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Abstract: Most hydrological models have fixed structures and their calibrations are typified by a
conventional approach in which the overall water balance closure is considered (without a step-wise
focus on sub-flows’ variation). Eventually, hydrological modelers are confronted with the difficulty of
ensuring both the observed high flows and low flows are accurately reproduced in a single calibration.
This study introduced Hydrological Model focusing on Sub-flows’ Variation (HMSV). Calibration
of HMSV follows a carefully designed framework comprising sub-flow’s separation, modeling of
sub-flows, and checking validity of hydrological extremes. The introduced model and calibration
framework were tested using hydro-meteorological data from the Blue Nile Basin of Ethiopia in
Africa. When the conventional calibration approach was adopted through automatic optimization
strategy, results from the HMSV were found highly comparable with those of five internationally
well recognized hydrological models (AWBM, IHACRES, SACRAMENTO, SIMHYD, and TANK).
The new framework enhanced the HMSV performance for reproducing quantiles of both high flows
and low flows. The combination of flow separation and step-wise calibration of hydrological model
against sub-flows enhances the modeler’s physical insight in identifying which areas need focus
in modeling to obtain meaningful simulation results, especially of extreme events. The link for
downloading the HMSV is provided.

Keywords: rainfall-runoff model; Blue Nile; baseflow separator; discharge splitting; hydrological
model; hydrological extremes; high flows; low flows; conceptual model

1. Introduction

Several hydrological models exist including those which are fully distributed process-based or
conceptual in nature. Fully distributed models have detailed representation of hydrological processes;
however, they require large amount of input data and are difficult to optimally calibrate due to
their structural complexity and over-parameterization. On the other hand, conceptual models are
simpler in their structures and have fewer parameters than the physically-based models. Examples of
hydrological models include the Australian Water Balance Model (AWBM) [1], Identification of unit
Hydrographs and Component Flows from Rainfall, Evaporation and Stream flow data (IHACRES)
model [2], Sacramento (SAC) model [3], SIMHYD which is the simplified version of HYDROLOG [4],
TANK model [5], Nedbør-Afstrømnings Model (NAM) [6,7], Precipitation Runoff Modeling System
(PRMS) [8], and the Probability Distribution Model [9]. Even using conceptual models, a hydrological
modeler is always confronted with the difficulty of ensuring the model accurately reproduces
observed high and low flows simultaneously in a single calibration. This is because most of the
hydrological models are structurally designed to perform better in capturing flooding events than
drought conditions [10,11]. Furthermore, in a conventional modeling approach, objective function
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used for calibration is constrained to an overall water balance, and this gives more weights to high
flows than low flows [11].

The difficulty in reproducing both high flows and low flows in a single calibration stems from
the fact that available hydrological models have their structures fixed and they tend to be calibrated
against the overall observed flow (not sub-flows). For a model to simultaneously capture both high
flows and low flows in a single calibration, the model should be tailored towards the variation of each
of the sub-flows. In this way, the quick flow can be modeled with respect to high flows while baseflow
is taken to control the variation of low flows. Step-wise calibrations of the model against various
streamflow components enables the modeler to make use of his or her physical insight to identify the
major possible sources of bias (which can be with respect to baseflow, interflow, or overland flow) in
reproducing the observed flow. This gives the modeler a reasonable area where to focus in the model
calibration for more reasonable (and meaningful) modeling results than in the case when the total flow
is considered in a lumped way (without separation of the various components of the flow).

Therefore this study aimed at introducing and testing the suitability of a Hydrological Model
focused on Sub-flows’ Variation (HMSV). The calibration of the HMSV follows a carefully designed
framework which depends on separation of sub-flows, modeling of sub-flows and checking the validity
of hydrological extremes.

2. Materials and Methods

2.1. Separation of Sub-Flows

From the observed discharge Xo of size n, the baseflow Xbf can be separated using the
following steps:

(a) select a time scale t1 which denotes the baseflow filtering constant such that w = 0.5 × (1 + t1)
and w = 0.5 × t1 in the cases when t1 is odd and even, respectively,

(b) if Xo comprises a subset xo from the pth to the uth value of Xo, obtain the filter term b using:

b(j) =
α1

h(j)

u

∑
i=p

xo(j) for j = 1, 2, . . . . , n (1)

where hj is the size of the sub-sample in the jth time slice (i.e., xo from the pth to the uth data
value), α1 denotes the baseflow coefficient, and the terms p and u can be varied for j = 1, 2, ..., n
as follows:

if j < w, p = 1, u = t1 + j − w − 1
if j ≥ w and j ≤ (n − w), p = j − w + 1, u = j + w
if j > (n − w) and j ≤ n, p = j − w + 1, u = n

 (2)

It is vital to note that the application of Equations (1) and (2) is done in a step-wise way. For
instance, if t1 = 10, it means w = 5. Now, we have to vary j from 1 to n, and let us assume that
n = 100. Each time a new j is being considered, the terms p and u of Equation (1) are determined
based on the three conditions given in Equation (2). Using t1 = 10, w = 5, and n = 100, below is an
illustration of how the terms p and u can be determined for every new value of j which is varied
by setting j = 1, 2, ..., 100.

(i) If j = 1, it means j < w and thus, using the first conditional part of Equation (2), p = 1, and
u = 10 + 1 – 5 – 1 = 5. This means that for j = 1, the summation of the flow xo according to
Equation (1) is done from the 1st to the 5th value.

(ii) If j = 15, it means j > w and thus, using the second conditional component of Equation (2),
p = 15 – 5 + 1 = 11, and u = 15 + 5 = 20. This means that for j = 15, the summation of the
flow xo based on Equation (1) is done from the 11th to the 20th value.
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(iii) If j = 96, it means j > (n − w) and j ≤ n; therefore, using the third conditional part of
Equation (2), p = 96 – 5 + 1 = 92, and u = 100. This means that for j = 96, the summation of
the flow xo according to Equation (1) is done from the 92nd to the 100th value.

