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Abstract: This paper proposed a newly explored composite photocatalyst, Chitin/ZnO, prepared via
the sol-gel method for exploring its photocatalytic activity in the simulated aquaculture wastewater
under UV irradiation. The study mainly involves the application of Chitin/ZnO from three aspects:
the structure, the principle and the degradation efficiency. The effects of purification operation
factors including mass ratio rate, dosage, calcination temperature, initial NH4

+–N concentration
and illumination conditions on the NH4

+–N removal effectiveness were investigated. Optimum
conditions were explored through orthogonal experiments, which revealed that 88.73% NH4

+–N
removal from 60 mg/L synthetic wastewater was achieved by direct illumination for 120 min.
Additionally, Chitin/ZnO photocatalysts (mass ratio of 2:3) at a calcination temperature of 500 ◦C
were favorable for Chitin loaded over a ZnO lattice. The obtained nanoparticles of Chitin/ZnO
were characterized using SEM and X-ray diffraction. The purpose of this paper is to grope for an
economical and easy method of Chitin/ZnO powder preparation and to provide a practical approach
for future research on the photocatalytic purification of aquaculture wastewater.
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1. Introduction

As the main component of feed raw material (urea), highly concentrated ammonia would seriously
interfere with the stability of aquaculture water, leading to adverse effects on wild plants, inhabited
animals and human life [1]. Traditional technologies that are widely used for the removal of NH4

+–N
in aquaculture wastewater mainly include physical, chemical, biological and integrated treatment
processes [2–4]. Photocatalytic oxidation is one of the most effective chemical methods. It shows
great potential in wastewater purification through inducing the generation of hydroxyl radicals and
superoxide anion by irradiating specific semiconductor photocatalysts with band structures such as
TiO2, ZnO, CdS, WO3, SrTiO3, Fe2O3 and so forth [5]. The semiconductor photocatalyst doped with
non-metallic or metal elements generates a synergistic effect of multiple functions, namely

1. broadening the responsive light zone to improve the utilization of solar light or UV;
2. prohibiting the recombination of light-based electrons and catalyst holes (e−–h+), and enhancing

the quantitative efficiency of the semiconductor photocatalyst;
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3. having an absorption capacity that plays a critical role in physical and chemical reactions.

In order to ameliorate the photocatalytic efficiency of semiconductor photocatalysts in wastewater
purification, recent studies have been performed on the photocatalytic degradation of ammonia in
aquaculture water under UV light. For example, Jin et al. [6] prepared the nano-SnO2 photocatalyst
using a chemical precipitation method with SnCl4·5H2O as the raw material and explored the effect
of the SnO2 catalyst on the removal of pollutants from wastewater under laboratory preparation
conditions. Based on this experiment, the optimization of the SnO2 catalyst was carried out by
Yu et al. [7] who doped rare-earth metal Ce to SnO2. In comparison to the pure SnO2, it was found
that the conduction bands of SnO2 doped with Ce became dense, that the fluctuation between bands
was gentler and that the entire valence and conduction bands moved to the side of low energy end.
Moreover, the optimal wastewater treatment efficiency of Ce/SnO2 (92.7%) was superior to that of the
pure SnO2 (72%).

Through an analysis carried out by Shavisi et al. [8], it was indicated that 5 wt.% CuO loaded over
ZnO could significantly increase the photocatalytic activity as 77.2% ammonia removal from synthetic
wastewater was achieved within 240 min of solar irradiation time. Accordingly, ultraviolet and visible
light are essential for the excitation of oxides (SnO2 and ZnO).

The absorption spectrum of the semiconductor can be extended to the visible region by choosing
suitable dopants (such as non-metals and metal oxides) to make full use of light energy. Zhang et
al. [9] prepared a Nano-ZnO/Chitosan composite membrane (ZnO–CTF) for exploring its adsorption
capacity on methyl orange; the membrane-forming performance of such a composite membrane was
decent, and the adsorption rate of methyl orange could reach 90.9%.

Chitin or Chitosan, derived from the crustacean shell, is an environment-friendly biodegradable
non-metal material [10]; it could be loaded over ZnO crystal to harvest the maximum possible energy
of the sunlight. However, Chitin/ZnO has only been explored in the field of composite membrane
preparation [9,11], and there are no related reports on the synthesis of photocatalyst powder. Therefore,
the objective of this research is to improve the UV-light utilization efficiency of pure ZnO photocatalysts
by integrating the low-cost fabrication process and the simple-step design principle of the Chitin/ZnO
photocatalyst powder (Figure 1).

