extremes, the temperature-scaling approach can be of use in practical applications in urban flood 

risk and design studies for locations where no high-resolution precipitation projections are 

available. 
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1. Introduction 

To manage flood risk in urban areas, it is important to design cities and their drainage systems 

in such a way that they can deal with extreme rainfall events and subsequent peak surface flows. 

Given their high investment costs, drainage systems are designed for multiple decades and thus their 

design must be evaluated against any foreseeable changes in their performance. To estimate the 

required discharge capacity associated with precipitation extremes, Intensity-Duration-Frequency 

(IDF) curves are often used, based on observed rainfall extremes as well as future scenarios. Several 

approaches employ the results from climate models, as well as weather generators to project future 

changes in such IDFs [1–3]. With anthropogenic climate change, daily and shorter-duration rainfall 

amounts are expected to increase [4], posing additional challenges for resilient planning in expanding 

urban agglomerations. While daily rainfall amounts are expected to increase with about 7% per 1 °C 

warming, there is evidence that observed short-duration rainfall extremes will increase more rapidly 
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in intensity (e.g., [5–6]). Estimates from climate modelling of future sub-daily rainfall extremes also 

show a higher increase [7–10]. 

For urban planners and water system engineers, actionable information on future rainfall 

extremes is often lacking, especially for less developed countries, where modelling capacity and local 

climate projection data are scarce. A common approach is the use of General Circulation Model 

(GCM) output, in the absence of more detailed information. In situations where Regional Climate 

Model (RCM) information is available, this is usually limited to daily estimates of future rainfall. Such 

output suffers from substantial bias, as well as limited spatial and temporal resolution, and thus often 

cannot sufficiently resolve changes in sub-daily rainfall extremes [6]. Bias has generally been 

overcome in hydrological studies using statistical techniques [11,12], however the temporal 

resolution remains an issue for estimating sub-daily extremes. Weather generators have been used to 

downscale future precipitation extremes affecting urban hydrology (e.g., [13]) which requires 

considerable expertise and time efforts. Alternatively, non-hydrostatic models can be used to assess 

changes in short-duration rainfall extremes [14]. Such efforts are often prohibitive in situations where 

limited capacity and skills are available, or when resources are limited for design studies e.g., in 

developing countries. 

In addition, one important issue is that establishing IDF curves for design purposes requires 

long time series of data in order to establish low-frequency return-periods. Often, only single 

simulations of projected rainfall are available for a 30-year climate period for a given emission 

scenario, for instance from RCMs or non-hydrostatic models. This can lead to problems when 

analysing these rainfall time series for hydrological purposes. For instance, estimates of extreme 

events such as the 100-year flood event are error-prone, as they happen by chance in the short time 

series of 30 years, see, e.g., [15]. One solution is to combine several ensemble simulations, so that a 

sufficiently long time series is available. Furthermore, recent work by Mattingly et al. [16] shows the 

impact of a hyperlocal approach when establishing IDF curves. Using hyperlocal precipitation data 

as probabilistic distributions rather than single precipitation values leads to higher design intensities 

for events with return periods up to 50-years when compared to single station results. Depending on 

the spatial scale this hyperlocal effect could produce shorter return periods for more frequent events. 

For the Netherlands this hyperlocal approach would be a valuable addition to the current work that 

could for example apply the CC approach to radar data instead of single station observations. In 

addition, although it focused on a finer scale, the work of Mattingly et al. [16] suggests that 

aggregating all station data of the Netherlands may as well lead to a reduction of the design 

intensities. 

Empirical relationships can indicate how rainfall extremes change with temperature. For 

instance, the relationship between dew-point temperature (Td) and precipitation intensity (Pi) has 

been shown for different durations and frequencies for the Netherlands and Hong Kong [5,17]. These 

relationships show that the increase in precipitation intensity above a certain temperature threshold 

can be more than 7% for a 1 °C rise in Td. Rainfall intensity and Td follow the Clausius–Clapeyron 

(CC) relation, but the increase can be about 14% when daily mean temperatures are higher than 12 

°C, referred to as super Clausius–Clapeyron scaling (sCC). Lenderink and Van Meijgaard [18] argue 

that the primary reason for sCC scaling relates to the positive feedback mechanism during the 

formation of precipitation in a convective cloud. The upward motion of the clouds leads to further 

release of latent heat during cloud formation. The latent heating in the cloud is proportional to the 

moisture flux at the cloud base, i.e., the dominant moisture source of the cloud. The kinetic energy of 

the rising air will likely increase proportionally with the latent heating and will force intense updraft 

followed by higher rates of condensation and precipitation formation within the cloud. 

