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Abstract: Soil moisture (SM) products derived from passive satellite missions are playing
an increasingly important role in agricultural applications, especially crop monitoring and disaster
warning. Evaluating the dependability of satellite-derived soil moisture products on a large scale
is crucial. In this study, we assessed the level 2 (L2) SM product from the Chinese Fengyun-3C
(FY-3C) radiometer against in-situ measurements collected from the Chinese Automatic Soil
Moisture Observation Stations (CASMOS) during a one-year period from 1 January 2016 to 31
December 2016 across Henan in China. In contrast, we also investigated the skill of the Advanced
Microwave Scanning Radiometer 2 (AMSR2) and Soil Moisture Active/Passive (SMAP) SM products
simultaneously. Four statistical parameters were used to evaluate these products’ reliability: mean
difference, root-mean-square error (RMSE), unbiased RMSE (ubRMSE), and the correlation coefficient.
Our assessment results revealed that the FY-3C L2 SM product generally showed a poor correlation
with the in-situ SM data from CASMOS on both temporal and spatial scales. The AMSR2 L3 SM
product of JAXA (Japan Aerospace Exploration Agency) algorithm had a similar level of skill as
FY-3C in the study area. The SMAP L3 SM product outperformed the FY-3C temporally but showed
lower performance in capturing the SM spatial variation. A time-series analysis indicated that the
correlations and estimated error varied systematically through the growing periods of the key crops
in our study area. FY-3C L2 SM data tended to overestimate soil moisture during May, August, and
September when the crops reached maximum vegetation density and tended to underestimate the soil
moisture content during the rest of the year. The comparison between the statistical parameters and
the ground vegetation water content (VWC) further showed that the FY-3C SM product performed
much better under a low VWC condition (<0.3 kg/m2) than a high VWC condition (>0.3 kg/m2), and
the performance generally decreased with increased VWC. To improve the accuracy of the FY-3C
SM product, an improved algorithm that can better characterize the variations of the ground VWC
should be applied in the future.
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1. Introduction

Soil moisture (SM) is one of the fundamental environmental variables in the global energy
and water cycles [1]. As satellite-based soil moisture products have become more widely available,
they have played increasingly important roles in many applications, such as meteorology, hydrology,
climatology, and agriculture [2]. Accurate measurement of soil moisture on large scales may assist in
crop yield estimation, drought prediction, and disaster monitoring in agricultural regions, particularly
in arid and semiarid areas where regular irrigation is required but water resources are limited.

Surface soil moisture can be obtained by various means, such as in situ soil moisture instruments,
land surface models, and remote sensing technology [3]. Since the first passive microwave satellite
sensor, launched in 1978, various studies have demonstrated that it is feasible to retrieve soil moisture
from passive microwave satellite missions [4]. Passive microwave satellite missions have been widely
used for soil moisture estimation, such as the Soil Moisture and Ocean Salinity (SMOS) mission [5,6],
the Soil Moisture Active/Passive (SMAP) mission [7], the Special Sensor Microwave/Imager
(SSM/I) mission, the Advanced Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E) [8,9], the Advanced Microwave Scanning Radiometer 2 (AMSR2) mission [10], and a series
of China’s Fengyun 3 (FY-3) satellites, consisting of FY-3A, FY-3B, FY-3C, and FY-3D [11–13].

Since soil moisture products are generally based on different satellite data and algorithms,
their quality and continuity vary in space and time [14]. Validation is an important task for any
satellite-based soil moisture product, as it not only aids appraisal of the actual accuracy of the
delivered soil moisture estimates but also improves our understanding of the product’s advantages
and disadvantages under different ground conditions and temporally [15]. Numerous studies have
assessed the accuracy of the soil moisture products from SMOS, SMAP, AMSR-E, and AMSR2 by
comparing the estimations against the ground measurements from monitoring networks around the
world [2,3,5,16–21].

The FY-3 satellite series is China’s second-generation polar-orbiting satellite series and includes
four satellites, FY-3A, FY-3B, FY-3C, and FY-3D, with an approximate two-year separation between two
subsequent launches [11]. The first two experimental satellites, FY-3A and FY-3B, were successfully
launched on 27 May 2008 and 5 December 2010, respectively, whereas FY-3C and FY-3D were
respectively sent into orbit on 23 September 2013 and 14 November 2017 [22]. FY-3A and FY-3C
orbit midmorning with their local solar time on descending node (LTDN) around 10:00 a.m., whereas
FY-3B and FY-3D orbit in the afternoon with their local solar time on ascending node (LTAN) around
10:00 p.m. [23]. A similar microwave radiation imager (MWRI) was aboard FY-3B, FY-3C, and FY-3D,
which observes the Earth’s surface at five different microwave frequencies ranging from 10 to 89 GHz.
The MWRI can complete the coverage of the Earth’s surface within two to three days, with a swath of
1400 km. Observations from the MWRI have been used to retrieve land surface parameters, such as
soil moisture, vegetation water content, and land surface temperature.

An official soil moisture product derived from the MWRI observations was distributed by the
National Satellite Meteorological Centre (NSMC) of China, which is available for all registered users
(http://satellite.nsmc.org.cn/portalsite/default.aspx). To obtain the official soil moisture product
from the MWRI-observed brightness temperatures, NSMC used a modified Single Channel Algorithm
(SCA) proposed by Jackson [24]. The significant differences between the retrieval algorithm and other
algorithms are that the FY-3 algorithm utilizes a new surface emission model (the Qp Model) [25,26] to
correct the effects of surface roughness and the algorithm uses both vertical and horizontal polarizations
of the X-band (10.65 GHz) brightness temperatures to retrieve the soil moisture instead of one single
channel. Working on the X-band, the FY-3 SM product is expected to sense and record soil moisture
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content contained in the top ∼1 cm of the soil layer, on average, for low-vegetated areas [3,27].
However, to the best of our knowledge, limited research has focused on evaluating the accuracy of the
soil moisture product from FY-3 series satellites. Parinussa et al. [13] first compared the soil moisture
products derived from the FY-3B official algorithm and the land parameters retrieval model (LPRM)
against in-situ measurements. Their results indicated that the two products could both capture the
temporal variation of soil moisture well at nighttime. The best agreement with in-situ measurements
was found in sparsely to moderately vegetated regions, and the agreement was less reliable with
increased vegetation density. Cui, et al. [28] conducted a detailed examination of the quality of the
FY-3B soil moisture products along with other seven soil moisture products from different satellites.
They found that the FY-3B soil moisture product exhibited a good temporal performance against in-situ
measurements collected from two soil moisture network regions in the United States and Spain.