Water 2019, 11, 310 2 of 19 

 

2. prohibiting the recombination of light-based electrons and catalyst holes (e−–h+), and enhancing 
the quantitative efficiency of the semiconductor photocatalyst;  

3. having an absorption capacity that plays a critical role in physical and chemical reactions.  

In order to ameliorate the photocatalytic efficiency of semiconductor photocatalysts in 
wastewater purification, recent studies have been performed on the photocatalytic degradation of 
ammonia in aquaculture water under UV light. For example, Jin et al. [6] prepared the nano-SnO2 
photocatalyst using a chemical precipitation method with SnCl4·5H2O as the raw material and 
explored the effect of the SnO2 catalyst on the removal of pollutants from wastewater under 
laboratory preparation conditions. Based on this experiment, the optimization of the SnO2 catalyst 
was carried out by Yu et al. [7] who doped rare-earth metal Ce to SnO2. In comparison to the pure 
SnO2, it was found that the conduction bands of SnO2 doped with Ce became dense, that the 
fluctuation between bands was gentler and that the entire valence and conduction bands moved to 
the side of low energy end. Moreover, the optimal wastewater treatment efficiency of Ce/SnO2 
(92.7%) was superior to that of the pure SnO2 (72%).  

Through an analysis carried out by Shavisi et al. [8], it was indicated that 5 wt.% CuO loaded 
over ZnO could significantly increase the photocatalytic activity as 77.2% ammonia removal from 
synthetic wastewater was achieved within 240 min of solar irradiation time. Accordingly, ultraviolet 
and visible light are essential for the excitation of oxides (SnO2 and ZnO). 

The absorption spectrum of the semiconductor can be extended to the visible region by choosing 
suitable dopants (such as non-metals and metal oxides) to make full use of light energy. Zhang et al. 
[9] prepared a Nano-ZnO/Chitosan composite membrane (ZnO–CTF) for exploring its adsorption 
capacity on methyl orange; the membrane-forming performance of such a composite membrane was 
decent, and the adsorption rate of methyl orange could reach 90.9%.  

Chitin or Chitosan, derived from the crustacean shell, is an environment-friendly biodegradable 
non-metal material [10]; it could be loaded over ZnO crystal to harvest the maximum possible energy 
of the sunlight. However, Chitin/ZnO has only been explored in the field of composite membrane 
preparation [9,11], and there are no related reports on the synthesis of photocatalyst powder. 
Therefore, the objective of this research is to improve the UV-light utilization efficiency of pure ZnO 
photocatalysts by integrating the low-cost fabrication process and the simple-step design principle of 
the Chitin/ZnO photocatalyst powder (Figure 1).  

 
Figure 1. The interaction mechanism of the chitin/ZnO composite photocatalyst. 

 

Figure 1. The interaction mechanism of the chitin/ZnO composite photocatalyst.

Different doping ratios and calcination temperatures are considered in this research. In order to
degrade key contaminants (NH4

+–N) [12,13] in the simulated aquaculture wastewater under ultraviolet
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irradiation, Chitin/ZnO is adopted and the optimal reaction conditions are explored. Such a procedure
can also be used as a guideline for future research on the photocatalytic purification of aquaculture
wastewater. A general framework of this research is presented in Figure 2.
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2. Materials and Methods

2.1. Materials

The raw materials needed for the preparation of the Chitin/ZnO composite photocatalyst and the
stimulation of the aquaculture wastewater are shown in Table 1.

Table 1. The detailed information on the experimental reagents.

Drug Reagent Name Molecular Formula Purity

Zinc nitrate hexahydrate ZnNO3·6H2O AR
Polyethylene glycol HO(CH2CH2O)nH AR
Sodium hydroxide NaOH AR

Deacetyl chitin (C8H13NO5)N AR
Acetic acid CH3COOH AR
Zinc sulfate ZnSO4 AR

Ammonium chloride NH4Cl GR
Sulfuric acid solution H2SO4 AR

Nessler’s reagent - AR
Potassium sodium tartrate C4H4KNaO6-4H2O AR

The instruments used in this research are shown in Table 2.
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Table 2. The experimental instruments and equipment.

