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Abstract: Temperature-based snowmelt models are simple to implement and tend to give good
results in gauged basins. The situation is, however, different in ungauged basins, as the lack of
discharge data precludes the calibration of the snowmelt parameters. The main objective of this
study was therefore to assess alternative approaches. This study compares the performance of two
temperature-based snowmelt models (with and without an additional radiation term) and two
energy-balance models with different data requirements in 312 catchments in the US. It considers
the impact of: (i) the meteorological forcing, by using two gridded datasets (Livneh and MERRA-2),
(ii) different approaches for calibrating the snowmelt parameters (an a priori approach and one
based on Snow Data Assimilation System (SNODAS), a remote sensing-based product) and (iii) the
parameterization and structure of the hydrological model used for transforming the snowmelt signal
into streamflow at the basin outlet. The results show that energy-balance-based approaches achieve
the best results, closely followed by the temperature-based model including a radiation term and
calibrated with SNODAS data. It is also seen that data availability and quality influence the ranking
of the snowmelt models.

Keywords: snowmelt; day-degree approach; SNODAS; hydrological model; a priori parameter
estimation; ungauged basins; model performance; data quality

1. Introduction

Snow has a hydrological impact beyond the areas on which it accumulates as it can dominate
the river regime hundreds of kilometers downstream of snow-covered areas [1]. The importance
of snow-related processes can be grasped when considering that in the year 2000 about 1/6 of the
world’s population was estimated to live in areas where most of the discharge was snow-derived [2].
This indicates that enhancing our abilities for modelling snow accumulation and melt can result in
widespread benefits.

Snowmelt modelling is important in mountainous areas, which are characterized by a lower
density of measurement stations in comparison to more densely populated valley areas [1].
This explains why there are often no observed data available for setting up and validating hydrological
models. The lack of climate data can be tackled by resorting to gridded climate datasets, which provide
interpolated values onto a grid. These datasets might, however, have large uncertainties, especially
in mountainous areas, where the complex topography and large elevation gradients constitute
an additional challenge for interpolating climate variables [3]. Nevertheless, as temperature data
provided by gridded datasets tend to have a good quality, they still can be a useful data source for
temperature-based snow models [3]. These models rely on parameters relating air temperature to the
phase of precipitation and the snowmelt rate. Ideally, the parameters would be estimated a priori
based on the catchment properties. However, as it has not yet been possible to identify relationships
between the catchment properties and the parameter values (e.g., [4–6]), they need to be calibrated [4,7].
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While this can be best done with snow measurements (e.g., snow depth or snow water equivalents),
it is also possible to use discharge data. In fact, this is the approach for calibrating snow parameters
adopted by many operational hydrological models due to the scarcity of direct snow measurements.
As ungauged basins lack discharge data, it is necessary to resort to other sources of snow-related
information that can aid in the estimation of snow parameters. A viable option is using remote
sensing imagery [8,9], which is expected to become more important as the coverage and resolution of
remote sensing data increases and as better techniques for extracting useful information from them
are developed.

Another approach for modelling snowmelt in ungauged catchments is to use physically based
models as they do not require calibration. On the other hand, they are more complex and tend to have
higher data requirements than temperature-based models. This is, however, not always the case as
there are multiple ways of describing and parameterizing the terms of the energy-balance equation,
which results in some degree of flexibility for adjusting to the available data. An extreme example is an
energy-balance model that only uses the minimum and maximum daily temperatures as inputs [10].

This study was motivated by the need for a reliable approach for modelling snowmelt in
ungauged basins. While previous studies have reported a similar performance for temperature
and physically based models in gauged basins [4,11,12], their relative performances have not been
assessed in ungauged catchments. It is, however, reasonable to expect that energy-balance models
will have a better performance than temperature-based models as the latter will run with uncalibrated
parameters. On the other hand, it is possible that the parameters of the temperature-based models
can be successfully calibrated with the help of remote sensing data in which case there might be only
small differences between energy and temperature-based snowmelt models. The main objective of this
study is to compare different snowmelt approaches that can be applied in ungauged basins and to
identify which of them should be used. The study considers the impact of: (i) using different forcing
datasets, (ii) calibrating the snowmelt parameters with different approaches and (iii) the complexity
of the hydrological model. For obtaining more representative results, the study is carried out for
312 catchments in the US.

2. Modelling Snow Accumulation and Melt

This section reviews with some detail the alternatives for modelling snow accumulation and
snowmelt using temperature-based models. It emphasizes the values and ranges of the parameters
describing these processes as it is later necessary to define a priori values for these parameters. A brief
overview of the used energy-balance snowmelt models is presented for completeness.

2.1. Snow Accumulation

Although there are many factors influencing the precipitation phase, such as humidity and
air pressure [13,14], only the near-surface air temperature tends to be used for modelling snow
accumulation in hydrological models. In these cases, the precipitation phase can be estimated
with a single temperature threshold or a linear or S-shaped curve transition between two threshold
temperatures [14]. Numerous studies have been carried out for defining these thresholds. An analysis
of 502 SNOTEL (SNOwpack TELemetry) stations, for instance, found that a threshold of 0 ◦C
underestimated snowfall [14], as shown by a bias of −7%. Another study involving 15,000 land
stations found that almost 95% of the precipitation falls as snow at −2 ◦C. This decreases to about 80%,
20% and 0% of snow at temperatures of 0 ◦C, 2 ◦C and 6.5 ◦C, respectively [13]. This agrees well with a
literature survey recommending a rain/snow threshold of 1.7 ◦C considering that 97% of precipitation
fell as snow below −0.5 ◦C and that 81% of the precipitation was rainfall when temperature was above
2.8 ◦C [5]. This is also consistent with studies in mountainous areas, which observed that about 90% of
the precipitation was solid at 0 ◦C [15].

It was also observed that most precipitation events produce either rain or snowfall and that
mixtures between both phases were rather uncommon [13]. It might be thus advisable to use a single
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threshold or to assign a single phase to all precipitation based on the probability of occurrence of each
phase when considering two thresholds.

Since there is not much available data for validating more complex approaches, this study models
snow accumulation as a function of a single threshold, Tt. Incoming precipitation is assumed to be in a
liquid state when the air temperature is above the threshold; otherwise, it is regarded as snowfall.