Since the soil moisture product is not available currently for FY-3D, the FY-3C soil moisture product
is generally believed to have the best observation accuracy. In this paper, we evaluated the level 2 (L2)
soil moisture product from the FY-3C MWRI over Henan province, a key agricultural region where the
crop rotation consists mainly of winter wheat and summer maize. In contrast, we also investigated the
skill of the AMSR2 (Japan Aerospace Exploration Agency (JAXA) algorithm) level 3 (L3) soil moisture
product and the SMAP L3 passive soil moisture product over this agricultural region. To assess the
performance of the three soil moisture products above, we compared the products with in situ soil
moisture data from 113 monitoring stations from the Chinese Automatic Soil Moisture Observation
Stations (CASMOS) network over a one-year period from 1 January 2016 to 31 December 2016 at daily
and monthly time scales. We evaluated the soil moisture product using four statistical parameters:
the mean difference (MD), the root-mean-square error (RMSE), the unbiased RMSE (ubRMSE), and
the correlation coefficient (R). Additionally, we analyzed how the cropping system affected the FY-3C
soil moisture product’s performance over the region. At last, possible error sources in the FY-3C soil
moisture product are also investigated and discussed. This paper is structured as follows. Section 2
introduces the study area, the satellite soil moisture products, the in-situ measurements, and other
ancillary datasets. Section 3 describes the evaluation method used in this study. Section 4 presents the
comparison results between the satellite products and their corresponding in-situ measurements. In
Section 5, the possible error sources in the soil moisture products will be discussed. Section 6 draws
the conclusions of this paper.

2. Study Area and Datasets

2.1. Study Area

Henan province, located in the middle part of China (Figure 1b), is one of the most important
granaries in the country, extending from 31◦23’ N to 36◦22’ N and 110◦21’ E to 116◦39’ E, with an
area of 16.7 × 104 km2 and an average elevation of 100 m above sea level. Henan has a typical
temperate monsoon climate and an annual mean temperature of 10–15 ◦C. The yearly precipitation
is unevenly distributed among seasons, roughly ranging from 400 to 800 mm, and more than 50%
of precipitation events occur in the summer during the maize growing season. Both temperature
and precipitation decrease gradually from southeast to northwest. As shown in Figure 1a, nearly
half of the region is planted with crops, and the prevailing double-cropping system is winter wheat
and summer maize. Generally, the wheat growing season is from the early October to the next June.
The corn growing season is from June to late September. Due to insufficient precipitation in spring
and winter, supplemental irrigation for winter wheat is required to obtain optimum yields. As a
result, Henan suffers from severe water shortages and environmental problems related to groundwater
overexploitation. Therefore, strengthening soil moisture monitoring in the agriculture areas is of great
significance for improving water use efficiency in this province.
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Figure 1. (a) The agricultural regions, Chinese Automatic Soil Moisture Observation Stations 
(CASMOS), the weather stations, and the footprints of Fengyun-3C (FY-3C) located in Henan 
province; (b) The location of Henan province in China. 

Relative to soil moisture, soil type per se is considered to have a small yet significant impact on 
the brightness temperatures observed at the satellite footprint scale [9]. Consequently, soil texture is 
usually approximated as constant in soil moisture retrieval algorithms. Figure 2 shows the soil types 
in Henan at a 1:1,000,000 scale sourced from the Second National Soil Survey of China [29]. It was 
classified using the Genetic Soil Classification of China (GSCC) [30]. The predominant soil types are 
Alfisols, Semi-Alfisols, and Semi-Hydromorphic soils, which occupy approximately 83% of the area 
of this region. Table 1 gives their areal fraction and soil separate compositions of the three main soil 
types. 

Figure 1. (a) The agricultural regions, Chinese Automatic Soil Moisture Observation Stations
(CASMOS), the weather stations, and the footprints of Fengyun-3C (FY-3C) located in Henan province;
(b) The location of Henan province in China.

Relative to soil moisture, soil type per se is considered to have a small yet significant impact on
the brightness temperatures observed at the satellite footprint scale [9]. Consequently, soil texture is
usually approximated as constant in soil moisture retrieval algorithms. Figure 2 shows the soil types
in Henan at a 1:1,000,000 scale sourced from the Second National Soil Survey of China [29]. It was
classified using the Genetic Soil Classification of China (GSCC) [30]. The predominant soil types are
Alfisols, Semi-Alfisols, and Semi-Hydromorphic soils, which occupy approximately 83% of the area of
this region. Table 1 gives their areal fraction and soil separate compositions of the three main soil types.

Table 1. The main soil types and their soil separates in Henan. Soil particles are grouped according to
their size into what are called soil separates (clay, silt, and sand). The soil diameter limits for clay, silt,
and sand are less than 0.002 mm, 0.002–0.02 mm, and 0.02–2 mm, respectively.

Soil Type (Order) Areal Fraction Clay (%) Silt (%) Sand (%)

Alfisols 23.4% 10.8–19.4 18.5–32.6 34.0–60.2
Semi-Alfisols 18.0% 16.7–25.3 25.4–36.6 37.2–65.6

Semi-Hydromorphic soils 41.6% 25–35.4 20.0–37.6 35.4–54.0
Others 17.0% - - -
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Figure 2. The soil types map in Henan. There are eight orders, 23 great groups, and 59 sub-great
groups. Herein, only the three main orders in Henan are explicitly displayed.

2.2. FY-3C L2 Soil Moisture Product

The MWRI aboard the FY-3C observes the Earth’s surface on 10 channels ranging from 10.7 GHz
to 89.0 GHz. The band information for the MWRI aboard FY-3C is listed in Table 2. The FY-3 L2 soil
moisture products are described in volumetric water content in m3/m3, which are retrieved from the
brightness temperatures collected by the MWRI using the radiative transfer model [13]. The FY-3C L2
soil moisture products are available from May 2014 to present (2019). They include three products with
different time scales: daily, 10-day average, and monthly average, each of which separately consists
of two subsets: one from the ascending orbits (10:00 p.m. local time) and the other from descending
orbits (10:00 a.m. local time). In this study, the daily product, combining both the ascending and
descending datasets, was used. If the two datasets overlapped, their averaged value was used. All the
L2 soil moisture products are posted on a 25-km Equal-Area Scalable Earth-1 (EASE1) grid [31], and
the footprints of the products in our study region are plotted in Figure 1a. According to the documents
of the products, FY-3C L2 SM products provide the amount of soil moisture of the top 5-cm layer, with
the desired estimation accuracy of 0.06 m3/m3 [13].

Table 2. Introduction to the microwave radiation imager channels.

Frequency (GHz) Polarization Bandwidth (MHz) Sensitivity (K) IFOV km × km Pixel Size km × km

10.65 V/H 180 0.5 51 × 85 40 × 11.2
18.70 V/H 200 0.5 30 × 50 40 × 11.2
23.80 V/H 400 0.8 27 × 45 20 × 11.2
36.50 V/H 900 0.5 18 × 30 20 × 11.2
89.00 V/H 4600 1.0 9 × 15 10 × 11.2

Note: V, vertical polarization; H, horizontal polarization; IFOV, instantaneous field of view.