Instrument Name Model

Electronic balance TE124S
Magnetic stirring apparatus CJ78-1

Chamber electric furnace SX2-2.5-10A
DHG Series Heating and Drying Oven DHG-9146A

Vacuum pump SHZ-D (III)
pH meter PHS-3C

Multiparameter water quality analyzer 5B-3B (V8)
Ultraviolet visible photometer V-1100D
Medium pressure pump lamp M-169H

SEM electron microscope HitachiS4800 TM3030plus
X’Pert Powder PANalytical EPSILON5

2.2. Preparation of the Photocatalyst

2.2.1. ZnO Photocatalyst Preparation

In order to prepare pure ZnO powder, 29.73 g ZnNO3
.6H2O (AR) was dissolved in 1000 mL

distilled water (0.1 mol/L), and the 20 mL polyethylene glycol was added. Then, the NaOH solution
was slowly poured into the mixed solution until the pH value reached 8. The temperature knob was
adjusted to 80 ◦C and the mixed solution was stirred for two hours [14]. Subsequently, the solution
was washed using ultrapure water for 2 to 3 times after centrifugation. In the final stage, in order to
obtain the pure ZnO nanoparticles, the as-prepared product was dried at 100 ◦C for 8 h and then fully
ground and calcined in the muffle furnace at 450 ◦C for 2 h.

2.2.2. Chitin/ZnO Photocatalyst Preparation

The three-step sol-gel synthesis method was used to prepare Chitin loaded over ZnO
nanostructures. The specific preparation process is as follows:

Initially, different mass ratios (m-Chitin/m-ZnO) of 1:2, 2:3, 1:1 and 2:1 were selected; the
corresponding Chitin and ZnO powder were weighed and added to the 50mL the acetic acid solution.

In the following steps, the mixed powders floating on the surface of the acetic acid solution were
stirred at 100 ◦C for 2 h. It is essential to observe whether the material morphology had changed or the
light green semitransparent gel solid had appeared during the agitation process. In general, a thin
gel would be formed on the surface of the mixed solution after 30 min. When the entire surface of
the solution was fully covered, the gel ought to be removed with a glass rod and placed in a crucible.
This operation should be repeated until the mixture was completely condensed into a translucent
colloidal solid, and the stirring procedure was about 2 h.

Finally, to produce the Chitin/ZnO photocatalyst, the semitransparent gelatinous solid was
dried at 100 ◦C for 6 h. After the as-synthesized product was calcined at 300, 400, 500 and 600 ◦C,
16 Chitin/ZnO photocatalysts with various temperatures and mass ratios were obtained.

2.3. Preparation of the Simulated Aquaculture Wastewater

Samples were collected from the freshwater lake at the Xiamen University of Technology.
The initial value of NH4

+–N was 0.142 mg/L, and the pH value was 9.21.
Water sample pretreatment: a 20% sulfuric acid solution was used to acidify a filtered water

sample to pH < 2, which was then stored in a polyethylene bottle and sealed in a freezer at 1–5 ◦C for
seven days [15].

Simulated aquaculture wastewater: a (NH4)2SO4 solution was added to the filtered samples to
form different concentrations (i.e., 15, 30, 45, 60 and 75 mg/L) of NH4

+–N solutions. The 10% ZnSO4

and 25% NaOH solutions were added to the NH4
+–N wastewater for adjusting the pH value to about

8.0–8.5 every time before testing. It would simulate the optimum pH range of aquaculture wastewater
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and approach to the living environment for freshwater organisms, which eliminates the interference of
external pollutants.

3. Results and Discussions

3.1. Degradation of Aquaculture Wastewater by the Chitin–ZnO Composite Photocatalyst

3.1.1. Effect of the Chitin–ZnO Dosage

The initial concentration of NH4
+–N in the simulated aquaculture wastewater was adjusted by

the (NH4)2SO4 solution to 60 mg/L. Five groups of Chitin–ZnO photocatalysts (0.25 g, 0.5 g, 1 g, 1.5 g
and 2 g/L) were added into the water with a pH value of 8.12. The photocatalysts were irradiated by
ultraviolet light for 2 h.

The removal rate of NH4
+–N using Chitin–ZnO at different dosages is shown in Figure 3. Figure 3

shows that the NH4
+–N removal efficiency increased at a peak of 90.18% when the dosage was 0.5g/L

and then decreased by less than 84% when the dosage raised to 2 g/L.
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Figure 3. The effect of the Chitin–ZnO dosage on the ammonia nitrogen removal efficiency.