2.2. Snowmelt

The methods for modelling snowmelt are usually classified as either temperature-index [4,16] or
energy-balance approaches. This study uses two temperature-based and two energy-balance snowmelt
models which are described in the next sections.

2.2.1. Classic Temperature-Based Approaches (Tb)

Temperature-index approaches take advantage of the high correlation between temperature and
snowmelt [4,17] and the relatively easy access to temperature data. Snowmelt (M in mm·day−1),
is proportional to the difference between air temperature (Ta in ◦C) and a base temperature (Tb in ◦C).
The air temperature can be defined either as the average or maximum daily temperature [5]. The factor
of proportionality (m f in mm·◦C−1·day−1) is called melt or day-degree factor [4]:

M =

{
m f (Ta − Tb) when Ta > Tb

0 when Ta ≤ Tb
(1)

The melt factor depends on the importance of individual components of the energy budget
equation [4,18]. A higher fraction of shortwave radiation (found at higher elevations) is linked to
higher day-degree factors. On the contrary, locations with high sensible heat fluxes tend to have
lower day-degree factors. Sublimation, which might consume high amounts of energy, explains the
lower day-degree factors that can be found in dry locations with high radiation. As the importance of
different energy-balance components varies across seasons, it can be expected that this will be reflected
in a seasonal variability of the day-degree factors. While this could be identified at plot scale studies,
this is not necessarily the case at the catchment scale. A study involving 380 catchments showed,
for instance, that a seasonally varying day-degree factor did not result in significant increases in model
performance [19].

It is important to mention that some temperature-based snowmelt approaches might consider
additional processes (e.g., refreezing, cold content). As their inclusion does not lead to important or
consistent performance improvements at the catchment scale [19,20], they are not considered in the
present study.

In general, it is considered that the day-degree approach is only valid for “average” conditions [18].
From a spatial point of view, it means the approach is not suitable for small areas, as the heat balance
equation could be strongly affected by local characteristics. From a temporal point of view, it means
that it is not suitable for sub-daily scales, but that it should be implemented for timescales covering the
variability of “typical” weather and when conditions are close to average.

Regarding the parameter values, several reviews and studies have found that the day-degree
factor tends to vary between 2.7 and 12 mm·◦C−1·day−1 (e.g., between 3.5 and 6 mm·◦C−1·day−1 [21];
2.7 mm·◦C−1·day−1 for a watershed in Alaska [22]; 2.7 and 11.6 mm·◦C−1·day−1 with a median of 4.5 to
5 mm·◦C−1·day−1 [4]). The authors of a study reviewed the parameter ranges used in recent simulation
studies and then decided to consider a variation range between 0 and 20 mm·◦C−1·day−1 [23]. The base
temperature is often assumed to be 0 ◦C [24], but also varies across studies (e.g., from −2 ◦C to 5.5 ◦C
in a study considering 24 basins [6]).
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2.2.2. Temperature-Based Approaches with Radiation (Enhanced Temperature-Based Approaches) (TR)

These models attempt to benefit from the good results obtained with the simple temperature-index
approaches and to address one of their main drawbacks by making them more physically based through
the inclusion of radiation data [21]. One difference between applications is the considered radiation
component, since some approaches use the total net radiation [21,25,26], while others consider the net
shortwave radiation [22,27,28] or the incoming clear-sky shortwave radiation [29]. Another difference
is that some models use measured radiation data as input, while others parameterize the radiation
terms. As the incoming solar radiation shows consistent patterns with topography (e.g., slope, aspect),
time of the year (e.g., sun declination) and location (latitude, elevation), there are some interesting
approaches for getting distributed inputs that do not require additional climate observations [29–31].
This indicates that these combined approaches might not necessarily require more input data than
temperature-index models [27]. This study implements the model described in Kustas et al. [21]:

M =

{
m f (Ta − Tb) + αR when Ta > Tb

0 when Ta ≤ Tb
(2)

with R representing the total net radiation (W·m−2) obtained from the input datasets. The parameter α is a
factor for converting the energy flux density to snowmelt depth. It is about 0.026 cm·day−1·(W·m−2)−1

and can be easily derived from the specific latent heat of water (334 kJ·kg−1). With respect to the melt factor,
it is expected that it will be smaller than the one in the classical day-degree approach, since the radiation
term already accounts for part of the melt. There is, however, not much information about the ranges of
this factor, which is partly explained by the fact that its value will depend on the considered radiation
terms. When using the shortwave radiation it was found that a value of about 2 to 2.5 mm·◦C−1·day−1

provided good results for a Swiss catchment [26], while a melt factor of 2.3 mm·◦C−1·day−1 was obtained
for a watershed in Alaska [22]. Using the total net radiation a value of 5 mm·◦C−1·day−1 was observed in
a catchment in Vermont [25] and a value of 1.8 mm·◦C−1·day−1 was obtained at a site in Switzerland [21].

2.2.3. Classic Energy and Mass Balance Approach (Eb)

While there are complex snow physics models providing information about the macroscopic
(e.g., density, water content) and microscopic (e.g., ice grain size and shape) properties of various
snow layers [32] most snow energy-balance models focus only on the energy balance in the snowpack.
This can be represented by:

dU
dt

= Qsn + Qln + Qp + Qg + Qh + Qe (3)

where U (kJ·m−2) stands for the energy. The terms in the energy balance are: Qsn (net shortwave
radiation); Qln (net longwave radiation), Qp (advected heat from precipitation), Qg (ground heat flux),
Qh (sensible heat flux) and Qe (latent heat flux). The sign convention used here defines (i) all radiation
fluxes as being positive when they are directed to the surface and (ii) the remaining energy fluxes
(latent and sensible heat) as positive when directed away from the surface [33]. With respect to the
relative importance of the energy-balance terms, Qsn and Qln account usually for 60–90%, Qh and Qe

for 5–40%, Qg for 2–5% and Qp for 0–1% of it [24]. The low impact of the last two terms explains why
they are often neglected. Most of the approaches and equations adopted in this study are taken from
Tarboton et al. [34], where more detailed information can be found.