The current FY-3C SM retrieval algorithm is a radiative transfer-based model that links
soil moisture, land surface temperature, and vegetation optical depth to brightness temperature
observations (Tb) observed by the MWRI [32]. The parameters in the algorithm are summarized in
Table 3. First, the algorithm assumes that soil temperature (Ts) and vegetation canopy temperature
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(Tc) are equal and estimates the surface temperature based on a linear relationship between vertical
polarization Tb at 36.5 GHz. Then, the algorithm connects the emissivity with the surface roughness
using a parameterized bare surface emission model (the Qp model), which takes into account the
effects of the surface roughness on the emission signals through the roughness variable Qp at different
polarizations p [25]. The Qp can be simply described as a function of the ratio of the surface
root-mean-square height and the correlation length. Next, the algorithm uses the empirical relationship
between the Normalized Difference Vegetation Index (NDVI), vegetation water content (VWC, Wc),
and vegetation optical depth (τ) to estimate τ [4]. The NDVI is a 10-day composite product calculated
from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High-Resolution
Radiometer (AVHRR). The algorithm uses the brightness temperature with both vertical and horizontal
polarizations of 10.65 GHz to eliminate the effects of surface roughness and vegetation simultaneously.
At last, the dielectric mixing model proposed by Wang and Schmugge [33] is used in the algorithm
to convert the mixed dielectric constant to a soil moisture value. The ancillary data used during the
retrieval process include global land surface classification data and soil texture data.

Table 3. Summary of the FY-3C soil moisture retrieval algorithm.

Parameters FY3C MWRI SM Retrieval Algorithm

Soil and vegetation canopy physical temperatures Ts = Tc, linearly related with Tb (36.5 GHz)
Surface roughness log

[
Qp(f)

]
= ap(f) + bp(f)· log(s/l) + cp(f)·(s/l)

Vegetation

τ = b·Wc/cos θ
Wc = 5.0·NDVI2 (NDVI > 0.5)
Wc = 2.5·NDVI (NDVI ≤ 0.5)

b = 0.28–0.33, depending on the land type
ω = 0

Dielectric mixing model Wang and Schmugge [33]

Note: Ts, soil surface temperature; Tc, vegetation canopy temperature; Qp, roughness parameters; the parameters
ap(f), bp(f), and cp(f) depending on the frequency f and polarization p for the given microwave radiation imager
(MWRI) incidence angle; s, root-mean-square height; l, correlation length; τ, vegetation optical depth; Wc, vegetation
water content; b, vegetation parameter; andω, single scattering albedo. NDVI, Normalized Difference Vegetation
Index; SM, soil moisture.

2.3. AMSR2 and SMAP Soil Moisture Products

The AMSR2 level 3 (L3) daily soil moisture products collected during ascending and descending
overpasses at 25-km resolution were used for evaluation. The data are available from August 2012 to
present (2019). AMSR2 onboard the Global Change Observation Mission 1-Water (GCOM-W1) satellite
was launched by the Japan Aerospace Exploration Agency (JAXA) in May 2012 [10]. The available soil
moisture products derived from both the ascending (1:30 p.m. local time) and descending (01:30 a.m.
local time) overpasses were provided by the JAXA Earth Observation Research Center (EORC). The soil
moisture products are produced on daily and monthly time scales, and the spatial resolution is 0.1
degree (10 km) and 0.25 degree (25 km). These data are available for any registered user from JAXA
(https://gcom-w1.jaxa.jp/). A radiative transfer-based model was used to produce the AMSR2 soil
moisture product. Full details about the retrieval algorithm can be found in Fujii, et al. [34]. The soil
moisture product from the nighttime (descending) overpass is generally expected to be more accurate
than that from the daytime (ascending) overpass [2,3,35].

To match the spatial resolution of FY-3C and AMSR2 SM products, the daily SMAP passive level
3 product (version 5) with a spatial resolution of 36 km, generated on EASE-Grid 2.0, was chosen for
evaluation in this study. The SMAP satellite was launched by the National Aeronautics and Space
Administration (NASA) in January 2015 [7]. An L-band radar and an L-band radiometer were carried
aboard the satellite. The local equatorial overpass time of the SMAP satellite is 6:00 p.m. and 6:00 a.m.
for ascending and descending, respectively. SMAP measurements can provide direct sensing of soil
moisture in the top 5 cm of the soil column with an accuracy of 0.04 m3/m3, which covers the globe
every 2–3 days [36]. SMAP provides four different kinds of remotely sensed soil moisture products:
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the passive, the active, the active-passive, and the enhanced passive soil moisture product, in which
the SMAP passive soil moisture product that is available from 31 March 2015 to the present was
used for evaluation. These SMAP products are freely available from the National Snow and Ice Data
Center (NSIDC) (https://nsidc.org/data/smap/smap-data.html). The V-pol single channel algorithm
(SCA-V) is the current baseline retrieval algorithm of the SMAP passive soil moisture product [28,37].
Refer to O’Neill, et al. [38] for more details about the SCA-V algorithm.

2.4. In Situ Soil Moisture Measurements

To improve the ability of drought monitoring and early disaster warning for the agricultural
regions in China, since 2009, an extensive national soil moisture collecting network, CASMOS, has
been developed by the Chinese Meteorological Administration (CMA) [39]. After several years of
construction, more than 2000 observation stations have been set up in the agricultural areas of the
country. Most of the observations contain eight measurement depths: 0–10, 10–20, 20–30, 30–40,
40–50, 50–60, 70–80, and 90–100 cm. The elements observed include soil volumetric water content,
relative soil humidity, soil weight water content, and soil available water storage. Three types of
observation instruments, DNZ1, DNZ2, and DNZ3, are separately produced by Shanghai Changwang
Meteorological Science and Technology Corporation (Shanghai, China), Henan Meteorological Science
Research Institute and the 27th Institute of China National Electric Power Corporation (Zhengzhou,
China), and China Huayun Technology Development Corporation (Beijing, China) [40]. The operating
principle of these three types of instruments is based on the frequency reflection method. DNZ1, which
was set up in Henan, uses the standing wave method, whereas DNZ2 and DNZ3 use the capacitance
method [41].

There are 158 monitoring stations in Henan province in total, in which the soil moisture
measurements of 113 monitoring stations were picked out to validate the satellite soil moisture
products in this paper. As displayed in Figure 1a, the observation stations cover more than 120 counties
in the region and form an effective soil moisture monitoring network for the agricultural area [42].
The Meteorological Observation Centre of the CMA is responsible for data archiving and distribution.
The CMA records the measurements every hour, and then the daily averaged values are produced
from these data. For comparison with the depth of FY-3C soil moisture, we only used the soil moisture
data from the 0–10-cm layer.