(c) for j = 1, 2, ..., n, at the time step j, if b(j) < xo(j), xbf (j) = b(j), otherwise, xbf (j) = xo(j), and the quick
flow component (Xqf) of Xo can be given by xqf (j) = xo(j) − xbf (j).

To separate the Xqf into interflow (Xif) and overland flow (Xof), the following steps can be taken:

(a) select the time scale t2 which denotes the interflow filtering constant and let w = 0.5 × (1 + t2)
and w = 0.5 × t2 in the cases when t2 is odd and even, respectively,

(b) compute the interflow component c using:

c(j) =
α2

h(j)

u

∑
i=p

xq f (i) for j = 1, 2, . . . . , n (3)

where α2 denotes the interflow coefficient, h(j) is the sub-sample size in the jth time slice (i.e., Xqf
from the pth to the uth data point), and for j = 1, 2, ..., n, the terms p and u can be varied as in
Equation (2). The application of Equation (3) is in a similar way as described for Equation (1).

(c) for j = 1, 2, ..., n, if c(j) < xqf (j), xif (j) = c(j), otherwise, xif (j) = xqf (j), and the overland flow
component (Xof) of Xo at the time step j can be given by xof (j) = xqf (j) − xif (j).

Though optional to compute for the Xof, we have t3 and α3 denoting the overland flow filtering
constant, and overland flow coefficient, respectively. The unit of the t1 (which should be similar to that
of t2 or t3) follows the resolution of the river flow the components of which are being separated. For
instance, if the flow series is of daily time scale, the t1 (or t2 or t3) would be in days. From a typical
hydrograph, the filtering constant may be expected to vary in magnitude from the highest to the
lowest for Xbf, Xif and Xof, respectively. It can be assumed that the river flow during the dry weather
period comes from baseflow. The implication of this assumption is that, lateral flows (for instance from
households) are significantly small and negligible.

Figure 1 shows the diagrammatic illustration of the flow separation procedure. When baseflow
(Xbf) is filtered from the total flow, what remains is the quick flow (Xqf). Similarly, when interflow
(Xif) is extracted from the Xqf, only the overland flow (Xof) remains. It means that the most important
parameters are t1, t2, α1, and α2. Therefore, just like the parameters t3 and α3 of the Xof, the quick flow
filtering constant (tq) and the quick flow coefficient (αq) are optional.
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Figure 1. Flow separation procedure.

2.2. Rainfall-Runoff Modeling

2.2.1. HMSV Structure Identification

A general structure of the HMSV is shown in Figure 2. The model requires precipitation (P), and
potential evapotranspiration (Epot) as the input data. The requirements expected to be met by the
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precipitation include: (i) satisfying evapotranspiration demand, (ii) replenishing soil moisture, and
generation of runoff from the excess amount. The HMSV splits runoff into simulated baseflow (Qbf),
interflow (Qif) and overland flow (Qof). After the evaporation demand is met from the time-variable
meteorological model inputs, the various sub-flows are derived as linear functions of the soil moisture
storage. Exponential function could also be used in the generation of sub-flows. The simulated total
runoff (Qsim), as the HMSV output, is the sum of the various flow components. The mathematical
equations describing how the HMSV considers actual evapotranspiration (Eact), and soil moisture (S)
to derive model outputs are presented next.
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Figure 2. Schematic representation of Hydrological Model focusing on Sub-flows’ Variation (HMSV).

Soil Moisture Storage

Let the current and previous soil moisture storage deficits be denoted by S(t), and S(t–1),
respectively. The model adds or subtracts moisture from the soil water storage based on the magnitude
of P(t) and Epot(t) such that:

S(t) = S(t − 1) + P(t)− Epot(t) if P(t) ≥ Epot(t) (4)

S(t) = S(t − 1)× e−
(PET(t)−P(t))

Smax if P(t) < Epot(t) (5)

where Smax denotes the maximum limit of soil moisture storage deficit (mm/day).

Evapotranspiration

In the HMSV, Eact is computed as a function of Epot based on the assumption that: (i) Eact occurs
at a potential rate when water storage is zero, and (ii) Eact is zero when the storage deficit is at the
maximum limit. Apart from the assumed cases,

Eact(t) = Epot(t)×
(

1 − S(t)
Smax

)
(6)

and when the evaporation demand is met, the current runoff is generated as a function of the soil
moisture at the previous time step.

Runoff

In the HMSV, it is assumed that Qbf (t) and Qif (t) linearly depend on the S(t–1). It is also possible
that the dependence of Qbf (t) and Qif (t) on the S(t–1) may be in an exponential way. For the generation
of the Qof (t), it is vital to note that when the moisture content is high (say, close to field capacity), the
infiltration reduces, and the fraction of the precipitation that contributes to runoff is greater than that
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required to replenish the soil moisture storage. Therefore, Qof (t) depends on both the antecedent soil
moisture state S(t–1) as well as P(t) and Epot (t) which are compounded into another term N(t) using

N(t) = P(t)− Epot(t)×
(

1 − e
− P(t)

1+Epot(t)

)
(7)

The following steps can be adopted to derive runoff:

(1) To compute Qbf, select baseflow recession constant ta. Apply Equation (1) to soil moisture (S)
instead of xo while replacing t1 with ta in Equations (1) and (2) to obtain ψb f instead of b.

(2) To compute Qif, chose interflow recession constant tb. Apply Equation (1) to S instead of xo while
replacing t1 with tb in Equations (1) and (2) to obtain ψi f in the place of b.