The net solar radiation and longwave radiation were obtained directly from the input datasets.
The turbulent fluxes of sensible and latent heat between the snow surface and the air above are
proportional to the difference in temperature and vapor pressure, respectively. The proportionality
constants are known as turbulent transfer coefficients or diffusivities:
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Kh = Ke =
k2

[ln(z/z0)]2
(4)

with Kh and Ke (dimensionless) being the transfer coefficients, k is the dimensionless von Karman
constant, z is the height at which the wind velocity is measured (m) and z0 is the roughness height (m).

The sensible and latent heat fluxes are then calculated as:

Qh = ρaCpKhu(Ta − Ts) (5)

Qe =
0.622hv

RdTK
a

Keu(ea − es(Ts)) (6)

where ρa is the air density (kg·m−3) estimated with the atmospheric pressure derived from the
elevation using the barometric formula and the air temperature (Ta in K). Cp is the specific air capacity
(1.005 kJ·kg−1·◦C−1) and u is the wind speed (m·day−1), Rd is the dry gas constant (287 J·kg−1·K−1)
and hv is the latent heat of sublimation (2834 kJ·kg−1). ea is the air vapor pressure and es the vapor
pressure at the snow surface which is assumed saturated at the temperature Ts. Many authors consider
stability correction factors for the turbulent fluxes based on the Richardson number [22,35]. However,
as some studies found that they might lead to unreasonable values [34,36,37], they are not included
here. Since Qp and Qg are neglected, the surface temperature Ts is obtained by minimizing the absolute
sum of the four remaining terms in the energy-balance equation. This temperature is then used for
estimating the energy available for snowmelt dU/dt and the snowmelt (mm) is obtained with:

Melt =
dU
d f

1000
h f ρw

(7)

with h f being the heat of fusion (334 kJ·kg−1) and ρw the density of water (kg·m−3).

2.2.4. Energy and Mass Balance Approach with Reduced Input Data Requirements (Wa)

This model was first presented by Walter et al. [10] and requires only the timeseries of the
daily precipitation and temperature extremes. The equations are similar to the ones presented in the
previous section. They are described in detail in Walter et al. [10] and were also implemented in an R
package [38]. For the terms that had a different parameterization in both sources, the most recent was
adopted (i.e., the one from the R package [38]). The incoming radiation S (kJ·m−2·day−1) is estimated
as a function of the albedo A (dimensionless), the atmospheric transmissivity ATt (dimensionless) and
the potential extraterrestrial solar radiation S0 (kJ·m−2·day−1):

S = (1 − A)ATtS0 (8)

The albedo ranges between 0.25 (ground albedo when there is no snow) to a value close to
1 assigned to new snow. A simple decay function is used for modelling the decrease in albedo of snow
in time. The transmissivity is estimated using the approach outlined in Bristow and Campbell [39]:

ATt = 0.75(1 − exp(−B∆T2.4)) (9)

with B being an empirical coefficient depending on the difference between the daily minimum and
maximum temperatures (∆T). The extraterrestrial solar radiation is estimated as a function of the
latitude (radians) and the solar declination angle (radians) estimated according to Rosenberg [40]:

declination = 0.4102 sin(
2π

360
(J − 80)) (10)
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with J being the day of the year. The terrestrial longwave radiation (kJ·m−2·day−1) is estimated with
the Stefan-Boltzmann equation:

L = εσT4 (11)

with ε being the surface emissivity (dimensionless) estimated with the daily temperature and the
fraction of cloud cover obtained as a function of the transmissivity; σ is the Stefan-Boltzmann constant
and the temperature T (in K). The sensible and latent heat fluxes are estimated with the same equations
shown above for the classic energy-balance approach. Instead of the daily wind speed the approach
presented here relies either on the long-term average at the respective location or on the geometric
mean value of the nearest catchments with wind data. The vapor density was approximated as the
saturation density at the minimum daily air temperature. For the ground heat flux a constant value of
173 kJ·m−2·day−1 was assumed, and the advected heat from precipitation was estimated with:

Qp = CwPTa (12)

With Cw being the heat capacity of water (in kJ·m−3·◦C−1); P the rain depth (m) and Ta the air
temperature (◦C).

3. Materials and Methods

3.1. Study Areas

This study was carried out for a set of 312 GAGES II (Geospatial Attributes of Gages for Evaluating
Streamflow, version II) reference basins (Figure 1, Table 1). The catchments were selected based on
the presence of snow (fraction of snow in the total precipitation >2%) and in the performance of
the hydrological model. The intention behind filtering the catchments according to the achieved
performance was to remove from the analysis the catchments that could not be well modelled.
The study considers therefore only the catchments that achieved a Nash–Sutcliffe coefficient larger
than 0.4 in a previous study based on 574 GAGES II catchments using the same hydrological models
considered here, albeit for a different period and calibration approach. It might be further important to
be aware that snow constitutes a seasonal feature in most catchments, but that 22 of them have areas
permanently covered with ice or snow.

Figure 1. Location of the considered catchments and percentage of precipitation falling as snow.
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Table 1. Characterization of the considered catchments.

Property Unit Min Max Median

snow % 3 87 15
precipitation 1 mm 401 3314 1137
temperature 1 ◦C −1.5 13.7 7.3

PET 2 mm 615 1277 927
area km2 4 14,269 304

elevation m.a.s.l. 14 3644 610
forest % 0 99 69

barren land % 0 40 0
glacier % 0 52 0
BFI 3 - 0.1 0.85 0.5

discharge mm 14 3514 479
1 Estimated with Daymet 3 data; 2 Potential evaporation estimated using the Hargreaves and Samani formula;
3 Baseflow index provided by the USGS [41].

3.2. Datasets

This section presents the data used in this study: two datasets used as model forcings (Livneh
and MERRA-2), one dataset used as calibration target for the snow parameters (SNODAS) and the
discharge data (from the United States Geological Survey, USGS) used as calibration target for the
rainfall-runoff model.

3.2.1. Livneh Dataset

The Livneh dataset [42] is an updated version of the Maurer dataset [43]. It provides daily
precipitation, temperature (minimum and maximum) and wind velocity data for the conterminous US
between the years 1915 and 2011. The data lies on a 1/16 degrees grid and has a temporal resolution
of 3 h. Data for following variables was downloaded for this study: total precipitation rate (mm),
near-surface (2 m) air temperature (K), near-surface (10 m) wind speed (m·s−1), near-surface (2 m)
relative humidity (%), downward solar radiation (W·m−2), net solar radiation (W·m−2), downward
longwave radiation (W·m−2) and net longwave radiation (W·m−2).