2.5. MODIS NDVI and Precipitation Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation
Index (NDVI), produced on 16-day intervals and at several spatial resolutions, enables consistent
spatial and temporal comparisons of vegetation canopy greenness, which is a composite property of
leaf area, chlorophyll, and canopy structure [43]. In this study, we used the MODIS NDVI product
consisting of MYD13Q1 from the Aqua satellite and MOD13Q1 from the Terra satellite, both of which
were retrieved from daily, atmosphere-corrected, and bidirectional surface reflectance with a spatial
resolution of 250 m [44,45]. As the MODIS sensors aboard these two satellites are identical, the NDVI
algorithm generates each 16-day composite 8 days apart, which permits a higher temporal resolution
product by combining both products.

Figure 3 displays how the averaged NDVI and VWC of all the 113 CASMOS stations varied
during a one-year period. We used a robust relationship (Equations (1) and (2)) between NDVI and
VWC, proposed by Gao, et al. [46], to estimate the VWC in our study area. As shown in the figure,
higher NDVI and VWC values corresponded with the crop growing periods with larger biomass; for
winter wheat, these months were April and May, whereas, for summer maize, these months were July,
August, and September.

VWC = 0.078·e3.510·NDVI, for wheat (1)

VWC = 0.098·e4.225·NDVI, for corn (2)

https://nsidc.org/data/smap/smap-data.html
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late September, respectively.

Precipitation events are the most critical factors determining the surface soil moisture, and
precipitation data can assist in validating the soil products derived from satellites [47]. We extracted
the precipitation data from the China National Surface Weather Station Normalized Precipitation
Dataset Version 3.0, which is archived by the Chinese Meteorological Data Service Centre (CMDSC,
http://data.cma.cn). As shown in Figure 1a, in Henan province, there are 119 national weather
collecting stations. In the dataset, the rainfall data are provided in mm/hour and daily averaged
rainfall was further obtained based on the original data.

3. Methodology

As introduced above, many previous studies have evaluated different satellite-based soil moisture
products using in situ soil moisture measurements [2,3,5,17,21]. In this paper, with the assistance
of in situ soil moisture data from CASMOS and other auxiliary datasets, including rainfall and
NDVI, we assessed the performance of the FY-3C L2 SM product in the agricultural regions of
Henan province and analyzed factors that influence the results. At the same time, to compare with
the skill of the FY-3C SM product, we also evaluated the performance of the AMSR2 and SMAP
SM products. We employed four statistics to verify the effectiveness of the FY-3C, AMSR2, and
SMAP products: the mean difference (MD), the root-mean-square error (RMSE), the unbiased RMSE
(ubRMSE), and the correlation coefficient (R).

3.1. Study Framework and Data Integration

Figure 4 summarizes the workflows of this analytical framework. As shown in the figure, aside
from the soil moisture data from the FY-3C MWRI, the five datasets introduced in Section 2—soil
moisture products from AMSR2 and SMAP, in situ soil moisture measurements from CASMOS, rainfall
from weather stations, and NDVI from MODIS—were integrated into the framework as well. However,
these six datasets were different in both their spatial and temporal scales and in their sensing depths
as well. For example, the soil moisture data from CASMOS and rainfall data were point measurements
and daily averaged data were available nearly every day during the evaluation period. For the satellite
soil moisture products of FY-3C, AMSR2, and SMAP, their spatial resolutions were 25 km, 25 km, and
36 km, respectively, with a similar temporal interval of 2–3 days. The resolution of MODIS NDVI was

http://data.cma.cn
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250 m, and the temporal range was 8 days. Thus, the manner in which these datasets were integrated
was crucial for the soil moisture products evaluation and later analysis.
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Figure 4. Work flowchart of this study. CASMOS represents the Chinese Automatic Soil Moisture
Observation Stations deployed in the study area; Fengyun-3C (FY-3C), Advanced Microwave Scanning
Radiometer 2 (AMSR2), and Soil Moisture Active/Passive (SMAP) represent the corresponding soil
moisture products derived from the satellites; and VSM indicates the volumetric soil moisture with the
unit in m3/m3.

When integrating the datasets, only those footprints that contained monitoring stations were
used for evaluation. We generally extracted other datasets on the spatial scale based on the footprints
of the FY-3C L2 soil moisture product (Figure 1a). In-situ data, including the soil moisture and
the rainfall measurements, which lay within an FY-3C soil moisture footprint, were considered the
corresponding ground truth for the region. If there was more than one station within a footprint, the
averaged values were used. The AMSR2 and SMAP soil moisture products were resampled to the
same grid size of FY-3C. When extracting the NDVI data to match the resolution of the FY-3C soil
moisture product, all of the NDVI values within a footprint were averaged. Notably, some of the
CASMOS were located in cities. These stations cannot correctly reflect the soil moisture information
of the surrounding agricultural areas, and the satellite inversion results are profoundly affected by
the buildings. Therefore, the 45 observation stations located in cities were excluded. Temporally, only
the dates when half of our study region had FY-3C soil moisture observation data were used in our
evaluation and analysis. To temporally agree with the FY-3C data, in situ soil moisture and rainfall
data of these dates were extracted, and the NDVI data were interpolated to the dates.

3.2. Four Statistical Indicators

The MD represents the bias, which is the systematic difference between the satellite soil
moisture retrievals and in situ soil moisture measurements. The MD can be obtained using the
following equation:

MD =
∑N

i=1
(
mvsat

i − mvis
i
)

N
. (3)

The RMSE represents the absolute difference or accuracy of the soil moisture retrievals relative to
in situ soil moisture measurements, which can be calculated as:

RMSE =

√
∑N

i=1
(
mvsat

i − mvis
i
) 2

N
(4)
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where mvsta
i represents the satellite soil moisture retrieval (m3/m3), mvis

i is the in situ soil moisture
measurement (m3/m3), N represents the total number of samples, and i represents a specific sample.
For temporal analysis, N varied for each grid cell and only dates that had valid data from both datasets
were used for calculation. For spatial analysis, N varied for each date and only stations that had valid
data from both datasets were used for calculation.

To better evaluate the estimation of the absolute difference of the satellite soil moisture
products, we adopted the ubRMSE, which removes the bias of RMSE that characterizes random
error. The ubRMSE is calculated using the following equation [48]:

ubRMSE =
√

RMSE2 − MD2. (5)

The correlation coefficient R indicates the relative accuracy between the satellite soil moisture
data and in situ soil moisture measurements. The R between the satellite soil moisture data and in situ
soil moisture can be expressed as the following formula:

R =
∑N

i=1
(
mvsat

i − mvsat)(mvis
i − mvis

)
(N − 1)σstaσis (6)

where mvsat is the satellite soil moisture average (m3/m3) during the whole evaluation period within
one grid for temporal analysis, or of the valid stations in 1 day for spatial analysis; mvis indicates the
average of in situ soil moisture measurements (m3/m3); and σsat and σis are the standard deviation of
satellite and in situ soil moisture (m3/m3), respectively.