(3) For Qof, chose constants tu and tv. By applying Equation (1) to S, replace t1 with tu in Equations (1)
and (2) to obtain ψsa instead of b. Finally to the series N of Equation (7), apply Equation (1) while
replacing t1 with tv in Equations (1) and (2) to obtain ψsb in the place of b.

The various modeled sub-flows can be computed using:

Qb f (t) = e−a1 × ψb f (t − 1) (8)

Qi f (t) = e−a2 × ψi f (t − 1) (9)

Qo f (t) = e−a3 × ψsa(t − 1) + e−c3 × ψsb(t − 1) (10)

where a1 is baseflow parameter, a2 denotes interflow parameter, and overland flow has parameters
a3 and c3. A cursory look at the equations can reveal that the term e−a1 characterizes the baseflow
coefficient. Similarly, the term e−a2 comprises the interflow coefficient. However, overland coefficient
is in terms of e−a3 and e−c3 .

To convert the various flow components from mm/day to m3/s, each of the sub-flows Qbf, Qif,
and Qof, from Equations (8)–(10), respectively, is multiplied by (CA/86.4) where CA is the catchment
area in km2. Finally, the model-based total flow (Qsim, m3/s) is computed using Qsim(t) = Qb f (t) +
Qi f (t) + Qo f (t). Additional to the total runoff, there may (in some cases) be a constant or minimum
river flow (Qmin) to account for any returns, abstractions, etc.

Initial Conditions

To obtain reasonable results, many rainfall-runoff models tend to require long “warm-up” periods.
To avoid this, the HMSV considers initial model states. The antecedent soil moisture storage (S0), and
initial simulated discharge (Qs0) are assumed to characterize catchment preconditions. To initialize the
model simulation, Qs0 is assumed to be equal to the initial observed value. However, the value of S0 is
required to be given by the user.

2.2.2. HMSV Calibration Framework

Figure 3 shows a framework through which the HMSV can be calibrated in a step-wise way. This
calibration strategy is two-fold. Firstly, the preliminary calibration is done against sub-flows to yield
satisfactory performance at least with respect to the mean flow conditions. To do so,

(1) the observed flow (Xo) is separated into various sub-flows including baseflow (Xbf), interflow
(Xif), and overland flow (Xof),

(2) using the baseflow sub-model, the modeled baseflow (Qbf) is calibrated against Xbf,

(3) using the interflow sub-model, the modeled interflow (Qif) is calibrated against Xif,

(4) using the overland sub-model, the modeled overland flow (Qof) is calibrated against Xof,
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(5) the parameters from the various sub-flow models are combined and used to run the full model
from which total simulated flow (Qsim) is obtained.
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Figure 3. Framework for model calibration.

The second part of the calibration strategy deals with fine-tuning the model to capture hydrological
extremes, and the steps that can be taken include the following:

(i) Hydrological extremes are extracted from both observed river flow (Xo) and simulated flow
(Xsim). Here, the Peak Over Threshold (POT) approach can be adopted for extraction of the
hydrological extremes (see Appendix A for details). It is important to note that the POT events
from both Xo and Xsim should also be extracted using the same set of parameters stipulated
to define the independency criteria. If the data for calibration is long enough (say 30 years or
more), annual maxima and minima series could also be used for the checking the validity of the
hydrological extremes.
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(ii) If the observed (Xl) and modeled (Ql) low flow quantiles are not comparable, parameter(s) which
control baseflow generation can be adjusted to obtain new simulated flow. If Xl and Ql are
comparable, focus is thereafter turned to high flows according to step (iii).

(iii) To minimize the mismatch between the observed (Xh) and modeled (Qh) high flow quantiles,
parameter(s) which control soil moisture and quick flow (interflow and overland flow) runoff
generation can be adjusted, and when the full model is run, new simulated flow series is obtained.

(iv) It is possible that Step (iii) can lead to some increase in the mismatch between the observed
(Xl) and modeled (Ql) low flow quantiles based on Step (ii). Therefore, at this point, again, it is
important to check on the validity of both high flows and low flows and some parameters may
also be changed if need be.

(v) The final simulated series is the model-based flow which reasonably reproduces both high and
low flow quantiles.

2.3. Case Study

2.3.1. Data and Study Area

For illustrative purpose, the introduced framework was tested using data from the upper Blue
Nile basin (Figure 4) in Ethiopia. Quality controlled hydro-meteorological data (including river flow
observed at El Diem, as well as potential evapotranspiration and rainfall over and around the basin)
were obtained from a previous study [11]. Each variable (or model input series) was from 1980 to 2000
and of daily temporal resolution. The catchment area upstream of El Diem is 176,000 km2. The rainfall
stations labeled 1 to 7 are located at Bahr Dar, Debre Markos, Gonder, Addis Ababa Bole, Kombolcha,
Jimma, and Gore, respectively. The corresponding coefficients of variation of the daily rainfall at these
stations were 1.30, 1.00, 1.21, 1.02, 1.11, 1.92, 1.95, and 1.29. Thiessen polygon [12] was used to obtain
basin-wide rainfall.