The reasons for this fluctuation may be as follows: 1) When a small amount of composite
photocatalyst was added, ultraviolet light would not induce the formation of enough electron–hole
pairs [16], which proved to be of limited effect on ammonia nitrogen oxidation; 2) when the dosage
of Chitin–ZnO rose from 0.25 g/L to 0.5 g/L, a great deal of electron–hole pairs were enriched in the
wastewater, which largely enhanced the utilization of ultraviolet light and improved the photocatalytic
oxidation reaction to be carried out efficiently; 3) however, when the dosage exceeded 0.5g/L, the
scattering degree of UV light was aggravated by the powdered catalyst, and only some photogenerated
electron–holes were produced, which resulted in the falling removal efficiency.

3.1.2. Effect of Mixture Mass Ratio

The initial concentration of NH4
+–N solution was 60 mg/L. 0.5 g/L Chitin–ZnO with different

mass ratios of 1:2, 2:3, 1:1 and 2:1 were added into the wastewater of pH 8.12, irradiated by ultraviolet
light for 2 h.

Figure 4 shows that the removal rate of NH4
+–N was 67.53% when the pure ZnO photocatalyst

powder was added. It was found that the purification rate of wastewater could be improved in a
certain range by adding chitin with different proportions. When the mass ratio of chitin to zinc oxide
was controlled in the range of 1:2 to 2:3, the NH4

+–N removal rate increased with the rise of the chitin
loading ratio, and the optimal removal efficiency (91.21%) could be achieved when the figure was 2:3.
However, the excessive increase of the chitin proportion in the mixed photocatalyst would directly
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lead to a significant reduction of the NH4
+–N removal rate, which was most apparent when the chitin

proportion exceeded 66.67%.Water 2019, 11, 310 6 of 19 
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This may be due to 1) doping a certain proportion of non-metallic elements in ZnO lattice, namely
chitin, could generate some corresponding improvements within the range of 1:2 to 2:3. Chitin could
replace the oxidation potential and narrow the forbidden band of ZnO, thus broadening the wavelength
range of light response and making full use of ultraviolet energy to promote degradation efficiency [17].
2) When the proportion of chitin was excessively increased, the excess defects were introduced into the
ZnO lattice, which would lead to great damage of ZnO. The crystallization structure directly reflected
the gradual degradation of efficiency.

3.1.3. Effect of Calcination Temperature

The influence of a calcination temperature of the Chitin–ZnO photocatalyst for NH4
+–N

degradation was studied in the range of 300–600 ◦C. All experiments were carried out in the same
condition (initial NH4

+–N concentration 60 mg/L), pH = 8.12 and irradiation time 2 h. The results are
shown in Figure 5.Water 2019, 11, 310 7 of 19 
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Figure 5. The effect of calcination temperature.

Figure 5 shows that the composite photocatalyst prepared at higher temperatures improves
the degradation efficiency in the range of 300–500 ◦C. The Chitin/ZnO prepared by calcination at
500 ◦C presented the superior catalytic oxidation activity (92.43%). In comparison with the samples
calcined at a lower temperature (300/400 ◦C), the ZnO lattice could obtain better load balancing.
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Defects could either favour or deteriorate the photocatalytic activity of the metal oxide, depending on
their physical location in the system [18]. By these calcination conditions, the chitin would occupy a
proper proportion of the defect position of the zinc oxide, which promotes the separation, restrains
the recombination of electrons and holes (e−–h+), increases the charge transport and accelerates the
photocatalytic activity [19].

However, the overall removal efficiency of the photocatalyst cannot be continuously improved
by the increasing calcination temperature [20], which may be due to the excessive temperature that
affects the matching degree between chitin and ZnO. The poor loading effect could be shown as an
agglomeration phenomenon [21], which indirectly prolonged the time of photogenerated electrons
diffusing to the catalyst surface and then increased the probability of negative photogenerated electrons
compounding with positive holes, thus reducing the photocatalytic activity.

3.1.4. Effect of the Initial Concentration of NH4
+–N

The effect of the initial NH4
+–N concentration on the photocatalytic degradation reaction was

investigated over the range of 15–75 mg/L, and the experimental results are presented in Figure 6.
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Increasing the initial concentration logically enhances the probability of an interaction between the
ammonia molecules and the oxidizing species, leading to an increase in the degradation efficiency [22].
However, the continuous increase of the initial NH4

+–N concentration (more than 60 mg/L) would
result in a rise in ammonia adsorption on the surface of photocatalysts, thereby increasing the
occupancy of active sites as a whole [5]. A series of reactions between the pollutants (such as ammonia
molecules) and radicals (such as ·OH, ·O2 and holes with positive points) would be inhibited to a certain
extent, resulting in the degradation efficiency of ammonia nitrogen when the initial concentration is
higher than 60 mg/L.