It has been suggested that such empirical relations between Pi and Td can be used in 

constructing scenarios for future rainfall extremes [14,19], potentially offering actionable information 

for planners and engineers. An example includes a guidance to road managers for incorporating 

changing rainfall intensities into their planning and design, making use of this sCC scaling with dew-

point temperature [20]. One of the arguments focuses on the extent to which GCMs produce more 

robust and consistent results for temperature changes under climate scenarios, compared to projected 
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rainfall changes [4]. For instance, Manola et al. [21] compared a Td scaling approach with a delta-

change method [22], and with results from a non-hydrostatic model simulation, to estimate potential 

future changes for a specific event. Their evaluation of these methods showed similar changes in 

intensity: from below CC to 3 times CC increase per degree of warming. They also found the Pi-Td 

method to be simple and time efficient compared to numerical models.  

We build on these lines of research by describing a new temperature scaling approach to project 

future changes in short-term extreme precipitation. There is still quite some discussion ongoing on 

the validity of the sCC approach, as it may be influenced by the large-scale moisture availability [18] 

and the occurrence of more intense convective precipitation may only be a result of the transition 

from a cold temperature regime with large-scale rain towards a warmer temperature regime with 

intense convective precipitation [23]. Lenderink et al. [17] concluded that the 2CC behaviour as seen 

in observed time series could be indicative for a climate change response. We think this method 

therefore has potential for applications in future flood risk assessments where the available 

precipitation projections are at present highly uncertain, since convective precipitation can only to a 

limited extend be resolved in most climate models. 

This paper is structured as follows: The second section of the paper describes the research 

method and the data. In the third section, the research results are being presented along with a 

discussion. The final section describes the summary of the results and key conclusions. 

2. Methods and Data  

Figure 1 provides an overview of the applied modelling framework and the data that is used. 

We first present a brief overview after which the individual sections give details of both the data and 

each analytical step. Observed precipitation and temperature time series data of 33 weather stations 

in the Netherlands are used to derive the Pi-Td relationship and IDF-curves for the current climate. 

We use the period of the years 1981–2010 as the baseline. We select a large ensemble of projected 

climate data from the EC-Earth GCM. Rather than using regional climate model data, we chose GCM 

data for the case, as these are globally available, and would enable a global application of this method. 

Regional climate model projection availability is more restricted. Ensemble projections for the 

Radiative Concentration Pathway (RCP) 8.5 [24] from this GCM are used to derive a future 

precipitation projection, as well as projected change in dew-point temperature. We select the 

projections for the years 2071–2100. In the first approach we follow [22] and the precipitation data is 

bias adjusted following the Advanced Delta Change Method (ADCM), of which the details are 

explained below. In the second approach, the changes in dew-point temperature in these EC–Earth 

projections are used to empirically scale future rainfall projection using the historically derived, 

empirical Pi-Td relationship. We intercompare the future IDF curves that result from these two 

approaches and analyse the change against the actual IDF based on rainfall observations. 
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Figure 1. Approach for intensity-duration-frequency (IDF) construction including temperature 

scaling to derive future short-term precipitation extremes. 

2.1. Climate Data 

2.1.1. Current Climate 

The observed precipitation intensity (Pi) along with the observed dew-point temperature (Td) 

are analysed for the Netherlands. For this purpose, hourly meteorological data for Pi and Td are taken 

from 33 weather stations for the baseline period 1981–2010 from the Royal Netherlands 

Meteorological Institute (KNMI) (https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens). 

These 33 stations are located on relatively flat grounds and are closely spaced in a rather 

homogeneous environment. Therefore, we pool together the data from these stations in order to 

obtain one dataset equal to a time series of 990 years from which the frequency of rare events can be 

estimated. This same approach is previously also taken by [18]. 

2.1.2. Future Climate 

The EC–Earth model [25] provides several ensemble simulations for RCP 8.5. We chose this 

model given that the availability of 16 ensemble simulations provides a more robust estimate of the 

changes in frequency of rare events, see [26]. Data for the projection period of 2071–2100 is made 

available by KNMI. These data comprise of gridded data with a cell of size 1.125 by 1.125 degrees 

over the Netherlands. The simulation for RCP 8.5 scenario represents a high emission scenario [24], 

and we apply this scenario to analyse a possible high level of change in projected extreme 

precipitation at the end of the 21st century.  

The gridded data for the 16 EC–Earth ensemble runs contain 3-hourly rainfall and dew-point 

temperature time series for the control period (matching with the baseline period of 1981–2010) and 

the future scenario (2071–2100). We combine these individual ensemble members and construct one 

dataset equal to a time series of 480 years. This allows us to better account for natural variability and 

provides a long enough period to capture the relationship between rare short-duration rainfall events 

with Td. 