2.3.2. Rainfall-Runoff Modeling

Rainfall-runoff modeling was done using the hydro-meteorological data described in Section 2.3.1.
For the purpose of comparison of HMSV results, outputs from five internationally well-known
hydrological models were considered. These models include TANK model [5], SAC model [3], the
AWBM [1], IHACRES [2], and SIMHYD [4]. The outputs from these models were obtained from
a previous study by [11] in which the AWBM, TANK, SAC, and SIMHYD were optimized using
the shuffled complex evolution [13]. The shuffled complex evolution evolves a number of potential
solutions towards the region of the global optimum of the objective function by combining simplex
method, competitive evolution, controlled random search, and complex shuffling strategies. For
IHACRES, an automation of the calibration following Croke et al. [14] was two-fold. Firstly, linear
module calibration was done based on the cross-correlation to calculate the delay between rainfall
and stream flow. In the second step, the best parameter set was obtained using the non-linear module
calibration. Like for other models, to eliminate the influence of subjectivity in changing of parameters
for the introduced model, the HMSV was calibration strategy used was based on the Generalized
Likelihood Uncertainty Estimation (GLUE) of Beven and Binley [15]. In the GLUE procedure (which is
actually a Bayesian approach), the output (posterior) distribution is inferred from simulations based
on parameters’ sets randomized from the prior distribution. Here, the upper and lower limits of
parameters were first stipulated. Secondly, several (say, 2000) sets of parameters were randomized.
Thirdly, the HMSV was run using each set of parameters. Finally, the optimal parameters were taken
as those in the set which yielded the best value of the objective function.
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For each of the six models, the calibration using automatic optimization was done based on
daily series from 1 January 1980 to 31 December 1990. However, model validation was performed
using daily data from 1 January 1991 to 31 December 2000. Nash-Sutcliffe Efficiency (NSE) [16] was
used as the optimization objective function in the calibration of each model. NSE was also used to
assess the statistical “goodness-of-fit” for both calibration and validation periods. Other statistical
“goodness-of-fit” metrics were the correlation between the modeled (Qsim) and observed (X0) flow,
Model Average Bias (MAB), and RRM which denotes the Ratio of the Root mean squared error to the
Maximum event (Xmax) of the X0. Because the root mean squared error can be so large compared with
the MAB, the RRM is small and has no unit. Considering X0 and Qsim,

NSE = 1 −

n
∑

i=1
(Qsim,i − Xo,i)

2

n
∑

i=1

(
Xo,i − Xo

)2
(11)

MAB =
1
n

n

∑
i=1

(
Qsim,i − Xo,i

Xo,i
× 100

)
(12)

RRM =
1

Xmax
×
(

1
n

n

∑
i=1

(Qsim,i − Xo,i)
2

)0.5

(13)

where Xo is the mean of the X0’s and n is as defined for Equation (1).

2.3.3. Comparison of Conventional Approach and New Framework for Calibration

The calibration in which the entire set of parameters are used to run the full model (not sub-flow
models) is herein taken to denote the conventional approach. In the new framework as already
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highlighted in Figure 3, sub-models of baseflow, interflow, and overland flow are first calibrated in a
step-wise way (against filtered sub-flows) to populate the full set of parameters required to run the
full model.

The HMSV was calibrated using both the conventional approach and introduced framework.
In each case, the GLUE technique was used to optimize the HMSV parameters. The calibration
for the new framework was two-fold (see Section 2.2.2). The first case of the calibration which is
analogous to the conventional approach comprised the use of NSE (Equation (11)) as the objective
function. In the second step, the MAB (Equation (12)) was used as the objective function to reduce the
mismatch between observed and modeled quantiles. The best set of parameters for the conventional
approach and new framework was that which yielded the highest NSE and lowest MAB, respectively.
Comparison of results from the introduced and conventional frameworks of calibration was statistically
made in terms of NSE, MAB, RRM, and correlation. Graphically, comparison was made using observed
and simulated maximum flow in each year, and minimum flow in each year. Frequency analyses
based on the observed and simulated flows were compared based on the POT approach of extracting
hydrological extremes (see Appendix A for details).

2.3.4. Comparison of HMSV and Conventional Models

Results from HMSV, AWBM, SAC, IHACRES, TANK, and SIMHYD obtained based on calibration
using conventional framework were compared in terms of correlation, NSE, MAB, and RRM.

To determine which of the six models exhibited the best performance,

(i) models were ranked from 1 to 6 based on the NSE values. The ranking was done such that ranks
1 and 6 were for the best and worst models, respectively. This procedure was done separately for
calibration and validation periods as well as considering the full data period.

(ii) just like in (i), the models were ranked based on MAB. The model with the lowest (highest) MAB
was given rank 1 (6) denoting the best (worst) model. Again, this procedure was separately done
for calibration and validation periods as well as the full data period.

(iii) step (ii) was repeated using the RRM instead of MAB, and
(iv) step (i) was repeated using the correlation instead of NSE,
(v) the sum of ranks from calibration and validation periods as well as the full data period was

obtained for NSE, MAB, RRM, and correlation, of steps (i) to (iv), respectively, and
(vi) Finally, the best (worst) model was taken as that with the smallest (largest) sum of ranks.

3. Results and Discussion

3.1. Discharge Splitting and Modeling of Sub-Flows

Figure 5 shows results of the separation of discharge (into the various components) and graphical
comparison of modeled and observed sub-flows. Figure 5d,e were obtained before some parameters
were adjusted for capturing extreme hydrological conditions. To obtain Figure 5a, the baseflow and
interflow filtering constants (or t1 and t2 of Equations (1)–(3)) were 60 and 40 days, respectively.
The baseflow and interflow coefficients (α1 and α2 of Equations (1)–(3)) were set to 0.25 and 0.40,
respectively. Furthermore, Figure 5a was only shown for a short data period for illustrative purpose to
make the various sub-flows clearly visible. The parameters of the various sub-models are shown in
Table 1. It may be realized that both the extraction of sub-flows from observed flow and the generation
of model-based sub-flows depend on the same forms of equations (Equations (1)–(3)). However, note
can also be taken that the extraction of sub-flows from observed flow depends on filtering constants
(e.g., t1 and t2) while model-based sub-flows are generated using recession constants (e.g., ta and tb).
If this analogy is to be considered in a strict sense especially for baseflow and interflow, the modeler
may take the filtering and recession constants of the given sub-flow approximately equal. However,
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due to the issue of equifinality, the model-based recession constants may also be different from the
filtering constants, as it was the case in this study.