3.2.2. MERRRA-2 Dataset

The first version of the MERRA dataset aimed at modelling the atmospheric water balance [44].
An updated version (MERRA-2) was produced for addressing some weaknesses of the original product
and for updating the input data sources [45]. The grid has a spatial resolution of 0.625 × 0.5 degrees
and was downloaded for each hour. The variables used in this study were: the specific humidity at 2 m
(kg·kg−1), the air temperature at 2 m (K), the net longwave and shortwave radiation (W·m−2), the total
bias corrected precipitation over land (kg·m−2·s−1) and the surface wind speed (m·s−1). As the spatial
resolution of the climate data has a large influence on the snow processes it was decided to downscale
the MERRA-2 data to the Livneh grid using monthly temperature, precipitation, and relative humidity
correction factors. The monthly value of each variable in the Livneh grid was obtained from the
ClimateNA tool [46]. The relationship between the mean value of the corresponding variable for
the entire MERRA-2 cell and each of the smaller Livneh grid cells contained in it, was then used for
estimating the value of each cell in the Livneh grid. Further information about this procedure can be
found in the Supplementary Materials.

3.2.3. SNODAS Dataset

The SNODAS (SNow Data Assimilation System) dataset [47,48] provides estimates about the snow
cover and associated snow variables in a 1km grid. It combines data from a weather model, a physically
based spatially distributed snow model and observations of the snow-covered area and snow water
equivalents (from satellites, airborne equipment, and ground stations). It is produced by the NOAA
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National Weather Service National Operational Hydrologic Remote Sensing Center (NOHRSC) and
covers the conterminous US at a daily timestep from September 2003 to the present. One aspect that
needs to be considered when using this dataset is that its quality has not been thoroughly assessed,
as all data at a 1 km scale that could be used for validation are already used as model input [47].
Some studies have evaluated the quality of some SNODAS variables, mainly the SWE and snow
depth, using field measurements [49,50]. This is, however, a highly resource intensive approach which
provides information for only a small area. Other studies compared SNODAS variables with the
results from other airborne and satellite derived data [50,51] or carried out evaluations at the basin
scale using discharge measurements [49,52]. The outcomes of these experiments are variable and do
not allow an overall estimate of the quality of the dataset.

3.2.4. Discharge Data

This study aims at comparing the performance of different snowmelt models. This would be
ideally done by comparing the output of the snow models directly to snowmelt data, for instance,
the SNOTEL data which is collected by the NRCS (US Natural Resources Conservation Service).
Since there are, however, only a few stations delivering all forcing data required by the hydrological
models, it would have been necessary to use gridded forcing data for estimating snowmelt at the
point scale (i.e., the SNOTEL station). Since the value of climate variables at a specific point might
not correlate well with the value of the gridded cell, this study uses discharge data for evaluating
the snow models. An advantage of this approach is that the spatial scales of the input data (gridded
input) and the output variables (basin discharge) have a better match, as both describe aereal averages.
Another positive aspect it that it allows to consider a large number of catchments, instead of only a
few SNOTEL stations.

The daily discharge data between the 1 January 1980 and the 31 December 1980 was downloaded
from the USGS webpage. No additional checks on this data were carried out, as the USGS data
undergoes detailed QM/QA (quality management/quality assurance) procedures (see chapter 502.2 of
the USGS Survey Manual: Fundamental Science Practices: Planning and Conducting Data Collection
and Research).

3.3. Snowmelt and Hydrological Models

This study assesses the performance of different snow models against stream discharge. It is,
therefore, necessary to use a hydrological model for transforming the modelled snowmelt signal into
streamflow at the basin outlet. Regarding snowmelt, this study considers (Figure 2):

• a classic temperature-index-based approach (Tb)
• a temperature-index-based approach with radiation data (TR)
• a classic energy-balance approach (Eb)
• an energy-balance approach that only requires temperature data as described by Walter et al.

(2005) [10] (Wa)

The temperature-index models were implemented for 100-m elevation bands that had their air
temperature adjusted using a constant environmental lapse rate of −0.0064 ◦C·m−1. The energy-balance
models were run for each grid cell covering the catchment. The snowmelt and effective precipitation
were then averaged for the complete catchment and used as lumped input to the hydrological model.
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Figure 2. Sketch of the snow models specifying the time series used as input (T: temperature; P:
precipitation, R: radiation; RH: relative humidity).

The hydrological models used in this study were developed by Atkinson et al. [53] and
Farmer et al. [54] and later modified by Bai et al. [55] (Figure 3). The objective of using four hydrological
models is to test if the main results and conclusions are sensitive to the hydrological model used.
The results chapter focuses thus on the results of the most complex model (M4) and only considers
the results obtained with the three simpler models in the final stage. Figure 3 shows a scheme of the
models. Model M4 consists of a soil bucket which loses water through evapotranspiration (Esat and
Eus), saturation excess flow (Qse), subsurface flow (Qsat) and percolation flow (Qr). The percolated
water is captured by a groundwater reservoir and released as baseflow (Qgw). Evapotranspiration
is modelled separately for the parts of the catchment covered by deep-rooted vegetation and the
parts covered by bare soil and shallow roots. The soil bucket further distinguishes a saturated and an
unsaturated zone, which interact differently with the potential evapotranspiration (PET) and therefore
result in different actual evapotranspiration estimates. The PET was calculated in a previous study
according to the Hargreaves and Samani [56] approach and used directly as input to the hydrological
models. The PET does therefore not vary with the considered forcing. More information about
models M1 to M3, which are basically simpler versions of this model, can be found in the studies
referenced above.

Qse
Sb

St

P+melt

E

Qse

Qsat

Sb Sus

Ssat

Qse

Qsat

Sb
Qse

Qsat

Qgw

Qr

Sb

Sgw

Sus

Ssat
St

M1 M2 M3

P+melt P+melt P+melt

E E E

M4

Figure 3. Sketch of the hydrological models.