4. Results

In this section, the statistical accuracy indicators of FY-3C, AMSR2, and SMAP SM retrievals are
presented for both temporal and spatial scales. During the comparison, the in situ SM measurements
from CASMOS were treated as the ground truth for all of the satellite SM products. The nighttime
microwave satellite data were generally expected to produce more accurate soil moisture estimates than
the daytime data. However, many previous studies proved that there were no significant differences
between the soil moisture from daytime and nighttime overpasses [2,49]. Thus, we just ignored the
daily discrepancies in this study. In Section 4.1, we examine the temporal performance of the FY-3C L2,
AMSR2, and SMAP L3 products during the one-year period for each footprint in our study region;
in Section 4.2, we evaluate the spatial performance of the footprints available for each date during
the year.

4.1. Temporal Performance for Different Footprints

To understand the temporal agreement and consistency between the satellite soil moisture
retrievals and in-situ measurements of different footprints, the four accuracy indicators for each
valid footprint in our study area were computed separately. For example, we took the footprint that
covered station O2342. As shown in Figure 5, the daily average soil moisture from FY-3C, AMSR2, and
SMAP, as well as the monitoring station, were plotted in time over the entire assessment period. The
three satellite datasets generally display different temporal variation patterns, during which the SMAP
product shows the best accordance with that of ground observations. The four statistical indicators
were calculated using the dates when the two compared datasets were both available. The error
metrics of FY-3C, AMSR2, and SMAP for this footprint are summarized in Table 4. Note that the MD
indicators were calculated by subtracting the in situ SM measurements from the satellite SM retrievals.
A positive bias value indicates that the satellite soil moisture retrieval is larger (wetter) than the in-situ
observation, whereas a negative value means that the satellite SM retrieval is lower (drier) than the
in-situ observation.
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were used to estimate the statistical parameters. For each station, only the dates when the compared 
datasets both have observations were used. Figure 6 and Table 5 summarize the four statistical 
indicators for all the stations regardless of their location. Overall, the FY-3C soil moisture retrievals 
were drier than the in-situ measurements, with an average bias of −0.03 m3/m3. AMSR2 and SMAP 
show a drier bias than FY-3C, with an average value of −0.15 m3/m3 and −0.09 m3/m3, respectively. 
The dry bias may be relevant to the inconsistency of the sensing depths between the satellite and the 
ground measurements. The FY-3C L2 SM product shows a similar poor performance to the AMSR2 
L3 product, with an average RMSE and ubRMSE value of 0.11 m3/m3 and 0.09 m3/m3, respectively, 
and an average R of 0.09. The SMAP L3 SM product demonstrates better performance, with an 
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Figure 5. Temporal variations in the soil moisture data from the CASMOS stations and the FY-3C,
AMSR2, and SMAP satellite products, and the rainfall data around the O2342 station during 2016.
The gray line is the soil moisture (SM) daily mean from the CASMOS. The magenta, green, and cyan
lines respectively represent the SM daily mean of the FY-3C, AMSR2, and SMAP products, and the
blue histogram represents the daily precipitation.

Table 4. Statistical parameters for FY-3C, AMSR2, and SMAP against the CASMOS measurements of
the O2342 station during 2016. Only the dates when the compared datasets both have observations
were used.

Products MD (m3/m3) RMSE (m3/m3) ubRMSE (m3/m3) R

AMSR2 −0.15 0.17 0.07 0.27
FY-3C −0.02 0.12 0.11 0.21
SMAP −0.12 0.13 0.05 0.63

MD, mean difference; RMSE, root-mean-square error; ubRMSE, unbiased RMSE; R, correlation coefficient.

Using the abovementioned method, we then separately calculated the statistical indicators of the
three satellite SM datasets against ground measurements for all the footprints. In total, 113 stations
were used to estimate the statistical parameters. For each station, only the dates when the compared
datasets both have observations were used. Figure 6 and Table 5 summarize the four statistical
indicators for all the stations regardless of their location. Overall, the FY-3C soil moisture retrievals
were drier than the in-situ measurements, with an average bias of −0.03 m3/m3. AMSR2 and SMAP
show a drier bias than FY-3C, with an average value of −0.15 m3/m3 and −0.09 m3/m3, respectively.
The dry bias may be relevant to the inconsistency of the sensing depths between the satellite and the
ground measurements. The FY-3C L2 SM product shows a similar poor performance to the AMSR2 L3
product, with an average RMSE and ubRMSE value of 0.11 m3/m3 and 0.09 m3/m3, respectively, and
an average R of 0.09. The SMAP L3 SM product demonstrates better performance, with an average
RMSE and ubRMSE value of 0.12 m3/m3 and 0.06 m3/m3, respectively, and an average R of 0.49.
SMAP can capture the temporal variations of near-surface soil moisture better than FY-3C and AMSR2.
This result is consistent with our general expectation that the L-band microwave has a deeper sensing
depth (approximately 5 cm) and is less susceptible to the influences of vegetation compared to higher
frequencies, such as the C- and X-bands.
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Figure 6. The temporal statistical indices between the satellite soil moisture datasets from FY-3C,
AMSR2, and SMAP and the in-situ stations: (a) Mean difference (MD), (b) root-mean-square error
(RMSE), (c) unbiased RMSE (ubRMSE), and (d) correlation coefficient (R). The median, the 1st quantile
Q1, and the 3rd quantile Q3 are indicated by the box, the whiskers represent Q1 − 1.5 (Q3 − Q1) and
Q3 + 1.5 (Q3 − Q1) values, and the points represent the outliers.

Table 5. The average statistical parameters for FY-3C, AMSR2, and SMAP against the CASMOS
measurements of all of the footprints. One hundred and thirteen (113) stations were used for statistics.

Products MD (m3/m3) RMSE (m3/m3) ubRMSE (m3/m3) R

AMSR2 −0.15 0.17 0.09 0.14
FY-3C −0.03 0.11 0.09 0.09
SMAP −0.09 0.12 0.06 0.49

The above statistical parameters also indicate that the temporal consistency was different between
different footprints even for the same satellite soil moisture product. To further illustrate how
their consistency varied spatially, the statistical indicators of the FY-3C, AMSR2, and SMAP SM
products were interpolated to the extent of our study area with a spatial resolution of 0.25◦ (Figure 7).
The interpolations were carried out in ArcGIS software (Esri, NewYork, NY, USA) using the inverse
distance weighted (IDW) method. In total, the footprints covering the 113 CASMOS stations (Figure 7)
were used for the spatial interpolations.
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4.2. Spatial Performance At Different Times 

As shown in Figure 3, the NDVI and VWC variations in one year were dominated by the wheat–
corn cropping system in our study region. In this section, we continued to evaluate how the skill of 
the FY-3C, AMSR2, and SMAP soil moisture products vary with the NDVI and VWC variation at 
different times of the year. As shown in Figure 8, four dates (15 March 2016, 16 May 2016, 27 August 
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Figure 7. The spatial distribution difference between the FY-3C, AMSR2, and SMAP retrievals against
in-situ measurements for the period of 1 January 2016 to 31 December 2016: (a) FY-3C, (b) AMSR2, and
(c) SMAP. The black thumbtacks represent the 113 CASMOS stations used for the spatial interpolation.
The interpolations were performed using the inverse distance weighted (IDW) method in ArcGIS, with
the outsize as 0.25, the power as 1, and the search radius as 4 points.