Water 2019, 11, x FOR PEER REVIEW 12 of 24 

 

 

Figure 5. a) separated sub-flow components, and the comparison of modeled sub-flows including, b) 

baseflow, c) interflow, d) overland flow) and those extracted from observed flow, e) comprises the 

total observed versus modeled flow. 

3.2. Comparison of HMSV and Conventional Models 

Figure 6 shows the time series of the observed and simulated flow considering the various 

models applied to both calibration and validation periods. It should be noted that Figure 6f was 

obtained by running the full model (i.e., HMSV) using the set of parameters compiled from the 

various sub-flows' models (see Table 1). The list of optimal parameters for other models (Figure 6a–

e) can be found in Appendix B. It is evident that some peaks were under-estimated while others were 

over-estimated (Figure 6a–f). However, the variation in observed flow was generally well reproduced 

 

 

 

 

 

Figure 5. (a) Separated sub-flows, and the comparison of modeled sub-flows including, (b) baseflow,
(c) interflow, (d) overland flow and those extracted from observed flow, (e) comprises the total observed
versus modeled flow.



Water 2019, 11, 244 11 of 23

Table 1. Optimal parameters of Hydrological Model focusing on Sub-flows’ Variation (HMSV)
sub-flow models.

SNo. Parameter Description Parameter Values

Baseflow sub-model
1 Initial soil moisture storage (S0, mm) 19.29
2 Maximum limit of soil moisture storage deficit (Smax, mm) 101.79
3 Baseflow parameter (a1) 6.25
4 Baseflow recession constant (ta, day) 104

Interflow sub-model
5 Interflow parameter (a2) 6.3
6 Interflow recession constant (tb, day) 20

Overland flow sub-model
7 Overland flow parameter 1 (a3) 6.7
8 Overland flow recession constant 1 (tu, day) 5
9 Overland flow parameter 2 (c3) 2

10 Overland flow recession constant 2 (tv, day) 18

The values of the NSE for the various sub-models as well as that of the full model considering
both calibration and validation periods can be seen from Table 2. It is noticeable that the performance
of the overland sub-model was worse than those for baseflow and interflow. This was due to the
temporal variability which is usually higher for the overland flow than either interflow or baseflow.
Furthermore, the peak high flows of the total modeled flow (Figure 5e) was under-estimated. This was
because the overland flow sub-model was not calibrated with the objective function constrained to
extreme flow conditions.

Table 2. Statistical “goodness-of-fit” measure for the various models.

SNo. Model
Nash-Sutcliffe Efficiency (NSE)

Calibration Validation Full Time Series

1 Baseflow
sub-model 0.84 0.87 0.86

2 Interflow
sub-model 0.89 0.89 0.89

3 Overland flow
sub-model 0.66 0.69 0.67

4 Full Model 0.88 0.87 0.88

3.2. Comparison of HMSV and Conventional Models

Figure 6 shows the time series of the observed and simulated flow considering the various models
applied to both calibration and validation periods. It should be noted that Figure 6f was obtained by
running the full model (i.e., HMSV) using the set of parameters compiled from the various sub-flows’
models (see Table 1). The list of optimal parameters for other models (Figure 6a–e) can be found in
Appendix B. It is evident that some peaks were under-estimated while others were over-estimated
(Figure 6a–f). However, the variation in observed flow was generally well reproduced by the models.
The closeness between the observed and modeled flow based on the various models were statistically
summarized in Table 3.
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Figure 6. Comparison of observed and simulated flow based on (a) Australian Water Balance Model
(AWBM), (b) Identification of unit Hydrographs and Component Flows from Rainfall, Evaporation
and Stream flow data (IHACRES), (c) Sacramento (SAC), (d) SIMHYD, (e) TANK, and (f) HMSV.
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Table 3. Statistical “goodness-of-fit” measures for conventional calibration framework.

SNo. Model Calibration Validation Full Period

Nash-Sutcliffe Efficiency (NSE)

1 AWBM 0.81 0.75 0.76
2 IHACRES 0.66 0.72 0.69
3 SAC 0.81 0.70 0.75
4 SIMHYD 0.80 0.76 0.78
5 TANK 0.70 0.78 0.75
6 HMSV 0.88 0.87 0.88

Model Average Bias (MAB, %)

1 AWBM 32.76 −9.26 10.75
2 IHACRES −13.11 −42.03 −28.26
3 SAC 44.05 0.49 21.23
4 SIMHYD 45.02 −6.73 17.92
5 TANK 124.61 52.62 86.90
6 HMSV 34.63 −0.55 16.21

Ratio of Root mean squared error to the Maximum event (RRM)

1 AWBM 143.63 242.03 195.27
2 IHACRES 284.83 260.56 254.65
3 SAC 148.18 232.52 190.38
4 SIMHYD 173.81 233.57 198.70
5 TANK 215.53 194.79 191.42
6 HMSV 128.54 130.79 122.17

Correlation

1 AWBM 0.91 0.88 0.88
2 IHACRES 0.84 0.88 0.85
3 SAC 0.90 0.86 0.87
4 SIMHYD 0.92 0.88 0.89
5 TANK 0.91 0.89 0.89
6 HMSV 0.94 0.94 0.94

Table 3 shows the statistical measure of mismatch between observed and modeled flow. It is
noticeable that the difference between the NSE from calibration and validation period was small for
each model. Similarly, the coefficients of correlation between observed and modeled flow from each
model were comparable for both the calibration and validation periods. This indicates that all the
models exhibited less loss of model performance for the hydro-meteorological conditions over the
different periods, hence, high transferability. The MAB values tended to differ among the models.
MAB was negative for some models and positive for others. This indicates the differences in the model
structures or conceptual equations for generation of rainfall-runoff. The RRM values were within the
intervals 128–149, and 130–261 for the calibration and validation periods, respectively. The closeness
of the results from the HMSV with those of the well-known models indicate the acceptability of the
HMSV for modeling hydrological processes.