3.2. Effect of Light Conditions on Photocatalytic Degradation

3.2.1. Under Dark Reaction Conditions

Under the dark reaction condition (the reaction was carried out in a closed and glassless
environment with a sealed carton reactor), the initial concentration of ammonia nitrogen in the
wastewater was controlled at 60 mg/L, the pH value of the water was adjusted to 8.0 and the mass
ratio and the dosage of Chitin/ZnO was 2:3 and 0.5 g/L. The calcination temperature of Chitin/ZnO
was 500 ◦C, and the ultraviolet photocatalysis time was 2 h. The experimental results are shown in
Figure 7.
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Figure 7. Under the dark reaction conditions.

Under the dark reaction conditions, the composite the photocatalyst could not induce the
formation of hydroxyl radicals with strong oxidation to achieve degradation as it lacked the excitation
of the ultraviolet light on the semiconductor band. At the same time, under closed conditions, the
composite photocatalyst lost the opportunity to fully interact with oxygen and to induce oxygen
molecules to adsorb on the surface of the photocatalyst to capture photogenerated electrons in an
illuminated atmosphere. Therefore, hydroxyl radical and superoxide anion radical would not be
formed, and the concentration of NH4

+–N in water increased consistently.

3.2.2. Under Natural Reaction Conditions

Under natural conditions (laboratory ventilation, no light and a room temperature
environment [23]), the initial concentrations of NH4

+–N were controlled at 60 mg/L, pH was 8.04 and
the mixed mass ratio and the dosage were 2:3 and 0.5 g/L, respectively. The calcination temperature
was 500 ◦C, and the ultraviolet photocatalysis lasted for 2 h. The experimental results are shown in
Figure 8.Water 2019, 11, 310 9 of 19 
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Figure 8. Under natural reaction conditions.

Figure 9 shows that the photocatalytic degradation efficiency can continuously increase within an
hour in the absence of illumination (not sealed). The maximum degradation efficiency reached 70.11%
at 60 min and then decreased with the rising reaction time. Compared with the degradation in the
closed environment, the ventilation environment improved the removal rate of the target pollutants
in a certain period of time and showed better removal effects. The reason may be that in an aqueous
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solution, ammonium ions (NH4
+) can be partially ionized to ammonia and H+; ammonia molecules

are oxidized by successive attacks of OH− radicals [8,24,25].

NH4
+ + H2O⇔ NH3·H2O + H+ (1)

NH3
.OH→ NH2 + H2O

.OH→ NH + H2O
.OH→ N + H2O (2)

NHx + NHy → N2Hx+y + H2O H+

→ N2

(x, y = 0, 1, 2)
(3)

NH3
.OH→ HONH2

.OH→ NO−2 → NO−3 (4)

It can be observed that long-lived toxic substances are not formed in the treatment of NH4
+. Even

if NO2
− is generated in the process, such ion could be quickly converted into harmless substances

(N, H2O and N2) under photocatalytic conditions, mainly by the successive attacks of .OH and H+

radicals. Ammonia and ammonia molecules could be fully adsorbed on the surface of the catalyst
when the photocatalyst with the optimum dosage was added to the water, thus reducing the overall
NH4

+–N concentration in the wastewater. With an increase of reaction time, the adsorption reaction of
the catalyst reached equilibrium (the equilibrium time is about 1 h) and the concentration of NH4

+–N
in wastewater ought to be theoretically kept even. However, the reactor exposed to the air would
absorb a small amount of NH4

+–N molecules from the environment to some extent, leading to the
concentration raised and the removal rate reduced.

3.2.3. Under UV Direct Irradiation Conditions

The reaction vessel and the built-in reaction liquid were under direct illumination. All experiments
were carried out in the same conditions: initial NH4

+–N concentration of 60 mg/L, pH of 8.12 and
irradiation time of 2 h. The results are shown in Figure 9.
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Figure 9. Under UV direct irradiation conditions.

Compared with the experiment in the absence of illumination in Figure 9, when the reactor was
directly irradiated by UV light, two simultaneous reactions were carried out in the wastewater solution,
i.e., adsorption and catalytic oxidation. Because of the simultaneous reaction of two different properties,
the reaction competitiveness of Chitin/ZnO was greatly enhanced. The comparison between Figures 9
and 10 showed that the catalyst would not decrease the removal efficiency of NH4

+–N after reaching
equilibrium (1 h). The catalytic oxidation reaction, which played a leading role in the light condition,
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continued to accelerate the removal efficiency of the contaminant, reaching the peak value of 88.64%
when the reaction time was 2 h. After 2 h, the efficiency and stability gradually declined.
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Figure 10. UV irradiation after adsorption.