3.4. Model Setup, Calibration and Evaluation

Model performance is analyzed in three stages, allowing a stepwise assessment of the changes in
performance when moving from gauged to ungauged catchments. In the first step discharge data is
used for calibrating all (snow and soil) parameters. The second step uses the soil parameters calibrated
in the previous step but estimates the snow parameters without making use of the discharge data.
In the final step, the discharge data is not used as all parameters are estimated based on other data
sources. A sketch of the workflow is shown in Table 2 and a more detailed account of each step is
presented below.
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First step: Calibration of all parameters using discharge data (SCE parameters). For an initial
assessment of model performance, the M4 hydrological model was calibrated with each combination
of snowmelt model and forcing. The calibration was carried out with the SCE algorithm [57] using
the mean absolute error (MAE) of the daily streamflow as objective function. The reason for choosing
the MAE is that it gives the same weight to all observations, while an objective function squaring the
error terms would have assigned a higher weight to the larger errors often observed at the hydrograph
peaks. As in the current study many of these peaks will be caused by snowmelt, it was deemed a good
idea to choose an objective function which does give such a large focus to the peaks (as it is the task of
the snow models to correctly reproduce the snowmelt peaks). Instead, the calibration should focus on
achieving a good performance during the periods less affected by snowmelt. These parameter values
obtained by calibration to the discharge values will be identified as SCE parameters.

Table 2. Summary of the options considered in the workflow.

Analysis Forcing Snow Model Soil Parameters Snow Parameters

step 1 Livneh
MERRA

Tb
TR
Eb
Wa

SCE calibration to discharge SCE calibration to discharge

step 2 Livneh
MERRA

Tb
TR
Eb
Wa

SCE calibration to discharge
3 estimation approaches:
a priori (Ap) and using

SNODAS data (SD_av, SD_x)

step 3 Livneh
MERRA

Tb
TR
Eb
Wa

A priori
3 estimation approaches:
a priori (Ap) and using

SNODAS data (SD_av, SD_x)

Second step: Estimation of the snow parameters without using discharge data. This stage informs
about the model performance that can be achieved with the soil parameters calibrated in the previous
step and with snow parameters estimated without using discharge data. The snow parameters were
estimated with three approaches:

• An a priori estimate (Ap) based on literature data. A value of 1.7 ◦C was assigned to the snow/rain
accumulation threshold (Tt) and the melt temperature (Tm) was set at 0 ◦C. Day-degree factors of
6 and 2 mm·◦C−1·day−1 were used with the temperature-based and enhanced temperature-based
approaches, respectively.

• An estimation of the snow parameters using the SNODAS data. Since this data is available for
the whole US it represents a viable alternative for estimating the snow parameters in ungauged
basins. For estimating the melt temperature, all days with snowmelt need to be identified.
The minimum and maximum temperatures provided by each forcing (Livneh, MERRA-2) on
these days are then retrieved. For ensuring that the identified temperatures are representative
of the temperature at which snowmelt starts, only the temperature in the first day is considered
when considered when melt takes place on consecutive days. The median temperature was
assumed to be the melt temperature. A similar approach was used for the snow accumulation
temperature, estimated as the median temperature for the days with a positive increase in the
snow water equivalent. The day-degree factor was calibrated by fitting the snowmelt to the
SNODAS melt. These parameters, obtained by calibrating the SNODAS data to the average daily
temperatures, are identified as SD_av parameters.

• While snow parameters are usually estimated for the mean daily temperature, some studies
suggest that the maximum temperature could be more appropriate [5,14]. Therefore, the snow
parameters were additionally estimated using the same approach outlined above, but considering



Water 2019, 11, 301 11 of 22

the maximum, instead of the mean daily temperatures. These parameters are abbreviated as
SD_x parameters.

Third step: All parameters are estimated without using discharge data In the third step
all parameters were estimated without relying on discharge data, which would be the situation
encountered when modelling ungauged basins. As the snow parameters were already estimated in
the previous step, it was only necessary to estimate the soil parameters. These were estimated a priori
following the approaches described in Table 3.

Table 3. Description of the procedure estimating the soil parameters a priori.

Parameter Description of the a Priori Estimation Approach

M
Percentage of deep-rooted vegetation in the catchment
Estimated as the percentage of the catchment covered by forests (evergreen, mixed and
deciduous) according to the NLCD (National Land Cover Database) 2001 landcover [58].

Cei
Interception coefficient
Estimated as a function of the percentage of the catchment covered by different land use
classes and the interception factors for each land use class provided by Wang-Erlandsson [59].

Sb

Size of soil storage
The average thickness of the permeable rocks above bedrock was estimated using the
Pelletier et al. [60] datasets. This was multiplied by the fraction of soil water between
saturation and the permanent wilting point estimated with the POLARIS dataset [61].

f c
Field capacity
Estimated as a function of the soil properties obtained from the POLARIS datasets following
the approach of [55].

ass
Kd
ab f

Surface recession (ass), recharge coefficient (Kd) and baseflow recession (ab f )
Since there is no straightforward way of estimating these variables from the catchment
properties we used the values from the nearest catchment (centroid) for which we had
information. This is justified by previous studies indicating that geographical proximity
provides good results when estimating parameters for ungauged basins [62,63].

Regarding the metrics for assessing model performance, the initial intention was to analyze the
three components into which the Nash–Sutcliffe efficiency (NSE) can be decomposed [64]. These are the
bias (simulated minus observed values), correlation, and standard deviation error. However, since the
correlation between the bias and standard deviation (0.89) as well as the correlation between the NSE
and the correlation (0.95) turned out to be high, only the results for the bias and correlation are presented
here. A brief overview about the obtained NSE values is available in the Supplementary Materials.

4. Results

4.1. Performance of Snowmelt Models for Gauged Basins

The performance (bias and correlation) achieved by the model M4 with the calibrated SCE
parameters is presented in Figure 4. As expected, there are only small differences between models
when the percentage of precipitation falling as snow is small, but the differences become more
pronounced as the importance of snow increases.

The best results for the Livneh forcing are achieved with the temperature-based (Tb and TR) and
the energy-balance (Eb) models, while the Walter (Wa) model has the worst performance, especially in
catchments with much snow, reaching a median correlation of 0.77 and a mean annual bias of 77 mm
(= 0.21 mm × 365 days) in catchments with over 60% of snow.