The results of ranking the performance of the models can be seen in Figure 7. Considering all
the statistical “goodness-of-fit” measures (see Figure 7a–d) in a combined way, the worst and best
performance was exhibited by IHACRES and HMSV, respectively (Figure 7e). The best performance by
the HMSV means that the HMSV captured the variation in the observed flow well. The HMSV models
the sub-flows separately and this increases its capacity to explain the overall variation in observed flow.
In other words, the best performance by the HMSV indicates the advantage of modeling sub-flows
separately compared to the conventional approach of considering the flow as a whole (without
separating the sub-flows).
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Figure 7. Model performance in terms of ranks considering (a) Nash-Sutcliffe Efficiency (NSE),
(b) Model Average Bias (MAB) (%), (c) Ratio of the Root mean squared error to the Maximum event
(RRM), and (d) Correlation, and (e) overall performance indicator obtained through combination of
ranks from NSE, MAB, RRM, and correlation. Ranks 1 and 6 is indicate the best and worst performance
of a model, respectively.

By focusing on extreme conditions in terms of the maximum and minimum events in each
year, it can be realized that the models performed better for high flows (Figure 8a–f) than low flows
(Figure 9a–f). It is noticeable that the maximum event in each year was mostly under-estimated
especially by the HMSV (Figure 8f) and the AWBM to some extent (Figure 8a). For HMSV, it is
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noticeable that the maximum events in each year were under-estimated (Figure 8f). This was also
visually evident from Figure 6f. Considering other models (IHACRES, SIMHYD, SAC, and TANK),
the scatter points fell on both sides of the bisector (1:1 line) indicating somewhat balanced under- and
over-estimations (Figure 8b–e). The MAB (Equation (12)) for the maximum flow in each year based on
AWBM, IHACRES, SAC, SIMHYD, TANK, and HMSV was −23.7%, −14.6%, −14.4%, −1.5%, −16.5%,
and −26.7%, respectively.
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Figure 8. Model performance evaluation in terms of observed versus simulated maximum flow in each
year based on (a) AWBM, (b) IHACRES, (c) SAC, (d) SIMHYD, (e) TANK, and (f) HMSV.Water 2019, 11, x FOR PEER REVIEW 17 of 24 
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Figure 9. Model performance evaluation in terms of observed versus simulated minimum flow in each
year based on (a) AWBM, (b) IHACRES, (c) SAC, (d) SIMHYD, (e) TANK, and (f) HMSV.
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For the minimum event in each year, it can be seen that there were strong under-estimations by
IHACRES and SAC (Figure 9b,c) while TANK (Figure 9e) over-estimated the low flows. For each
year, the simulated flows from the IHACRES and SAC comprised zeros (or nearly so) and this was
why the scatter points appeared as a horizontal line. The low flows were better reproduced by the
AWBM and SIMHYD (Figure 9a,d) than other models (IHACRES, SAC, and TANK). Although the
scatter points for the HMSV fell close to the bisector, the model appears to exhibit some constant
flow of about 50 m3/s. When Equation (12) was applied to the minimum event in each year for
the AWBM, IHACRES, SAC, SIMHYD, TANK, and HMSV, the MAB values obtained were −34.2%,
−95.4%, −100%, −14.7%, 232.3%, and 7.5%, respectively.

Figure 10 shows the comparison of models in reproducing observed high and low flow quantiles.
For comparative analyses of the hydrological extremes, the nearly independent extreme high and low
flows were extracted based on the POT approach (see Appendix A for the details). Furthermore, it
can be noticed that the frequency of low flow quantiles was based on transformed (or 1/Flow) series
(Figure 10b). This transformation enables the analyses of low flow frequency to be conducted in an
analogous way to that of high flows [17]. From Figure 10b, scatter points for SAC and IHACRES are
noticeably missing. This is because the simulated low flows from these models comprised several zeros
despite the non-ephemeral condition of the watershed (or the study area). In other words, when there
are zeros, the transformation by 1/Flow cannot be applied, and upon this basis, the simulated flows
from SAC and IHACRES were not considered in Figure 10b. For high flows, the models generally
under-estimated the quantiles. However, the quantiles with return periods above 3 years were only
over-estimated by the SIMHYD (Figure 10a). Whereas TANK under-estimated the low flow quantiles
(Figure 10b), over-estimations were realized from SIMHYD and AWBM. The under-estimation by the
HMSV was mainly for high return periods (or 5 years and above).
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Figure 10. Comparison of the frequency of observed and simulated (a) maximum flow in each year,
and (b) minimum flow in each year. Except for IHACRES and SAC, (a) has the same legend entries as
in (b).

3.3. New Framework versus the Conventional Approach

The implementation of the new framework for calibration relied on the list of parameters from
Table 1 as the starting point. At the end of the calibration, all the values of the optimal parameters
remained the same as in Table 1 except Smax, a1, ta, a2, and tv which were changed (from 101.79 mm,
6.25, 104 days, 6.3, 5 days) to 141.79 mm, 10, 84 days, 5.93, and 12 days, respectively. Compared
with the conventional method in which the HMSV did not perform extremely well for the annual
maxima (see Figures 8f and 10a) or minima (see Figures 9f and 10b), it is noticeable that the adoption
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of the new calibration framework which focuses on hydrological extremes greatly improved the model
performance with respect to high flows (Figure 11a,c) and low flows (Figure 11b,d). This showed the
advantage of the new framework over the conventional approach of calibrating rainfall-runoff model
required to simulate extreme hydrological conditions.
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Figure 11. Observed versus simulated (a) maximum flow in each year, (b) minimum flow in each year,
as well as comparison of the frequency of (c) high flows, and (d) lows flows. Except for IHACRES and
SAC, (d) has the same legend in (c).