2.2. Projection Methods 
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2.2.1. Advanced Delta Change Method 

The simulation of convective type events is not yet possible in GCMs, as convective rainfall is 

parameterized rather than simulated in GCMs [27]. However, RCM models with convection-

permitting resolution (kilometer-scale) are now becoming available [28]. To anticipate changes in 

extreme precipitation at local scale, both in space and time, from GCM data various downscaling 

methods can be applied. Dynamic downscaling and statistical downscaling combined with bias 

correction methods are frequently used to produce climate data at a higher spatial resolution [29]. 

Both dynamic and statistical downscaling methods, increasing the spatial or temporal resolution 

from a low-resolution dataset, often are either computationally expensive, depend on the availability 

of RCMs, or long historical observed time series are needed to create reliable statistical relations. 

Straightforward bias correction methods are often easier to apply for any location of interest and 

consist of a generic transformation for adjusting the GCM output. The bias between GCM output and 

the observed time series for the baseline period is then assumed stationary for the future projection 

[11]. To provide means of comparison for the Td-Pi scaling approach, we apply a bias correction 

method: the Advanced Delta Change Method (ADCM). The procedure to apply ADCM is described 

by Van Pelt et al. [22] and briefly outlined here. 

First, the 60th and 90th percentile are calculated for each month. These values are smoothened 

to reduce the sampling variability of the transformation coefficient a and b. We calculated a weighted 

mean to smooth: a 0.5 weight is given to the current month and 0.25 weights are given to the previous 

and next month. The excess (E) is calculated for 3-hour precipitations sums which exceeds the 90th 

percentile of their respective months. The mean control and future period excesses, E���� and E����, 

respectively, are calculated on a monthly basis over the entire period using Equation 1. These mean 

excesses are also smoothened. Second, the correction factors g1 and g2 are calculated, see Equation 2. 

Then, transformation coefficients a and b are calculated following Equation 3.  

Step 1: Calculating the Excess 

E =  P −  P��
�  

E���� =  
∑(P�  − P��

� )

n�
 

E���� =  
∑(P�  − P��

� )

n�
 

(1) 

Step 2: Bias Correction factors 

g� = P��
� P��

�⁄  

g� = P��
� P��

�⁄  

(2) 

Step 3: Transformation Coefficients 

a = P��
� �P��

� �
�

 ×  g�
�� ��  

b =
log{g� × P��

� (g� × P��
� )}⁄

log �g� × P��
� �g� × P��

� �}�
 

(2) 

Finally, a transformation of the observed precipitation data is carried out to arrive at the future 

transformed precipitation series using Equation 4. 

Step 4: Transformation 

for P < P��
� →  P∗  = aP� 

for P > P��
� →  P∗ = E���� E����  × (P − P��) + a(P��)� �  

(3) 
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where PO is observed precipitation, PF is future precipitation, PC is control precipitation, P60 is the 60th 

percentile, P90 is the 90th percentile, E, EC, and EF are the excess for the observed, control, and future 

periods, and nC and nF are the numbers of values in which the 90th percentile is exceeded in the 

control and future period. 

Using these steps, we calculate the ADCM parameters and coefficients. We transform the 

precipitation values from the baseline period to the future period using the projected changes in the 

60th and 90th percentiles. For this, we aggregate the 1-hourly observed rainfall data to 3-hourly data 

to align it with the EC-Earth timestep. These data are used in the ADCM and transformed into future 

precipitation at 3-hourly timestep. This future precipitation is divided by the baseline precipitation 

to establish the change factor. The baseline hourly precipitation is then multiplied by the change 

factor for the future precipitation. This results in hourly precipitation time series for the future 

scenario (2071–2100) for each EC-Earth model ensemble member.  

2.2.2. Precipitation Intensity and Dew-point Temperature Relationship 

For the second approach, a relationship is determined between rainfall intensity and dew-point 

temperatures at hourly intervals. Lenderink et al. [17] found the best relationship between 

precipitation intensity and dew-point temperature when the Td values 4 hours before the observed 

precipitation are considered. The best relationship here is defined as the most constant dependency 

across the largest range of dew-point temperatures. After testing several lead times of Td, we 

confirmed this four-hour lead, which is implemented for the rest of the analysis. 

For the Pi-Td relationship only wet events are taken into consideration, with Pi > 0. With this 

wet period time series, Td bins of 1 °C are built across the range of Td. We apply a ceiling approach, 

Td values between 0 °C and 1 °C are referred to as the Td bin at 1 °C. These bins are then used to 

group Pi values. For every bin, Pi values corresponding to different percentiles are extracted to create 

percentile plots. We assessed the 80th and the range of the 90–99th percentile in steps of 1 percentile. 