In addition, the principle of the hydroxyl radical produced by a photocatalyst in a wastewater
solution driven by UV light has been accepted by most scholars in the environmental field [26], which
can be divided into two ways:

1) When ZnO and other semiconductor particles are in close contact with the aqueous solution, the
hydroxyl groups will form and adhere to the semiconductor surface. At the same time, owing
to the valence band site of the semiconductor, ZnO is lower than the oxidation potential of the
hydroxyl group [27]; the positively charged holes on the semiconductor surface will be first
trapped by the surface hydroxyl radicals, producing hydroxyl radicals with strong oxidation via
light irradiation:

ZnO + hv→ e−+ZnO(h+) (5)

ZnO(h+) + H2O→ ZnO + H+ + OH− (6)

ZnO(h+)+OH− → ZnO + ·OH (7)

2) When the oxygen molecule exists in ammonia nitrogen wastewater, the photogenerated electron
will be trapped by the oxygen molecule adsorbed on the surface of the Chitin–ZnO composite
photocatalyst [28], resulting in a superoxide anion group and the hydroxyl radical:

O2+nZnO(e−)→ nZnO + .O2
− (8)

O2+ZnO(e−) + 2H2O→ ZnO + H2O2+2OH− (9)

H2O2+ZnO(e−)→ ZnO + OH− + .OH (10)

It proved that the catalytic oxidation performance of the Chitin/ZnO composite photocatalyst
could be improved significantly under UV irradiation in comparison with two as-experiments without
illumination. Photocatalysts, as a material activator, could convert ultraviolet light energy into the
power needed for a series of chemical reactions, producing catalytic oxidation reactions [29]. Oxygen
and water molecules in the vicinity of the catalysts are transformed into excited matter structures,
forming free anions with strong oxidizing power, including hydroxyl radicals (OH) and superoxide
radical anions (O2−) to remove pollutants from the water. Furthermore, the NH4

+–N molecule could
be directly converted into N2, which is friendly to the environment.
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3.2.4. UV Irradiation after Adsorption

The composite photocatalyst was used to absorb contaminant NH4
+–N for 1 h and then irradiated

by ultraviolet light for 3 h under laboratory conditions. The experimental results are shown in
Figure 10.

Figure 10 shows that the degradation efficiency of the ultraviolet photocatalytic oxidation reached
its peak at 2 h, which was 90.12%. Compared with the figure for direct illumination (88.64%) in
Figure 10, the efficiency of re-illumination after adsorption was slightly higher than that of direct
illumination (less than 2%). However, considering the timing consumption, if the same removal time
was given for 2 h, the optimal removal efficiency could be achieved via the way of direct illumination
in this period, but the way of illumination after adsorption had poor time.

3.3. Orthogonal Test Under Ultraviolet Lamp Irradiation

3.3.1. Outline of the Orthogonal Test Scheme

A total of 16 orthogonal experimental groups were set up to study the optimal removal effect of
the Chitin/ZnO composite photocatalyst under the condition of the cross action of various influencing
factors, aiming to determine the optimum conditions for the degradation of NH4

+–N in the simulated
aquaculture wastewater.

3.3.2. Determination of the Optimal Reaction Conditions

The formula of variance analysis is as follows:

T =
n

∑
i=1

xi (11)

CT =
T2

n
(12)

The sum of NH4
+–N removal rates at all levels is k1j/2j/3j/4j, and its square k1/2/3/4j

2.
The sum of squares of the column deviations is

SSj =
1
r

m

∑
i=1

Kij
2 − CT (13)

Among them, the total number of test levels is n, the number of test levels for each factor is m and
the number of repeated tests for each level is r = n/m.

For the five factors and four levels, the 16 sets of orthogonal test results are shown in Table 3 and
Figure 11.
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Table 3. The orthogonal test results via five factors and four levels.