With the MERRA-2 forcing the Tb and Walter models reach a similar performance to the one
obtained with the Livneh forcing. The TR and Eb models, on the other hand, show a marked decline in
performance, especially in catchments with a high influence of snow. Since both models use radiation
data, this suggests that there might be a problem with the radiation of the MERRA-2 forcing. While a
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detailed comparison of both forcings is beyond the scope of this study, it is helpful to have a detailed
look at the net radiation, melt and modelled discharge in at least one catchment (Figure 5). Panel A
shows that the net radiation estimated by the MERRA forcing starts to increase earlier after the winter
and at a slower rate than the radiation from the Livneh forcing. This results in an earlier start of
snow melt, smaller peaks (Panel B) and a hydrograph (red line) that does not match well the observed
discharge (black line) (Panel C).

 

Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa

<20 -0.16 -0.16 -0.19 -0.19 0.78 0.77 0.79 0.78 -0.25 -0.25 -0.29 -0.17 0.78 0.76 0.72 0.77

20–40 -0.22 -0.24 -0.26 -0.26 0.82 0.80 0.81 0.79 -0.26 -0.24 -0.34 -0.25 0.83 0.75 0.69 0.79

40–60 -0.04 -0.08 -0.08 -0.10 0.80 0.74 0.82 0.74 -0.05 -0.17 -0.29 -0.06 0.84 0.60 0.66 0.70

>60 -0.10 -0.16 -0.11 -0.21 0.91 0.87 0.89 0.77 -0.13 -0.59 -0.49 0.25 0.92 0.47 0.68 0.76

Overall -0.20 -0.21 -0.22 -0.25 0.79 0.78 0.80 0.78 -0.31 -0.38 -0.41 -0.12 0.80 0.74 0.70 0.77

Livneh MERRA

% pp as 

snow

Bias Correlation Bias Correlation

Figure 4. Performance of snowmelt models (median of catchments) disaggregated by percentage of
precipitation falling as snow (%pp as snow). Validation data for SCE calibration of model M4. The cells
were color-coded using a green (good performance)—yellow—red (bad performance) scale.

 

A 

B 

C 

Figure 5. Daily net radiation for each forcing in catchment 06622700 (Panel A). Daily snow melt (mm)
for the enhanced temperature-based model (TR) estimated with both forcings using the SCE calibrated
parameters (Panel B). Observed and modelled discharge using SCE calibrated parameters for both
forcings and the a priori (Ap) estimated parameters for the MERRA forcing (see Section 4.2) (Panel C).
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4.2. Performance of Snowmelt Models with Snow Parameters Estimated Without Using Discharge Data

Figure 6 shows a summary of model performance when using the SCE calibrated soil parameters
(from Section 4.1) and estimating the snow parameters in three different ways without using discharge
data. The differences in bias and correlation between Figure 4 and the first row in Figure 6 show the
decrease in performance observed when using a priori snowmelt parameters instead of calibrated
parameters. It can be seen that the differences in bias are in most cases smaller than 0.2 mm.
The decrease in correlation is small when considering energy-balance models, but temperature-based
models, and here especially the traditional model (Tb), show large reductions in correlation.

The second row of Figure 6 allows assessing the impact of using the SNODAS data and the mean
temperature (SD_av) for calibrating the snow parameters. In comparison with the a priori parameters
there is in most cases an improvement in the correlation coefficient for the temperature snow models,
while there is no positive effect on the correlation of the energy-balance models. For the bias, on the
contrary, there is in most cases a decrease in performance.

Estimating the snow parameters using SNODAS and the maximum daily temperature (third row
of Figure 6) does not result in any improvement, either in bias nor correlation, compared to the a priori
estimated parameters.

Figure 7 shows the improvements in performance achieved when the snow parameters are
estimated using the SNODAS dataset instead of using a priori estimates. It is seen that the a priori
parameters result in large overestimations of the snowmelt peaks, especially for the temperature-based
models. This can be successfully remedied using parameters estimated with the SNODAS data.
The impact of using SNODAS calibrated parameters on the energy-balance models is much smaller.
This can be explained by the number of calibrated parameters. While energy-balance models have only
one snow parameter requiring calibration (accumulation temperature), temperature-based models
have additionally the melt temperature and day-degree factor. This means that there is a larger
potential for having a bad estimate if the a priori estimates are inadequate; on the other hand, there is
also a larger potential for improvement.

 

Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa

M4 Ap 0.14 0.00 0.09 -0.12 0.45 0.65 0.83 0.75 -0.07 -0.49 -0.35 -0.29 0.43 0.46 0.65 0.75

SD_av 0.01 -0.15 -0.04 -0.27 0.59 0.77 0.84 0.72 -0.12 -0.56 -0.43 -0.36 0.49 0.43 0.62 0.74

SD_x -0.08 -0.19 0.02 -0.19 0.12 0.41 0.85 0.73 -0.15 -0.58 -0.36 -0.33 0.14 0.37 0.63 0.74

Livneh MERRA

Bias Correlation Bias Correlation

Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa

M4 Ap 0.35 0.34 0.35 0.33 0.29 0.48 0.77 0.60 -0.12 -0.14 -0.10 -0.09 0.27 0.18 0.45 0.73

SD_av 0.27 0.26 0.28 0.28 0.58 0.71 0.79 0.57 -0.20 -0.20 -0.19 -0.19 0.40 0.19 0.41 0.67

SD_x 0.25 0.25 0.30 0.29 0.09 0.36 0.78 0.59 -0.09 -0.18 -0.15 -0.15 0.08 0.16 0.44 0.70

Livneh MERRA

Bias Correlation Bias Correlation

Figure 6. Performance of snowmelt models (median of catchments) with the SCE calibrated soil
parameters and with snow parameters estimated without using discharge data. Results for catchments
with more than 40% of precipitation falling as snow. The cells were color-coded using a green (good
performance)—yellow—red (bad performance) scale. The rows show the results using three approaches
for estimating the snow parameters Ap (a priori); SD_av (using SNODAS data and the daily average
temperature); SD_x (using SNODAS data and the daily maximum temperature).
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A priori snow parameters SD_av snow parameters 

Figure 7. Hydrographs for all snow models with SCE calibrated soil parameters for catchment 12488500
which has 62% of precipitation falling as snow. The plots on the left use a priori estimated snow
parameters; on the right, the snow models use the parameters estimated with SNODAS using the
average daily temperature (SD_av).