Additionally, we assessed the 99–99.9th percentile in steps of 0.1 percentile. 

We introduce a conditional operator for calculating the percentile values. The conditional 

operator ensures that while calculating percentile values within a bin, only those bins are considered 

which have a minimum number of data points satisfying the particular percentile bin calculation. 

This reduces uncertainty as for higher percentile values the numbers of precipitation values within a 

bin reduces. This minimum number of data points is referred to as a threshold value. Once this 

conditional operator is introduced, it allows us to continue with only those temperature bins which 

have more precipitation data points than the threshold calculated. With this approach we use a 

conservative inclusion criterium while simultaneously guaranteeing confidence in the number of 

data points within in the bins that are included. Equation 5 computes the threshold value for every 

percentile value. It implies that, e.g., the 99th and the 99.9th percentile at least 100 respectively 1000 

data points should be available in the bin to be included in the analysis to establish the Pi-Td relation. 

Threshold value =
100

100 −  Percentile value
 (5) 

The slope of the Pi-Td relationship generally follows the Clausius–Clapeyron (CC) relationship, 

with approximately 7% increase in precipitation intensity per 1 °C rise in Td. In case of high percentile 

values of Pi, the slope of the Pi-Td relationship changes to a slope corresponding to a super Clausius–

Clapeyron (sCC) relationship after a certain value of Td, which implies approximately 14% (or more) 

increase in precipitation intensity per 1 °C rise in Td. This is discussed in more detail in Section 3.1 

and can be seen from Figure 2. 

We identify the dew-point temperature Td at which the slope of the relationship changes from 

7%/1 °C (Clausius–Clapeyron) to about 14%/1 °C (super Clausius–Clapeyron). In addition, we 

identify the limit of the super Clausius–Clapeyron relationship, i.e., when the 14%/1 °C slope 

declines. 

These two points are identified from multiple percentile plots, between which these values vary. 

For example, the transition from 7% to 14% occurs at a Td of about 17 °C using the 90th percentile 

precipitation data but is lower for higher percentiles (between 15 °C and 16 °C). Likewise, the limit 
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of the sCC is found around 21 °C for the 90th percentile precipitation data, however, increases to 23 

°C when the 92nd–99th percentile data is analysed. We select as conservative estimates for the 

transition and limit points the 15 °C and 21 °C temperatures, as these result in the largest increases in 

rainfall intensities. These points are used in the subsequent analysis, as described in Section 2.2.4. 

2.2.3. Temperature Transformation 

Similar to the transformation of the GCM precipitation time series, we transformed the GCM 

dew-point temperature time series representing future climate. Temperature transformation is linear 

in nature and we follow Shabalova et al. [30] using Equation 6. 

T∗  =
σ�

σ�
�T − T����� �+  T����� +  T���� − T����� (6) 

where T* represents the transformed dew-point temperature, σF, σC are the standard deviation of the 

future and control GCM temperature, both are calculated on monthly basis and then smoothened 

similar to the excess values in Equation 1. T is the observed temperature, T�����,T���� and T����� the mean daily 

dew-point temperature of the observed, future and control climate.  

We subtract the mean Td value of the baseline period from the mean transformed Td value to 

calculate the increase in dew-point temperature over the period 1981–2000 to 2071–2100. This increase 

is hereafter referred as ΔTd. 

2.2.4. Dew-point Temperature Scaling 

The empirical relation between dew-point temperature and rainfall intensity [5] can be used to 

scale rainfall intensity, using projected changes of dew-point temperature (e.g., [14]). The results of 

the Pi-Td relationships are used to generate precipitation time series for the future scenario (2071–

2100) based on the estimated change in Td. We selected a single range of Td where the sCC 

relationship applies for the different percentiles.  

The Piobserved is transformed to the Pifuture using the Pi-Td relationship. The CC relationship 

adheres to 7% increase in precipitation intensity per 1 °C rise in Td, while the sCC relationship 

assumes a 14% increase, above an average temperature of Td = 15 °C. This is the integer value of Td 

of the applied percentile-bins not greater than Td. We apply this floor integer approach as it will 

include more rainfall events in the sCC domain, hence leading to a conservative projection of the 

future climate. The average Td at which sCC changes back into CC is established at Td = 21 °C, 

following the ‘floor integer’ approach. This results in the transformation formula shown in Equation 

7. 