The results of statistical “goodness-of-fit” measures considering the full time series of observed
and simulated flow are summarized in Figure 12. Considering data over the full period, it is noticeable
that the new framework may lead to a slight reduction in NSE and correlation (Figure 12a,d) and an
increase in MAB and RMM (Figure 12b,c) compared with the conventional approach. By considering
only the hydrological extremes, the MAB of the quantiles for return periods from 1 to 21 years based on
the conventional approach was −9.17% and 2.64% for the high and low flows, respectively. However,
when the new framework was adopted, the MAB reduced to 4.71% and −0.27% for the quantiles of
high and low flows, respectively. These results indicate that for a case by case basis, the conventional
approach can be used when the focus of modeling is on the mean hydrological conditions. However,
when the focus of modeling is on high and low flow quantiles (for instance, in studies such as climate
change impact investigation where hydrological extremes are highly relevant), the new framework is
better than the conventional approach of calibration.
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Figure 12. Statistical “goodness-of-fit” measures for conventional approach and the new framework
for calibration in terms of (a) NSE, (b) MAB (%), (c) RRM, and (d) correlation.

4. Conclusions

This study introduced Hydrological Model focusing on Sub-flows’ Variation (HMSV) the
calibration of which follows a carefully designed framework which depends on the separation of
sub-flows, and checking the validity of hydrological extremes. Hydro-meteorological data from the
upper Blue Nile Basin were used test the suitability and applicability of the HMSV and the new
framework for calibration. Results from the HMSV calibrated using the conventional approach were
compared with the those obtained when the HMSV calibration was based on the new framework.
Furthermore, results from the HMSV calibrated using the conventional approach were compared with
those from five internationally recognized hydrological models (AWBM, IHACRES, SACRAMENTO,
SIMHYD, and TANK) applied to the same study area.

Using the conventional calibration approach, results of the HMSV were highly comparable
to those of the AWBM, IHACRES, SACRAMENTO, SIMHYD, and TANK. The new calibration
framework leads to better results of hydrological extremes than the conventional approach. Therefore,
when high flows and low flows are relevant for the purpose of the hydrological modeling, the new
framework for calibration is better than the conventional technique. The technique for extracting
extreme hydro-meteorological events which are independent (or nearly so) is not only relevant for
hydrological modeling but may also be applicable for extreme value analyses. The HMSV-based
approach for separation of sub-flows is important to a modeler (during a step-wise model calibration)
for identifying the areas (such as baseflow, interflow, or overland flow) on which focus is required to
obtain reasonable simulation results.

The introduced model (i.e., HMSV), HMSV-based baseflow separator and HMSV-based POT
extractor can be freely downloaded online via the link https://sites.google.com/site/conyutha/tools-
to-download (accessed on 27 January 2019).
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Appendix A Further Information on the Extraction of Hydrological Extremes

To extract extreme events, the Peak-Over-Threshold (POT) approach can be used. As stated in [18],
the independence criteria for the POT extraction are with respect to the inter-event time, threshold,
and independency ratio. Figure A1 summarizes how the parameters for extraction of POT events
can be understood. The criteria to define the inter-event time, threshold, and independency ratio,
can be considered in terms of z1, z2, and z3, respectively. Let qn be a drop-down event between the
extreme peaks qm and qp. Furthermore, consider tm and tn as the time at which the peaks qm and qp

were respectively observed, while qt denotes the threshold. The event qm is independent from qp if:

(i) z1 or (tn – tm) is not less than the stipulated inter-event time τ,
(ii) z3 or (qm – qn) divided by qm and multiplied by 100 is greater than the independency ratio γ

stipulated in percentage,
(iii) the event qm is greater than the threshold qt or z2. For a more stringent threshold than using

qm > qt, we can consider qn < qt < qm.

For criterion (i), the stipulated time τ is in the time unit of the series. For instance, if the POT
extraction is being done from daily series, the unit of τ is day. The τ expresses how fast the system
responds to the input. If we are dealing with river flow, the system is a catchment with rainfall as the
input. For a fast response, τ can be small. However, if the system is characterized by a slow response,
τ becomes large. Some of the factors which determine the pace of catchment response include the rate
of infiltration, amount of water losses through evaporation and/or storage in surface depressions, and
the rate of percolation or the exchange of water between micro and macro fissure systems [19].

Regarding criterion (ii), the γ can be thought of in terms of the amount by which the input peak
value is reduced through the response of the system. A large value of z3 (see Figure A1) indicates that
the influence of the peak of the input into the system has subsided to a level at which the response of
the system to another input can minimally be controlled by the effect of the previous one.

The purpose of the criterion (iii) is to ensure that only severe events are extracted. The qt should
be expressed as a percentage of the maximum event in the series. For instance, if the given daily flow
series has a maximum value of 1500 m3/s and we want the threshold to be 450 m3/s, it means the qt

should be set to 30%. Because the qt is expressed as a percentage of the maximum event in the series, it
is important that prior to POT extraction the data must be checked to ensure it does not have outliers
(for instance stemming from observation errors, wrong placement of decimal points, etc.). If the use of
qm > qt is deemed to be less stringent (or leading to events which are not that independent), additional
condition qt > qn can be considered. This additional condition reinforces criterion (ii) to ensure that
the response of the system to the given input can be considered nearly independent only when
(qt – qn) > 0.