As Figure 7 shows, for most grid cells of FY-3C, their biases were negative (see green and yellow
colors in Figure 7a1), approximately ranging from –0.1 to –0.03 m3/m3. In terms of RMSE and ubRMSE,
they shared a similar distribution pattern, in which most grid cell high values were located in the
eastern part of Henan (Figure 7a2,a3), suggesting that the FY-3C SM retrievals were more consistent
with in-situ measurements in the western part than in the eastern agricultural regions in Henan
(Figure 1a). Similarly, the grid cells with higher correlation coefficients (red color in Figure 7a4)
were located in western Henan. However, there were some exceptional regions. For example, in the
southeast part of Henan a positive bias, larger RMSE and ubRMSE, as well as higher correlation were
recorded. For the AMSR2 product, the MD, RMSE, and ubRMSE (Figure 7b1–b3) generally showed
parallel distribution patterns like FY-3C, except that their values varied to an extent. The AMSR2 soil
moisture product underestimated soil moisture for nearly all the grids, with a dry bias of −0.05 to
−0.25 m3/m3, which was generally in accordance with the previous studies that the JAXA algorithm
usually underestimates ground measurements [28,50,51]. The R of AMSR2 (Figure 7b4) indicated that
it is more consistent with the in-situ measurements temporally in the northeast of Henan. The MD and
RMSE of SMAP (Figure 7c1,c2) also showed similar patterns to those of FY-3C and AMSR2. We can see
that the SMAP product outperformed the FY-3C product and the AMSR2 product in most of the study
region, with a relatively smaller ubRMSE and higher correlation coefficients (Figure 7c3,c4).

4.2. Spatial Performance At Different Times

As shown in Figure 3, the NDVI and VWC variations in one year were dominated by the
wheat–corn cropping system in our study region. In this section, we continued to evaluate how the
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skill of the FY-3C, AMSR2, and SMAP soil moisture products vary with the NDVI and VWC variation
at different times of the year. As shown in Figure 8, four dates (15 March 2016, 16 May 2016, 27 August
2016, and 27 October 2016) were first picked to display the typical performance of the satellite SM
retrievals against in situ SM measurements (CASMOS) in different seasons. The figure indicated that
the temporal variation was a key factor influencing the retrievals of the satellite SM products.Water 2019, 11, 248 14 of 23 
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measurements (CASMOS) on four different dates in 2016. The lines indicate the varying trend of
the points.

We then calculated the statistical parameters of the three satellite products against in situ SM
measurements of all the valid dates (if the satellite data cover half of the CASMOS stations within a
day, we defined the day as a valid date) during the year. The number of valid days for FY3C, AMSR2,
and SMAP was 233, 366, and 295, respectively. Figure 9 and Table 6 summarize the four indicators
for all available dates, from which we can see that the consistency of the three satellite products was
generally poor. For FY-3C, the average values of MD, RMSE, ubRMSE, and R were –0.06 m3/m3, 0.12
m3/m3, 0.07 m3/m3, and 0.22, respectively. However, compared with the temporal performance of the
different footprints (Figure 6), the FY-3C SM L2 product showed better consistency with the CASMOS
measurements on the spatial scale (Figure 9). For example, the average ubRMSE dropped from 0.09
to 0.07 m3/m3, and the average correlation coefficient R rose from 0.09 to 0.22. The AMSR2 product
showed a much drier bias than FY-3C, which led to a large RMSE; however, like FY-3C, the spatial
performance of AMSR2 was generally better than its temporal performance, with the average ubRMSE
dropping from 0.09 to 0.07 m3/m3, and the average correlation coefficient R rising from 0.14 to 0.18.
The SMAP product demonstrated a similar level of spatial performance as that of FY-3C and AMSR2,
which is much worse than its temporal performance.

Table 6. The spatial statistical indices for FY-3C, AMSR2, and SMAP against the in-situ measurements.

Products MD (m3/m3) RMSE (m3/m3) ubRMSE (m3/m3) R

AMSR2 −0.16 0.18 0.07 0.18
FY-3C −0.06 0.12 0.07 0.22
SMAP −0.10 0.13 0.08 0.16
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Figure 9. The spatial statistical indices of the FY-3C, AMSR2, and SMAP soil moisture datasets against
the in-situ measurements for all of the valid dates during the year: (a) MD, (b) RMSE, (c) ubRMSE,
and (d) R. The number of valid days of FY3C, AMSR2, and SMAP used for statistics was 233, 366, and
295, respectively.

Next, a more specific analysis was conducted to examine the temporal evolution of the statistical
parameters between the compared datasets (Figure 10 and Table 7). As shown in the figure, the varying
patterns of the four indicators were generally different. For FY-3C, the MD showed a double-peak
trend with peaks around May and August, which is consistent with the wheat–corn cropping system
in Henan. Except for the peaks, basically on all dates, FY-3C SM retrievals showed a negative bias
compared to the in-situ measurements, which was further indicated by the monthly mean bias data in
Table 7. The AMSR2 also had the smallest bias in May, August, and September, but the SMAP did not
display any apparent trend in its bias. The high RMSE and ubRMSE and the low correlations between
the FY-3C retrievals and in-situ measurements throughout the year indicated their inconsistency
nearly all the time. However, we still can capture the influences of the cropping system on these
statistical parameters. For example, around May, August, and September when the ground vegetation
reached their maximum, FY-3C had a relatively large RMSE and ubRMSE, and a small R. We can also
find that the AMSR2 statistical parameters shared a parallel trend with FY-3C in Table 7. The FY-3C
and AMSR2 (JAXA algorithm) soil moisture products were all retrieved using the X-band brightness
temperature [52], which may partly explain their similar performance. The SMAP statistical parameters
did not show a similar seasonal variation like FY-3C and AMSR2.
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Table 7. Monthly averaged statistics for FY-3C, AMSR2, and SMAP in 2016. Mean difference (MD),
root-mean-square error (RMSE), and unbiased RMSE (ubRMSE) are in m3/m3.