Pi������ = �

Pi�������� ×  α � ��                                      Td�������� ≤ Td�� °�

Pi�������� ×  β � ��            Td��°� < Td�������� ≤ Td�� °�

Pi�������� × α � ��                                   Td�������� > Td�� °�

 (7) 

where α and β represent the Pi-Td change factor and ΔTd the change in dew-point temperature. In 

this study we apply α = 1.07 for values of Td in the CC domain and beyond the sCC domain. It is 

expected that the limit of the sCC relation is a statistical artefact, because too few data is available to 

establish a sCC relation above 21 degrees. But rather than applying a factor of 1.14, we chose to apply 

a factor of only 1.07, in order not to exaggerate the change in rainfall intensity above Td of 21 degrees. 

A change factor of β = 1.14 is used for the Td values in the sCC domain. With these two equations we 

generate a future scenario (2071–2100) for hourly precipitation based on the projected change in Td.  

2.3. IDF Curves 

We calculate the IDF curves of the observed baseline climate and the future scenario using both 

ADCM and temperature scaling, resulting in 3 IDF curves. With these the change in rainfall intensity 

can be assessed, based on the two different methods for projecting changes in future precipitation 

extremes. IDF curves are constructed for durations of 1-hour and 24-hours (1 day) for five return 

periods: 2, 5, 10, 50, and 100-years. We assess the shift in return period of the current rainfall 
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intensities, with a duration of 1-hour and 24-hours. These durations are relevant for practitioners in 

local urban planning and water management, and for engineering design purposes of local drainage 

infrastructure, where hourly or daily precipitation extremes are important. 

3. Results 

3.1. Observed Pi-Td Relationship 

We establish the Pi-Td relationship with the current climate time series. Figure 2 shows these 

results for the 90th, 99th, and 99.9th percentiles. These results are in line with the work of Lenderink 

and Van Meijgaard [18]. Pi-Td relationship is clearly dynamic in nature. We find a Pi increase per 1 

°C rise in Td ranging from 5%–9%. This is in line with the theoretical CC value of 7% Pi increase per 

Td rise.  

We find that the transition from CC to sCC for the 90th, 99th, and 99.9th percentiles occurs at 

approximately Td = 17 °C, 16 °C, and 13 °C, respectively. We find that the mean Td value in the 90th-

99.9th percentile range at which this CC-sCC transition occurs is at 15 °C. The increase in Pi per Td 

in this sCC domain is found to be ranging from 15%–23%. This is higher than the generally applied 

value of 14% for sCC. In the following results we applied the generally excepted 14% Pi increase 

which can result in a slightly too conservative increase. The 90th and 99th percentiles clearly show a 

stop to the sCC scaling in the range of 20–23 °C. We find that the mean Td value in the 90th–99.9th 

percentile range at which this drop occurs is at 21 °C. 

 

Figure 2. Pi-Td relationship for different percentile values (solid lines). The black dotted line indicates 

the Clausius–Clapeyron (CC) relationship (+7% Pi/Td) and the red dotted line shows the super 

Clausius-Clapeyron (sCC) relation (+14% Pi/Td). 

3.2. EC-Earth Dew-point Temperature Bias  

The parameters derived from the observed climate data and the control and future EC-Earth 

simulations provide understanding of a possible bias of the EC-Earth model, see Table 1. The bias 

correction factor g1 shows low values due to a combination of the drizzle effect in GCMs [31] and the 

3-hour time interval of the time series. The bias correction factor g2 expresses a stronger correction 

during the April-August period than during the September-March period as the control EC-Earth 

simulation shows a precipitation depth of, on average, 2.1 times higher than observed at the 90th 
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percentile. The monthly mean daily dew-point temperatures of the control climate are all but during 

December lower than the observed climate. February and March show considerable percent 

deviations, while on average the monthly dew-point temperature is only 0.8°C lower. The standard 

deviation of the future climate decreases compared to the control climate. Most of the impact is 

during the November–April period, which sees an average reduction of 12%, equalling 0.5 °C lower. 

During the May–October period the differences in standard deviation decrease with 3% or 0.1 °C 

lower. In sum, the bias of the EC-Earth model appears to be minor. In addition, projected changes 

were calculated using the change only, thereby preserving the projected climate change signal, and 

removing the bias. 

Table 1. Monthly parameter values for the observed, control, and future climate. 