4.3. Performance of Snowmelt Models for Ungauged Basins

Figure 8 shows the results when modelling ungauged basins, i.e., when estimating snow and
soil parameters without relying on discharge data. Bias has rather small differences between snow
models and different approaches for estimating the snow parameters. There are, however, important
differences between forcings, as the Livneh forcing results in positive biases, while the MERRA forcing
gives negative ones.
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Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa

M4 Ap 0.14 0.00 0.09 -0.12 0.45 0.65 0.83 0.75 -0.07 -0.49 -0.35 -0.29 0.43 0.46 0.65 0.75

SD_av 0.01 -0.15 -0.04 -0.27 0.59 0.77 0.84 0.72 -0.12 -0.56 -0.43 -0.36 0.49 0.43 0.62 0.74

SD_x -0.08 -0.19 0.02 -0.19 0.12 0.41 0.85 0.73 -0.15 -0.58 -0.36 -0.33 0.14 0.37 0.63 0.74

Livneh MERRA

Bias Correlation Bias Correlation

Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb Wa

M4 Ap 0.35 0.34 0.35 0.33 0.29 0.48 0.77 0.60 -0.12 -0.14 -0.10 -0.09 0.27 0.18 0.45 0.73

SD_av 0.27 0.26 0.28 0.28 0.58 0.71 0.79 0.57 -0.20 -0.20 -0.19 -0.19 0.40 0.19 0.41 0.67

SD_x 0.25 0.25 0.30 0.29 0.09 0.36 0.78 0.59 -0.09 -0.18 -0.15 -0.15 0.08 0.16 0.44 0.70

Livneh MERRA

Bias Correlation Bias Correlation

Figure 8. Performance of snowmelt models (median of catchments) with soil and snow parameters
estimated without using discharge data. Results for catchments with more than 40% of precipitation
falling as snow. The cells were color-coded using a green (good performance)—yellow—red (bad
performance) scale. The rows show the results using three approaches for estimating the snow
parameters Ap (a priori); SD_av (using SNODAS data and the daily average temperature); SD_x (using
SNODAS data and the daily maximum temperature).

When trying to rank the snow models with respect to correlation, it becomes clear that the
adequacy of a given model will depend on (i) the quality of the input data (forcings) and (ii) the
availability of additional data (SNODAS). The best correlation with the Livneh forcing is achieved with
the energy-balance (Eb) model, which is the second-best model depends on the access to additional
data. If the snow parameters can be calibrated using SNODAS data (SD_av), it is possible to achieve a
good performance with the temperature-based models. In this case, the enhanced temperature model
(TR) would be a better choice than the Walter model. If this were not the case, the Walter model would
be preferred.

The situation is different when using the MERRA forcing. Because the radiation data seems
to have some problems, neither the energy-balance (Eb) nor the enhanced temperature-based (TR)
models can achieve high correlations. The best alternative then is to use the Walter model (Wa) which
estimates the energy balance using only temperature data. Analogously to the results in Figure 6,
the snow parameters estimated with the SNODAS data and the maximum daily temperatures (SD_x)
do not improve model performance.

Figure 6 shows only the median performance for catchments with more than 40% of precipitation
falling as snow. For analyzing the performance of all catchments and getting an idea about the
variability in performance, the results of all catchments are shown in Figure 9. As already seen before,
there are almost no differences in bias between the snow models and snow calibration approaches,
but there are differences between the forcings, especially in catchments with a high influence of snow
(Panel A). Correlation shows only a small variability between forcings and snow models when snow is
not important (Panel A). For catchments with a high influence of snow, we see larger differences in the
performance between forcings. Depending on how the snow parameters were estimated, there can
be large differences in correlation even for catchments with a small impact of snow (Panel B). This is
especially evident for the temperature-based models (Tb and TR).

4.4. Consistency of Results for other Hydrological Models

This section looks at the impact of using other hydrological models. Figure 10 shows that bias
is more affected by the choice of the hydrological model than by the choice of the snowmelt model.
Specifically, it is seen that the biases in models M1 and M2 tend to be large in comparison to models
M3 and M4. Also, for the correlation it is possible to see a clear impact of the hydrological model,
as correlation is low for all catchments when using model M1. The remaining models do not exhibit
large correlation differences between in catchments with little impact of snow. For the catchments
with a higher proportion of snow there is a clear impact of the choice of the hydrological model on the
achieved correlation.



Water 2019, 11, 301 16 of 22

Bias Correlation

Livneh Merra Livneh Merra
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Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb WaTb TR Eb Wa

Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx

C

Wa Tb TR Eb Wa

Tb TR Eb Wa

M1 M2 M3 M4

Tb TR Eb Wa

B

A

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Bias Correlation

Figure 9. Bias and correlation for all catchments. Panel A: For both forcings and all snow models with
the SD_av snow parameters. Panel B: For all snow models and all approaches for estimating the snow
parameters. Unless otherwise stated, the M4 hydrological model driven by the Livneh forcing with a
priori soil parameters was used.

Bias Correlation

Livneh Merra Livneh Merra

Tb TR Eb

Tb TR Eb Wa Tb TR Eb Wa Tb TR Eb WaTb TR Eb Wa

Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx Ap SDav SDx

C

Wa Tb TR Eb Wa

Tb TR Eb Wa

M1 M2 M3 M4

Tb TR Eb Wa

B

A

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Bias Correlation

Figure 10. Bias and correlation for the snow models with the SD_av snow parameters and a priori soil
parameters. All hydrological models are driven by the Livneh forcing.

5. Discussion

This study compared the performance of two temperature-index-based and two energy-balance
models regarding their ability for reproducing the correlation and the bias between the observed
and simulated discharge in 312 US catchments. The analysis considers the impact of using different
forcings, approaches for calibrating the snow models and hydrologic models.
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5.1. Performance with Respect to Correlation

An important result of this study is that the performance with respect to correlation depends on
both: the snow and the hydrologic model. It can be seen that a hydrologic model that is too simple
does not allow achieving a good correlation regardless of the considered snow model. The highest
correlation was observed when using the most complex hydrologic model, stressing the need for using
a model that has an adequate complexity.