To implement the above independency criteria, there are three parameters required including
the inter-event time τ, independency ratio γ, and threshold qt. The number of extracted POT events
depends on how stringent or relaxed these parameters are set. Small (large) qt value leads to a
large (small) number of POT events. A large (small) inter-event time likely leads to strong (weak)
independence of the POT events. If the independency ratio is large (small), few (many) POTs events
will be extracted.

Figure A2 shows, for illustration, POT events extracted to characterize both high and low flows.
The threshold ratio (%), inter-event time (day), and independency ratio (%) used to obtain high flows
shown in Figure A2a were 30%, 25 days, and 12%, respectively. The corresponding independency
parameters for low flows shown in Figure A2b were 22%, 12 days, and 8%. It is vital to note
that for the analyses of low flows, the given series is transformed by inversion prior to the POT
extraction. As shown by Onyutha [17], the POTs based on inverted flow follow the Generalized Pareto
Distribution [20] like those from untransformed discharge. In other words (as already highlighted in
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Section 3.2), the transformation of flow by inversion makes the extracted extreme events to be analyzed
in a similar way to that of high flows.
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Appendix B List of Optimal Model Parameters after Calibration

Table A1. Parameters of SACRAMENTO, IHACRES, and AWBM.

SNo. Parameter Unit Value

SACRAMENTO

1 Additional fraction of pervious area (Adimp) (-) 0.0025
2 Lower Zone Free Water Primary Maximum (Lzfpm) (mm) 49.1030
3 Lower Zone Free Water Supplemental Maximum (Lzfsm) (m) 49.5920
4 Ratio of water in LZFPM (Lzpk) (mm) 0.0079
5 Ratio of water in LZFSM (Lzsk) (mm) 0.0503
6 Lower Zone Tension Water Maximum (Lztwm) (mm) 224.410
7 Impervious fraction of the basin (Pctim) (-) 0.0201
8 Minimum proportion of percolation (Pfree) (-) 0.9965
9 Exponential percolation rate (Rexp) (-) 0.0329

10 Fraction of water unavailable for transpiration (Rserv) (-) 0.3000
11 Catchment portion that lose water by evaporation (Sarva) (-) 0.0099
12 Fraction of base flow which is groundwater flow (Side) (-) 0.0000
13 Flow volume through porous material (Ssout) m3/s/km2 0.0010
14 Upper Zone Free Water Maximum (Uzfwm) 1/day 61.736
15 Ratio of water in UZFWM (Uzk) 1/day 0.0178
16 Upper Zone Tension Water Maximum (Uztwm) 1/day 0.8152
17 Factor applied to PBASE (Zperc) (-) 79.6920

IHACRES

1 Delay (day) 29.0000
2 Recession rate 1 (α(s)) (1/day) −0.9350
3 Peak response 1 (β(s)) (-) 0.0650
4 Time constant 1 (τ(s)) (day) 14.8720
5 Volume proportion 1 (v(s)) (◦C) 1.0000
6 Mass balance term (c) (-) 0.0139
7 Drying rate at reference temperature (tw) (◦C/day) 2.0000
8 Temperature dependence of drying rate (f) (-) 0.0000
9 Reference temperature (tref) (◦C) 20.0000

10 Moisture threshold for producing flow (l) (mm) 0.0000
11 Power on soil moisture (p) (-) 1.0000

AWBM

1 Fraction of catchment area for the first store (A1) (-) 0.1340
2 Fraction of catchment area for the second store (A2) (-) 0.4330
3 Base flow index (BFI) (-) 0.8334
4 Storage capacity of first store (C1) (mm) 1.8645
5 Storage capacity of first store (C2) (mm) 0.6314
6 Storage capacity of first store (C3) (mm) 2.4215
7 Base flow recession constant (Kbase) (day) 0.9822
8 Surface flow recession constant (Ksurf) (day) 0.9978
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Table A2. Parameters of TANK and SIMHYD.

SNo. Parameter Unit Value

TANK

1 Depth below the top outlet of the first tank (H11) (mm) 34.035
2 Overland runoff from the top outlet of first tank (a11) (m3/s) 0.0098
3 Overland runoff from the lower outlet of first tank (a12) (m3/s) 0.14331
4 Intermediate runoff (a21) (m3/s) 0.0110
5 Sub-base runoff (a31) (m3/s) 0.0458
6 Base flow (a41) (m3/s) 0.0200
7 Alpha (-) 0.9999
8 Outflow from the bottom of the first tank (b1) (m3/s) 0.1335
9 Outflow from the bottom of the second tank (b2) (m3/s) 0.9980

10 Outflow from the bottom of the third tank (b3) (m3/s) 0.9921
11 Water depth in the first tank (C1) (mm) 21.6395
12 Water depth in the first tank (C2) (mm) 11.2244
13 Water depth in the first tank (C3) (mm) 41.7943
14 Water depth in the first tank (C4) (mm) 5.4077
15 Depth below the lower outlet of the first tank (H12) (mm) 75.9990
16 Depth below the outlet of the second tank (H21) (mm) 6.0428
17 Depth below the outlet of the third tank (H31) (mm) 63.6577
18 Depth below the outlet of the fourth tank (H41) (mm) 94.7014

SIMHYD

1 Baseflow coefficient (-) 0.02
2 Impervious threshold (-) 0.0412
3 Infiltration Coefficient (-) 148.156
4 Infiltration shape (-) 0.7072
5 Interflow coefficient (-) 0.1531
6 Pervious Fraction (-) 0.9921
7 Rainfall interception store capacity (mm) 1.9000
8 Recharge coefficient (-) 1.0000
9 Soil moisture store capacity (mm) 181.0200
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