Month g1 (-) g2 (-) σC (°C) σF (°C) ������ (°C) �� ���� (°C) ������ (°C) 

1 4.6E-12 0.78 4.2 3.6 1.0 0.9 4.1 

2 5.1E-12 0.78 4.3 3.7 0.9 0.1 3.3 

3 5.8E-12 0.70 4.2 3.6 2.7 1.0 4.2 

4 5.5E-12 0.50 3.9 3.4 4.4 3.7 6.7 

5 5.1E-12 0.43 3.5 3.1 7.8 6.8 9.3 

6 5.3E-12 0.46 3.0 2.8 10.4 9.5 12.1 

7 5.4E-12 0.47 2.6 2.6 12.6 11.4 14.1 

8 4.8E-12 0.53 2.6 2.6 12.6 11.4 14.3 

9 4.7E-12 0.69 2.9 2.8 10.6 9.8 13.0 

10 5.0E-12 0.88 3.3 3.1 7.6 7.1 10.5 

11 5.1E-12 0.93 3.6 3.3 4.4 4.1 7.5 

12 4.8E-12 0.85 3.9 3.5 1.7 1.9 5.4 

3.2. Future Change in Td 

We computed the projected change in dew-point temperature as simulated by the EC-Earth 

climate model by subtracting the mean Td of the control period (1981–2010) from the mean of the 

future Td for the period 2071–2100. Figure 3a shows the monthly mean Td values for both current 

and future climate. Under RCP8.5 the monthly mean Td increases from 2.59 °C in the month of May 

to 3.46 °C in December, see Figure 3b. It shows a particularly narrow confidence interval for July and 

August. This could be related to the relatively low air humidity in these months over the Netherlands 

and thus relatively small variation in dew-point temperature. 

The Netherlands experiences most extreme rainfall events with the highest intensities during 

the summer half year, which runs from May until October. The winter half year (November–April) 

receives almost an equal amount of cumulative rainfall, but this is often in events with longer 

duration and low precipitation intensity. The Td is projected to increase by 2.90 °C during the 

summer half year (May–October). The annual mean Td is projected to increase by 3.07 °C. As this 

increase is reasonably close to the Td increase during the summer half year, we use this future change 

in mean Td to calculate future precipitation using Equation 7. 
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Figure 3. (a) Current and future monthly mean dew-point temperatures with 95% confidence 

intervals, and (b) monthly averaged increase in dew-point temperature under RCP8.5 with 95% 

confidence intervals. The black dotted line shows the increase in Td as used. 

3.3. Comparing the IDF-curves 

We applied Equation 7 using the empirical transition value between CC and sCC of 15 °C and 

the projected future change in mean Td of 3.07 °C. With these parameter values we scaled the 

observed Pi time series to establish a future Pi time series. From this time series, we then constructed 

intensity-duration frequency (IDF) curves. 

Figure 4a shows the IDFs for a 1-hour duration rainfall event for the current climate, as well as 

a projection for the future climate for RCP 8.5, using the ADCM and dew-point temperature scaling 

approaches. Figure 4b shows the resulting IDFs for a 24-hour duration rainfall event. When focusing 

on events with a 10-year return period and a 100-year return period we find clear shifts in 

precipitation intensities.  

In the current climate a rainfall event of 21.7 mm within 1-hour corresponds with a 10-year 

return period (range between 8.4–12.1 years, at a 95% confidence level), see Table 2. The estimated 

return period of a similar precipitation intensity in the future climate in 2071–2100 using the ADCM 

approach is reduced to 7.5-year (6.5–9.1 years). This rainfall event thus becomes 1.3 times more 

frequent. We find that using temperature scaling the return period of this event changes to 5.4-year 

(4.7–6.2 years), which is 1.8 to 2.0 times more frequent than in the current climate. Depending on the 

scaling method applied, ADCM or temperature scaling, this 21.7 mm 1-hour rainfall event occurs 1.3 

to 2.0 times more frequent. We find similar patterns with the 1-hour duration rainfall event with a 

100-year return period. The ADCM scaling results in a 1.3 to 1.4 times more frequent event, and by 

applying the temperature scaling this becomes 2.9 to 3.8 times more frequent. 

The results for a 24-hour event show that a 10-year rainfall event, which today has a 3.2 mm/hr 

precipitation intensity (76.8 mm), will increase in frequency by 1.5 times for future climate following 

the ADCM scaling. Applying the temperature scaling method results in a 2.1 to 2.4 times more 

frequent event occurrence. The occurrence of a 100-year event, with a 5.1 mm/hour precipitation 

intensity in current climate (121.8 mm), will become 1.9 to 2.1 times more frequent for the ADCM 

approach, and 3.9 to 4.6 times more frequent following the temperature scaling approach. 
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Table 2. Change in 10-year and 100-year return periods for future climate. 