Level Calcination
Temperature/◦C m(Chitin)/m(ZnO) Dosage (g/L) Irradiation Time/h Initial Concentration

of NH4
+–N (mg/L) UV % Adsorption 1

h + UV %
Adsorption 1

h %

1

300 ◦C

2:1 0.5 1 15 58.37% 62.80% 40.90%
2 1:2 1 2 30 64.72% 67.28% 47.33%
3 2:3 1.5 3 45 69.15% 70.60% 49.35%
4 1:1 2 4 60 62.03% 64.13% 45.10%
5

400 ◦C

2:1 1 3 60 65.29% 69.23% 47.48%
6 1:2 0.5 4 45 73.46% 75.45% 47.21%
7 2:3 2 1 30 75.43% 78.28% 58.41%
8 1:1 1.5 2 15 71.12% 73.32% 52.05%
9

500 ◦C

2:1 1.5 4 30 66.78% 69.11% 58.72%
10 1:2 2 3 15 77.53% 80.96% 56.29%
11 2:3 0.5 2 60 88.64% 90.12% 70.11%
12 1:1 1 1 45 72.33% 74.61% 68.23%
13

600 ◦C

2:1 2 2 45 63.21% 66.42% 54.64%
14 1:2 1.5 1 60 72.67% 75.27% 49.32%
15 2:3 1 4 15 73.91% 76.88% 50.13%
16 1:1 0.5 3 30 70.33% 73.54% 45.63%

k1j 2.54 2.65 2.54 2.68 2.91 3.02 2.79 2.91 2.81 2.94

T = 11.25
CT =

T2/n =
7.9101

T = 11.68
CT = T2/n =

8.5264

Average =
52.56%k2j 2.85 2.96 2.88 2.99 2.76 2.88 2.88 2.97 2.77 2.88

k3j 3.05 3.15 3.07 3.16 2.80 2.88 2.82 2.94 2.78 2.87
k4j 2.80 2.92 2.76 2.86 2.78 2.90 2.76 2.86 2.89 2.99

k1j
2 6.47 7.01 6.43 7.16 8.46 9.11 7.77 8.47 7.89 8.64

k2j
2 8.14 8.78 8.32 8.94 7.63 8.29 8.28 8.83 7.69 8.31

k3j
2 9.32 9.91 9.43 9.98 7.82 8.31 7.97 8.66 7.74 8.24

k4j
2 7.85 8.53 7.61 8.16 7.74 8.40 7.63 8.16 8.33 8.93

SSj 0.033 0.032 0.037 0.032 0.003 0.003 0.001 0.002 0.002 0.002
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The results showed that the optimum conditions for the degradation of NH4
+–N pollutants

in aquaculture wastewater were as follows: the initial concentration of NH4
+–N in the simulated

aquaculture wastewater solution was 60 mg/L, the mass ratio of chitin to ZnO was 2:3, the calcination
temperature was 500 ◦C and the dosage was controlled at 0.1 g/L. The optimum removal efficiency
was obtained by exposing the sample to UV light for 2 h in the laboratory. The direct illumination
could reach 88.64%, while after 1 h adsorption and 2 h illumination, it could reach as high as 90.12%.

As shown in Table 3, the SSj value of the m(Chitin):m(ZnO) and the figure for the condition of
adsorption for 1 h plus UV light were both the highest at 0.037 and 0.032, respectively, which indicated
that the m(Chitin):m(ZnO) played the most critical role in the purification of simulated NH4

+–N
wastewater. Meanwhile, as the variance result (0.037) was greater than the latter (0.032), it is more
conducive to improve the removal efficiency under the condition of direct UV light (adsorption and
catalysis simultaneously). Similarly, the catalytic activity and adsorption performance were determined
by the calcination temperature (SSj approximately 0.033) of the Chitin/ZnO in the muffle furnace, and
the results illustrate the potential of using the calcination temperature and the UV-assisted thermal
synthesis to shape and enhance the structure for wastewater treatment applications [20].

Three groups of parallel experiments were set up to verify the optimal experimental conditions.
The results showed that the removal rate of ammonia nitrogen in the simulated wastewater could
reach 85.44%, 87.60% and 88.73% respectively under direct illumination. The average removal rate of
ammonia nitrogen under the optimal experimental conditions was 87.25%, and the highest removal
rate of ammonia nitrogen was as high as 88.73%.

3.4. Characterization of Chitin/ZnO

3.4.1. X-ray Diffraction Analysis of Chitin/ZnO

The X-ray diffraction patterns of four different Chitin/ZnO nanoparticles calcinated at 500 ◦C
are shown in Figure 12. The diffraction peaks become sharp and significant when 2 theta are at 31.82◦

(100), 34.54◦ (002), 36.42◦ (101), 47.46◦ (102), 56.74◦ (110), 62.92◦ (103), 68.42◦ (112), 69.06◦ (201) and
78.82◦ (202) [30].