Indicators Products Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

MD
AMSR2 −0.17 −0.18 −0.17 −0.15 −0.13 −0.18 −0.14 −0.09 −0.09 −0.17 −0.21 −0.20
FY3C −0.12 −0.12 −0.09 −0.02 −0.01 −0.11 −0.05 0.11 0.05 −0.08 −0.12 −0.12
SMAP −0.16 −0.14 −0.13 −0.11 −0.08 −0.10 −0.08 −0.09 −0.06 −0.08 −0.10 −0.11

RMSE
AMSR2 0.19 0.19 0.18 0.17 0.15 0.20 0.17 0.16 0.13 0.18 0.21 0.21
FY3C 0.13 0.13 0.11 0.08 0.09 0.14 0.10 0.14 0.09 0.10 0.13 0.13
SMAP 0.18 0.16 0.15 0.14 0.13 0.14 0.13 0.13 0.10 0.10 0.12 0.13

ubRMSE
AMSR2 0.07 0.06 0.07 0.08 0.08 0.08 0.09 0.10 0.08 0.07 0.06 0.06
FY3C 0.05 0.06 0.06 0.07 0.08 0.08 0.08 0.09 0.07 0.07 0.06 0.06
SMAP 0.08 0.07 0.08 0.09 0.10 0.09 0.09 0.09 0.08 0.07 0.07 0.07

R
AMSR2 0.23 0.19 0.18 0.24 0.15 0.11 0.09 -0.06 0.07 0.30 0.30 0.31
FY3C 0.26 0.24 0.30 0.34 0.17 0.11 0.20 0.14 0.17 0.30 0.21 0.18
SMAP 0.07 0.10 0.06 0.17 0.14 0.14 0.23 0.03 0.01 0.32 0.35 0.31

5. Discussion

In this study, we investigated the estimated error of the remotely sensed SM products from FY-3C,
along with AMSR2 and SMAP against in situ soil moisture measurements from the CASMOS on both
temporal and spatial scales. The statistical indicators generally revealed that the FY-3C L2 SM product
showed a poor consistency with the in situ SM data from CASMOS. The AMSR2 L3 SM product of
JAXA algorithm exhibited a similar level of performance as FY-3C in our study region. The SMAP L3
SM product outperformed FY-3C and AMSR2 temporally, but showed lower performance in capturing
the SM spatial variation. Apart from examining the accuracy of the three remotely sensed soil moisture
products, we also investigated the potential factors that might influence the performance of the soil
moisture products.



Water 2019, 11, 248 17 of 23

First, as conventionally performed in previous studies [2–4,16], during our analysis, the in situ
soil moisture measurements from point stations were used as ground truth to evaluate the satellite soil
moisture retrievals. However, with point-scale validation data, there may be several limitations during
comparisons with more considerable footprint-scale satellite data. The monitoring stations supply soil
moisture measurements at point locations, whereas the microwave sensors aboard satellites measure
the average soil moisture within one satellite footprint. Due to the coarse resolution of the satellite
products (25 km for FY-3C and AMSR2, 36 km for SMAP) and the spatial heterogeneity of the surface
soil moisture, we can hardly use point-based in-situ measurements to correctly represent the spatially
averaged soil moisture within a large satellite footprint [53]. Second, the sensing depth mismatch
between in situ soil moisture and satellite observations may also contribute lots of uncertainties to the
assessment results. Commonly, the effective soil moisture sensing depths at the L- and C/X-bands are
0–5 cm and 0–1 cm, respectively, which also depend on soil moisture [28,51]. The in situ soil moisture
used in our evaluation was sourced from the station sensors deployed at a depth of 10 cm below the
soil surface. FY-3C and AMSR2 utilized the X-band-observed brightness temperatures, while SMAP
employed the L-band observations to retrieve their soil moisture products, which implies that the
retrievals may not dependably represent the soil moisture in much deeper layers than the sensing
depth. Third, other factors, such as the possible errors in ground measurements, vegetation coverage,
precipitation, and climate characteristics, also influence the evaluation results, and their temporal and
dynamic variation would lead to different levels of performance in the spatiotemporal analysis [2].
Considering the above, we could not expect the FY-3C retrievals, as well as the other two comparison
soil moisture products from AMSR2 and SMAP, to exactly match the in-situ measurements from the
CASMOS monitoring stations even under ideal conditions [3].

Additionally, the limited parameterizations of the microwave radiative transfer model and the
inaccurate correction of the perturbing factors (e.g., surface temperature, vegetation, and surface
roughness) in the soil moisture retrieval model are generally thought to be the leading cause of the
inconsistency [54]. Among the factors, vegetation was one of the most significant influencing the
soil moisture retrieval accuracy. In vegetated regions, the vegetation canopy attenuates signals from
soil surfaces, with this effect increasing at higher frequencies, leading to a reduced sensitivity of the
brightness temperatures to soil moisture. Accordingly, the accurate correction of the influence of
vegetation is crucial for retrieving reliable soil moisture estimations. The effects of vegetation are
commonly represented by the vegetation optical depth. In the current FY-3C soil moisture algorithm,
the VWC is used as a proxy to calculate the vegetation optical depth (Table 3). To obtain the estimated
VWC at a global scale, the VWC is empirically evaluated (refer to Table 3) by using a global, 10-year
averaged AVHRR NDVI in the soil moisture retrieval algorithm, but their vegetation-related products
are not currently released to the public. As a result, we cannot examine the temporal variations of the
vegetation optical depth used in the FY-3C soil moisture algorithm, and further investigate how it
impacts on the soil moisture retrievals.

In previous works, the effects of vegetation water content (VWC) on microwave radiative
transfer and the soil moisture retrieval skill have been intensively investigated. Many studies have
shown that C- and X-band observations can only be used over regions where vegetation is not too
dense, and L-band radiometry is capable of retrieving soil moisture over relatively dense canopies
(up to 3–5 kg/m2) [55]. For instance, Calvet, et al. [56] indicated that a statistical soil moisture
retrieval algorithm using C- and X-bands did not perform well with approximately 0–3 kg/m2 VWC.
Sawada, et al. [57] conducted in-situ observations of microwave brightness temperature, VWC, and
soil moisture and revealed that there are few correlations between microwave signal and surface soil
moisture when the VWC is larger than 0.3 kg/m2.