Event 

Duration 

(h) 

Precipitation 

Intensity 

(mm/hr) 

Current Climate 

(Return Period 

in Years) 

ADCM Approach 

(Return Period in 

Years) 

Temperature 

Approach (Return 

Period in Years) 

1 
21.7 10 (8.4–12.1) 7.5 (6.5–9.1) 5.4 (4.7–6.2) 

50.9 100 (64.5–192.2) 73.4 (50.7–134.3) 30.3 (22.0–50.3) 

24 
3.2 10 (8.6–12.0) 6.7 (5.9–7.8) 4.5 (4.0–5.0) 

5.1 100 (75.0–138.0) 50.8 (39.7–67.2) 23.9 (19.4–30.2) 

These changes in return periods show that safety standards designed for current climate 

conditions most likely will not be met without accounting for the additional volume in the future 

climate. A 1-hour event with a 10-year return period will increase 12% to 24.4 mm (22.5–26.3) 

following the ADCM scaling, and 37% to 29.8 mm (27.1–32.5) with temperature scaling, see Table 3. 

A similar pattern occurs for the 1-hour event with a 100-year return period. The precipitation depth 

increases 10% and 57%, respectively. The results for a 24-hour rainfall event show that the 

precipitation depth with a 10-year return period will increase 12% following ADCM scaling and 29% 

following temperature scaling. For events with a 100-year return period the increase in precipitation 

depth is 12% and 30%, respectively.  

Table 3. Change in 10-year and 100-year precipitations depths for future climate. 

Event 

Duration 

(h) 

Return 

Period 

(Years) 

Precipitation Depth 

Current Climate (mm) 

Precipitation Depth 

ADCM Approach 

(mm) 

Precipitation Depth 

Temperature Approach 

(mm) 

1 
10 21.7 (20.0–23.5) 24.4 (22.5–26.3) 29.8 (27.1–32.5) 

100 50.9 (42.1–59.7) 56.1 (46.7–65.5) 79.9 (64.3–95.6) 

24 
10 76.8 (73.4–80.2) 86.0 (82.3–89.8) 99.4 (94.8–103.7) 

100 121.8 (116–127.7) 136.5 (129.9–143.0) 158.6 (150.7–166.3) 

 

Figure 4. Intensity-duration-frequency (IDF) curves for current climate and future climate projected 

following Advanced Delta Change Method (ADCM) and the temperature scaling (a) 1-hour events, 

and (b) 24-hour events with 95% confidence interval indicated. The dashed lines represent the 10-year 

and 100-year precipitation intensities for the current climate. 

To provide a perspective on the importance of applying downscaling and correction methods 

like ADCM and temperature scaling to raw GCM results, we calculate the precipitation depths using 
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the raw EC-Earth data for the future period. The results for a 24-hour rainfall event show that the 

precipitation depth with a 10-year and a 100-year return period would decrease 54% and 63%, 

respectively with uncorrected GCM results. This shows how the future changes simulated by the EC-

Earth model differ prior to applying valuable and necessary downscaling and correction methods.  

4. Discussion 

Several choices and limitations apply to the approach presented here. As an important point, we 

focused on GCM data to explore the potential global application of the temperature scaling method, 

for any given place around the world. When higher resolution data, e.g., from a RCM, is available 

that better projects convective rainfall, the procedure could be repeated with such data.  

We analysed the sensitivity of the Td values at which CC changes into sCC and the limit Td. The 

temperature scaling for future precipitation intensity is sensitive to the Td at which CC changes into 

sCC and the Td at which sCC is limited. If the CC value is applied to a larger domain, i.e., a higher 

Td value, the changes in future precipitation will decrease. Conversely, should sCC dominate a larger 

domain, whether due to a lower change Td or a higher limit Td, the changes in future precipitation 

will increase. In this study we imposed a transition at Td = 15 °C for all percentiles in the Pi-Td relation 

instead of a percentile dependent transition Td-value which would be more in line with the findings 

regarding the variable nature of the Pi-Td relation. The current transition may affect the projected 

changes in rainfall intensities for different percentiles, and therefore at different return periods. 

Future research could determine a more suitable method to capture the transition from CC into sCC 

when establishing a Pi-Td relation for scaling future climate. Additionally, we assess the sensitivity 

of future precipitation to changes in ΔTd by calculating the percentual difference when the limits of 

the 95% confidence interval would have been applied. For αΔTd, this would result in a −6% to +7% 

change, while for βΔTd this would lead to a −12% to +14% change in future precipitation. 

In this study we apply a β of 1.14 for the sCC domain. However, the observed data show 

increases in Pi-Td rate in the sCC domain higher than 14%. The actual physical meaning of those 

values is still subject of research, see, e.g., [32,33], and therefore we apply 14%. Changes in β affect 

the resulting scaling to establish future precipitation time series. Future research on sCC would help 

to indicate whether a β of 1.14 remains applicable or whether even higher values could be applied 

for sub-daily intensities.  