The differences in correlation between the snow models are small when there is discharge data
for calibrating the parameters and the input data is of good quality. This agrees with previous studies
stating that the differences between temperature and energy-balance models are small when modelling
gauged basins. As this study considered two forcings, one of which seems to have problems with
the radiation data, it was possible to see the impact of having low quality data. The results clearly
show that radiation data of low quality has a negative impact on performance in the models that use
radiation data as input.

In ungauged catchments modelled with good quality climate data, the best correlation is achieved
with energy-balance models. Classic temperature-based models (Tb), followed by the TR model,
have the lowest correlations. The performance of the temperature-based models can be, however,
considerably improved when SNODAS data is used for calibrating the snow parameters.

5.2. Performance with Respect to Bias

Bias is only marginally affected by the choice of the snowmelt model when modelling gauged
basing with high quality forcing data. On the contrary, if radiation data is not of good quality, there can
be large differences in bias between the snowmelt models, depending on their reliance on measured
radiation data (Figure 4). While the impact of the snow parameters on bias is not large (compare
Figures 4 and 6), the soil parameters do have a large influence (compare Figures 6 and 8). This is not
surprising, as snowmelt models affect primarily the timing of snowmelt, and not the amount of melted
water. The large impact of the structure (Figure 10) and parameterization (compare Figures 6 and 8)
of the hydrologic models can be explained by differences in the water balance caused by variations
in the distribution and timing of flow. This results in specific soil moisture patterns interacting
differently with the potential evapotranspiration which are finally reflected in unequal fractions of
evapotranspiration and runoff.

Another factor affecting bias is the precipitation input. Figure 8 shows, for example, that the
model driven by the Livneh and MERRRA-forcing data using a priori parameters have an average
bias of about 0.35 and −0.11 mm·day−1, respectively. While bias is also affected by differences in
temperature (as temperature influences the a priori snow parameters), it was previously shown that
the impact of the snowmelt models was minor, so most of the differences in bias can be attributed to the
precipitation input and differences in the evaporation. A comparison of the mean annual precipitation
for the basins with more than 50% of solid precipitation between 1 October 2003 and 31 November 2011
showed that the mean annual precipitation of these basins reached 596 and 507 mm for the Livneh and
MERRA-2 forcings, respectively. This is consistent with the sign of the bias as the Livneh forcing has a
positive bias, indicating the simulated discharge is larger than the observed discharge. The MERRA-2
forcing, on the other hand, has a negative bias, meaning that the simulated discharge is smaller than
the observed one.

An analysis of the precipitation input of the SNODAS product suggests, however, that both
datasets (MERRA-2 and Livneh) might be underestimating precipitation. The sum of the rain- and
snowfall of the hydrological models used as input for the SNODAS product, indicate that the average
annual precipitation equals 491 mm. However, the sum of the inferred rainfall and melt—which is
estimated using SWE values corrected by remote sensing data (among other data sources)—is 1040 mm.
Since the Livneh forcing was obtained by interpolating measured observations from about 20,000 US
climate stations with observation records larger than 20 years, its results will depend partly on the
quality of the measured precipitation. Studies carried out in the US have found that gauges have
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an undercatch bias between 3% and 10% for rainfall and between 20% to 50% for snowfall [65,66].
Since snow undercatch tends to increase with increasing wind velocities, its impact increases at higher
elevations and in mountainous areas. Snow undercatch in the stations used for deriving the Livneh
forcing could be, therefore, responsible for the lower precipitation compared to the SNODAS product.
The MERRA-2 dataset is the result of a reanalysis, i.e., it is the output of a climate model, which tend
to have difficulties in getting good precipitation estimates. One reason for this is that precipitation
estimates depend strongly on the model physics, known to have parameterization errors, and which
can be very sensitive to small changes in the temperature and moisture fields [45]. Also the fact
that precipitation is not a control variable in climate reanalyses, but a derived variable [44], explains
the larger errors. The situation is different for the MERRA-2 dataset, as it delivers a bias corrected
precipitation dataset besides the precipitation of the climate model output [67]. As this study uses the
bias corrected precipitation, the precipitation amounts are similar to the precipitation of the Livneh
dataset and it is expected that also the MERRA-2 precipitation might be affected by snow undercatch.

The large uncertainties in the precipitation estimates of the Livneh and MERRA-2 forcings due
to snow undercatch and the important differences between the precipitation estimated by these
datasets and the SNODAS estimates, stress that we are far from having certainty about the relative
importance and magnitude of different components of the water balance [68]. A reduction in the
bias of discharge estimates in ungauged basins can be therefore only expected once we have better
estimates of these components.

5.3. MERRA-2 Radiation

Section 5.1 discussed model performance when considering different sources of radiation data.
The MERRA-2 radiation data was regarded as being of lower quality than the Livneh data, since it
resulted in a considerably lower performance with respect to correlation. An independent evaluation
of the quality of the MERRA-2 radiation was carried out with the EBAF (Energy Balanced and Filled)
datasets. This dataset is obtained by post-processing satellite measurements which aim at improving
our understanding of the earth’s radiation budget. The results of the analysis are presented in the
Supplementary Materials. They show that the MERRA-2 radiation agreed better with the EBAF
radiation than with the Livneh radiation. As the EBAF and the MERRA-2 datasets have a much
lower spatial resolution than the Livneh forcing, it is possible that the higher performance of the latter
dataset can be explained by a better reproduction of the local radiation patterns. The performance
differences might thus be the result of the different spatial resolutions more than due to deficiencies of
the MERRA-2 dataset.

5.4. Limitations of the Study

This study implemented simple energy-balance models. It is possible that more sophisticated
energy-balance models and approaches for estimating parameters in ungauged basins could have
resulted in higher correlation values. Previous studies found, however, that such simple models might
be adequate for estimating snowmelt, indicating that the improvement in performance might not be
that significant [69].

In this study, the TR and Eb models used the radiation obtained from the Livneh and MERRA
datasets as input, while the Wa model estimated the radiation terms based on temperature data. A more
detailed comparison between these three snowmelt approaches should compare model performance
of each model using the radiation from the forcing datasets and estimating the radiation input.

This study neglected snow losses due to sublimation and evaporation in all models for making
results more comparable. As latent heat fluxes are explicitly calculated in energy-balance models,
they are often included in these models, but not in day-degree snow models.

Supplementary Materials: The following are available at http://www.mdpi.com/2073-4441/11/2/301/s1.
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