From the peak position, the diffraction peaks of the four kinds of Chitin/ZnO are slightly shifted
toward a smaller angle with respect to the diffraction peaks of pure ZnO. As the doping ratio are at
2:3 (third curve in Figure 12), the peaks are indexed as 31.6832◦ (100), 34.3532◦ (002), 36.1649◦ (101),
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47.4581◦ (102), 56.4790◦ (110), 62.7887◦ (103), 66.2845◦ (112), 68.9885◦ (201) and 76.8943◦ (202), which
indicate the tendency of forming larger lattices of ZnO after doping with Chitin [31].
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Overall, the diffraction peaks of the four samples were assigned to the (100), (002), (101), (110),
(103) and (112) planes of the hexagonal wurtzite structure of ZnO with high crystallinity, and all
appearing peaks are highly consistent with those of the hexagonal wurtzite structure of ZnO (JCPDS
card 36-1451) [32].

It is noteworthy that the typical characteristic peaks of Chitin should theoretically appear at 10.67◦

and 19.99◦ [33], but there is no sign of Chitin characteristic peaks in the diffraction patterns. More than
likely, Chitin in a highly dispersed state or at low concentrations would exceed the detection limit
of XRD.

3.4.2. Scan Electron Microscope (SEM) Analysis of Chitin/ZnO

Morphology is an essential property to determining the effectiveness of the catalyst [29]. The SEM
patterns of four Chitin/ZnO nanoparticles calcinated at 500 ◦C with different doping ratio and the
patterns of Chitin/ZnO (2:3) calcinated at 400 and 500 ◦C were shown in Figures 13 and 14, respectively.

Except for the slight agglomeration of the internal particles of ZnO doped with excessive chitin
(Figure 13d), the internal structure of the four catalysts calcined at the same temperature is uniformly
distributed and the particle gap is obvious (Figure 13a–c), which indicates that the proper amount of
doped chitin would not destroy the internal structure of ZnO, and the results are consistent with the
XRD analysis.

By comparing the catalysts calcined at different temperatures (Figure 14a,b), it was found that the
increase of temperature would significantly alter the in-plane behavior of the crystal structure and the
distribution ways [34]. In Figure 14a, the arrangement of the crystals is disordered and specific loose
holes can be observed between nanoparticles.
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(b) Chitin/ZnO = 2:3, calcinated at 500 ◦C. (Testing by TM3030plus.)

From Figure 14b, the crystal bound morphology of ZnO calcinated at 500 ◦C and doped with a
certain proportion of chitin (mixing mass ratio is 2:3) was observed as inclusion morphology, with well
distribution and rule shape. Since Chitin and ZnO particles were highly similar in length–width ratio
(average length 2.27 µm, average width 1.88 micron and ratio about 1.2) and had the distinct color
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difference (Chitin is black and ZnO is white), the overall array distribution is uniform. The arrangement
and combination mode of Chitin/ZnO are closely adjacent. From left to right and up and down in turn,
this black-and-white crystal particles have clear boundaries. At the same time, the agglomeration of
the particles was not observed in SEM images under this condition, which indicated that this doping
ratio would not destroy the overall structure of the ZnO lattice, resulting in morphological distortion
or structural damage. Therefore, controlling the preparation conditions at 2:3 and 500 ◦C is beneficial
to the loading of the Chitin in ZnO lattice.

4. Conclusions

We have fabricated the newly developed Chitin/ZnO composite photocatalyst powder with
the cost-effective sol-gel method and investigated the potential of Chitin/ZnO degrading the key
contaminants (NH4

+–N) in the simulated aquaculture wastewater under ultraviolet irradiation.
In comparison to the pure ZnO powder, proper doping of Chitin is the most conducive way to
enhance the utilization of UV light and to broaden the responsive range of ZnO. It was observed that
88.64% of NH4

+–N could be removed in a short period of irradiation time (2 h) when using a 0.5 g/L
Chitin/ZnO (2:3) photocatalyst at a calcination temperature of 500 ◦C. Furthermore, the relationship
between adsorption and the photocatalysis process was tested in this survey. After 1 h of adsorption,
the illumination at 2 h can reach as high as 90.12%. In fact, the creation of Chitin/ZnO powder provides
a practical approach for future research on the photocatalytic purification of aquaculture wastewater.

However, how to achieve catalyst cyclic utilization and to apply the proposed experimental
design with the outperformed catalysts in the practical wastewater system for evaluation are issues
that need to be further explored in the follow-up work. The experimental design in this paper could
lay the foundation for the subsequent research.
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