One perspective on the impact of more frequent extreme rainfall events is given by the example 

of the city of Amsterdam. The city expressed the ambition to be able to cope with rainfall events of 

60 mm in one hour, by combining drainage and storage in private and public space. The storage in 

the stormwater system is expected to account for 20 mm and temporary storage in both private and 

public space for another 40 mm [34]. This corresponds to a return period of about 153 years (100.9–

377.1). Following the ADCM approach this 60 mm/hour will occur approximately 1.3 times more 

often. Would the city of Amsterdam follow the temperature-scaling approach, this design event will 

be 3.1 times more frequent? When the city of Amsterdam would choose to remain at the current safety 

level, and changes in the corresponding water infrastructure would be built in the coming years, the 

design should focus on 97.9 mm in one hour. The difference with the current design guideline, 37.9 

mm, shows that the effort to create temporary storage should almost double if Amsterdam prefers to 

maintain their coping capacity with extreme events under RCP 8.5 for 2071–2100.  

The comparison between GCM Td scaled precipitation and GCM precipitation is done for the 

future period of 2071–2100. The RCP 8.5 emission scenario is used, as the interest is to check what 

could be a high change of rainfall intensity. Using other scenarios, the reported changes in rainfall 

intensity will likely be lower. Further analysis could compare both approaches, for the period for 

which observed data is available. In this way, it could be shown which of the two approaches would 

better estimate the effects of the past ~1.0 °C warming in rainfall extremes. For this purpose, the past 

100 years of observations could be split, to estimate effects on the 1:10 year event. 

In this study, application of GCM Td precipitation is limited to one case study location only. 

Therefore, these results might only be applicable for those locations which have similar climate 

conditions. For further understanding of the GCM Td scaling approach, other locations with different 
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climate conditions could be tested with this approach. The GCM Td precipitation prediction requires 

high temporal observed data. Therefore, the geographical applicability of the approach is limited to 

locations where observational data with required temporal resolution is available. 

In this study and previous scientific work, the Td approach is introduced, and its value has been 

demonstrated, we therefore recommend to consider the more extreme projections obtained with the 

Td approach as well in future design or at least acknowledge the uncertainty that arises from 

choosing different methods for projecting future climate under climate change. Future meteorological 

and climate research should confirm the applicability of the Pi-Td relation for projections, and 

especially the sCC relation, considering the interaction with large-scale atmospheric circulation and 

changes therein, and thus its actual potential for use in urban flooding assessments. 

5. Conclusions 

This study demonstrates the utilization of the temperature scaling method and comparison of 

two different methodologies for predicting future precipitation extremes. Using projections from 

GCM or RCM data potentially leads to underestimation of the changes in short-duration (sub-daily) 

rainfall events, because convective precipitation is not yet resolved in such models. Additionally, 

convection-permitting modelling is not yet available for all locations around the world. Alternative 

approaches for finding upper-end changes in rainfall are therefore needed in order to develop robust 

designs. In the absence of RCMs, convection permitting modelling (e.g., [28]), or detailed climate 

scenarios (e.g., [35]), that have robust information for short duration rainfall, the temperature scaling 

approach is promising. Research shows the usability of temperature scaling for climate scenario 

development (e.g., [14,21]). The comparison of the two approaches using IDF curves helps to 

understand the shift of return period which may occur as the intensity values increase. This explicitly 

shows that a rare event from a GCM precipitation dataset could be a more frequent event in case a 

GCM Td scaled precipitation dataset is used. 

To project precipitation extremes for the future, the conventional approach of using projected 

change in short-duration precipitation directly from a GCM may lead to too conservative change 

estimates compared to the Td scaling approach. For scaling the super Clausius–Clapeyron (sCC) 

relationship, we considered a fixed slope of 14%. We observed that the sCC slope can also be higher 

and the use of 14% as fixed slope may still lead to some underestimation of future extremes.  

Using the Pi-Td relationship from observational records, it can be explored whether a sCC 

relation exists for local short-duration rainfall. The Pi-Td based estimated changes in rainfall intensity 

for 1-hour and 24-hour durations, for instance, can help drainage engineers and urban planners to 

adapt their designs.  

For an end-user, this implies that in case no information on future changes in convective rainfall 

extremes is available, besides the rainfall information from a GCM, they could use the output from a 

Td scaling approach as a second reference. Together, these two projections help to understand what 

the possible upper limit of precipitation in the future period could be.  
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