As the soil moisture products of FY-3C and AMSR2 were derived from the X-band observations,
the increase in uncertainty in these two soil moisture products with increasing vegetation was
theoretically expected and was confirmed by our following analysis (Figures 11 and 12, and Table 8).
Figure 11 indicated how VWC influences the soil moisture retrievals of the three satellites. The VWC
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was estimated from the MODIS NDVI using the relationship (Equations (1) and (2)) proposed by
Gao, et al. [46]. We used 0.3 kg/m2 as a threshold value to divide the ground VWC conditions.
As shown in the figure, for FY-3C and AMSR2, nearly all of the soil moisture with high values
were retrieved under a high vegetation condition (VWC > 0.3 kg/m2). However, for the soil moisture
of SMAP, which was derived using the L-band observations, there were no apparent differences
between the two different vegetation conditions. We further compared the temporal performance
of the soil moisture products under the two different vegetation conditions. From Figure 12, we
can see that under the low vegetation condition (VWC > 0.3 kg/m2), the soil products generally
showed better consistency with in-situ measurements with lower RMSE and ubRMSE and higher
correlations. It is apparent to see the improvements for the FY-3C and AMSR2 products; e.g., when
VWC < 0.3 kg/m2, the ubRMSE of FY-3C dropped to 0.05 m3/m3 from 0.1 m3/m3, and the R rose
to 0.29 from 0.14. It should be noted that the performance of the SMAP soil moisture product also
exhibited some improvements under the lower vegetation condition, with the ubRMSE dropping
from 0.06 m3/m3 to 0.05 m3/m3 and the R rising from 0.45 to 0.53. These results were also consistent
with the consensus that the L-band is more sensitive to the surface soil moisture, especially in densely
vegetated regions [2,37,56,57].
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Figure 11. Comparison of the estimated soil moistures from FY-3C, AMSR2, and SMAP against in-situ
measurements under different vegetation water content (VWC, Wc) conditions. VWC was determined
using Equations (1) and (2).

Table 8. The statistical indicators for FY-3C, AMSR2, and SMAP soil moisture retrievals under the two
contrasting vegetation water content (VWC, Wc) conditions.

Products
VWC<0.3 kg/m2 VWC>0.3 kg/m2

MD
(m3/m3)

RMSE
(m3/m3)

ubRMSE
(m3/m3) R MD

(m3/m3)
RMSE

(m3/m3)
ubRMSE
(m3/m3) R

AMSR2 −0.17 0.18 0.05 0.26 −0.14 0.16 0.10 0.18
FY-3C −0.08 0.11 0.05 0.29 −0.01 0.11 0.10 0.14
SMAP −0.09 0.11 0.05 0.53 −0.09 0.12 0.06 0.45
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The assessment results (Figure 10 and Table 7) also revealed that the spatial performance at 
different times for the FY-3C soil moisture products exhibited a seasonal variation that was parallel 
to the cropping system in Henan. For example, the statistical parameters showed less dry bias, larger 
RMSE and ubRMSE, and smaller correlation coefficients around May, August, and September when 
the vegetation water content (VWC) of the crops reached their maximum. In Figure 13, we examined 
how the spatial performance of FY-3C, AMSR2, and SMAP varied with the average daily VWC. The 
VWC was empirically estimated from the MODIS NDVI data with Equation 1 and 2. From Figure 
13a, we can see that the mean bias of FY-3C was highly related to the VWC. For AMSR2, the MD 
showed a positive but smaller correlation with the VWC. For SMAP, the MD was nearly unaffected 
by the VWC. These results further indicated that the L-band is less affected by the vegetation and 
more sensitive to the surface soil moisture [2,37,56,57]. Regarding RMSE and ubRMSE (Figure 13b, 
Figure 13c), FY-3C also showed some positive correlation with VWC. Although the RMSE of AMSR2 
decreased with the VWC, the ubRMSE showed a similar positive relationship with the VWC like FY-
3C. As expected, the RMSE and ubRMSE of SMAP showed the smallest correlation with the VWC. 
The correlation coefficients (R) of FY-3C, AMSR2, and SMAP generally showed similar decreasing 

Figure 12. The temporal performance of the soil moisture products from FY-3C, AMSR2, and SMAP
under the two different vegetation water content (VWC, Wc) conditions. VWC was estimated using
Equations (1) and (2). In total, 113 stations were used to assess the statistical parameters. The VWC of
about one-third of the valid dates was lower than 0.3 kg/m2.

The assessment results (Figure 10 and Table 7) also revealed that the spatial performance at
different times for the FY-3C soil moisture products exhibited a seasonal variation that was parallel to
the cropping system in Henan. For example, the statistical parameters showed less dry bias, larger
RMSE and ubRMSE, and smaller correlation coefficients around May, August, and September when the
vegetation water content (VWC) of the crops reached their maximum. In Figure 13, we examined how
the spatial performance of FY-3C, AMSR2, and SMAP varied with the average daily VWC. The VWC
was empirically estimated from the MODIS NDVI data with Equations (1) and (2). From Figure 13a,
we can see that the mean bias of FY-3C was highly related to the VWC. For AMSR2, the MD showed a
positive but smaller correlation with the VWC. For SMAP, the MD was nearly unaffected by the VWC.
These results further indicated that the L-band is less affected by the vegetation and more sensitive to
the surface soil moisture [2,37,56,57]. Regarding RMSE and ubRMSE (Figure 13b,c), FY-3C also showed
some positive correlation with VWC. Although the RMSE of AMSR2 decreased with the VWC, the
ubRMSE showed a similar positive relationship with the VWC like FY-3C. As expected, the RMSE
and ubRMSE of SMAP showed the smallest correlation with the VWC. The correlation coefficients
(R) of FY-3C, AMSR2, and SMAP generally showed similar decreasing trends with increasing VWC.
The above analyses together indicated that the ground vegetation water content has a considerable
influence on the performance of the remotely sensed soil moisture products, especially for the X-band.
That is to say, the impact of vegetation could be captured by using a time-series-based approach to soil
moisture assessment. To improve the performance of the FY-3C soil moisture product, an improved
algorithm that could better characterize the ground vegetation effects should be applied in the future.
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Equations (1) and (2). Only the 46 dates when there existed NDVI data were used.

6. Conclusions

We evaluated the FY-3C Level 2 daily soil moisture product in Henan province in China
using in-situ data from 113 soil moisture monitoring stations deployed by the CMA Meteorological
Observation Centre and contrasted it with the retrieval skill of the soil moisture products of AMSR2
and SMAP. The assessment results revealed that the FY-3C L2 SM product showed a poor consistency
with the in situ SM data from CASMOS. If the in-situ measurements were treated as ground truths, the
absolute accuracy of FY-3C soil moisture retrievals was 0.12 m3/m3 (RMSE), which is much worse than
the desired accuracy of 0.06 m3/m3. Also, the AMSR2 L3 SM product of the JAXA algorithm exhibited
a similar level of performance as FY-3C in our study region. The SMAP L3 SM product outperformed
FY-3C and AMSR2 temporally, but showed lower performance in capturing the SM spatial variation.

The FY-3C L2 SM product tended to overestimate the soil moisture amount when the crop biomass
is large in May, August, and September and underestimates soil moisture during the rest of the year.
This result agrees with our expectation because vegetation water considerably influences passive
microwave soil moisture retrievals in the footprint. In conclusion, the accuracy and reliability of
the FY-3C soil moisture estimates in agricultural areas depend upon the crop types as well as their
growing stages. This issue should be addressed in future studies to improve the accuracy of FY-3C soil
moisture estimates.
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