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Abstract: Flip trajectory buckets are widely used in hydraulic engineering. With the rapid
development of water conservation projects, an increasing number of these projects are located
in complex topography. As a result, the energy dissipation and anti-scour abilities of the outlet
structures in such projects have become the focus of research. This study used FLOW-3D fluid
computation software with a renormalization group turbulence model and a volume of fluid free
surface tracking technique. The bank of the ShiZiYa reservoir is steep and is located in a narrow river
valley, in which the downstream angle is approximately 70◦. The system was modeled under the
conditions of this special terrain with the flow energy dissipation scheme having dovetail drainage
characteristics, and the results were verified experimentally. With adjustments of the angles of the left
and right walls, the width and jet angle of the dovetail-shaped sill were optimized in the model to
ensure that the downstream flow fell into the main channel, and the hydraulic characteristics of the
water jet were analyzed. The results showed that this scheme can meet the flood safety requirements
of the ShiZiYa reservoir.
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1. Introduction

With the rapid development of water conservancy projects, hydraulic project design and energy
dissipation and anti-flooding problems have become the focus of research on discharge systems [1].
This study examines the ShiZiYa reservoir project, in which the channel in the dam site is narrow,
and the angle between the axis of the drainage building and the downstream river is approximately 70◦.
When the water is released, it flows directly to the opposite side of the slope, thus affecting the stability
of the bank slope. Therefore, choosing a suitable flip bucket is crucial to the safety downstream.

Flip buckets are one of the most common energy dissipation methods. The complex diversity
of engineering topography has led to various types of flip buckets being proposed, and the
energy dissipation methods include symmetrical curved surface sticking, angle narrow gap slits,
special-shaped oblique nose slits, dovetail slits, and high and low slits [2–5]. Deng [6] proposed a
swallowtail slit, which was a new type of pick and flow energy dissipater. Because the base plate
was partially hollow and looks like a swallowtail, this system was referred to as the swallowtail
slit. Although the dovetail slit is similar to the slit hybird-type flip buckets, the dovetail slit does
not experience cavitations. This new flip bucket system has been installed in the first stage of the
Jinping Hydropower station on the Yalong River and in the Huangdeng Hydropower station on
the Lancang River, and the resulting energy dissipation and anti-shock properties were verified
as ideal [7]. The swallow-shaped bar is another new type of flip bucket, and a layout including
a forward swallow-shaped bar is used at the exit of the spillway tunnel in the Jinping first stage
hydropower station [8–10]. Mao [11] used the Huangdeng hydropower station as the background for
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an investigation of the applicability of swallowtail bars through hydraulic model tests. The results
showed that, compared to the traditional cantilever, the swallowtail cantilever could effectively increase
the longitudinal distance of the water nappe, avoid scouring of the downstream slope by the drainage
flow, and reduce the fluctuation in the water flow in the tailrace area. Dai [12] studied the NanYe II
hydropower station in Laos, in which the spillway utilized a dovetail slit as the energy dissipation
method. The results showed that a dovetail slit could effectively solve the problem of low flow and
address low flow flip trajectory bucket problems. Qiu et al. [13] proposed an energy dissipation scheme
of an oblique nose cantilever flow based on the narrow topography conditions of the Tihua reservoir
in Yunnan province. As a result, the water flowed smoothly in the main channel, and erosion of the
riverbed was reduced. Wu [14] studied the effect of a twisted nose bar on the energy dissipation
of a spillway tunnel, and demonstrated that a curved nose bar with a large angle of rotation could
adjust the direction of the water nappe entering the water so that it followed the downstream channel.
To solve the engineering problems of the ShiZiYa reservoir, the design criterion for a curved nose bar
was adopted to adjust the water nappe to the downstream riverbed.

Model tests are one of the most commonly used methods to study discharge energy dissipation;
this method is mature and has accumulated a large amount of experience. The experimental results
of model tests are reliable and authentic, but when the prototype is relatively complex, these
tests represent a heavy workload, and are time-consuming and laborious. In recent years, with
improvements in computer software, numerical simulation methods have become increasingly
common, and provide the benefits of lower costs, short research periods, good repeatability, and rapid
simulation of the flow field with quantitative results. In this study, FLOW-3D fluid dynamics calculation
software (Flow Science, Santa Fe, NM, USA) was used to simulate the discharge characteristics of a
dovetail camp energy dissipation scheme, and the finite volume method was used for numerical
simulation. Spalding and Patanker [15] proposed the finite volume method, which requires a
relatively small amount of calculations and is the most commonly used method in computational fluid
dynamics [16]. The most commonly used free surface tracing method is the volume of fluid (VOF)
method, which was proposed by Hirt and Nichols in 1982 [17]. The VOF method can effectively reduce
the required calculation time. Xia [18] simulated and calculated the hydraulic characteristics of the
water and gas two-phase flow of a swallowtail camp using the standard k-ε turbulence model based
on the VOF free liquid surface capture method. The morphological changes during the development
of a swallow-tailed camp were analyzed, and the results verified that the numerical simulation was
consistent with the model test results.

Dovetail-shaped bucket is a new type of overhanging bucket, which can solve the problem of
the longitudinal stretching of water nappe. In this paper, a numerical simulation model of jet water
through dovetail-shaped bucket is given based on a three-dimensional computational fluid dynamics
(CFD), and this model is also applied to the optimization of flood discharge scheme for practical
engineering problems. It is of great significance to fully understand the flow characteristics of the
shape of the bucket and solve practical engineering problems.

2. Numerical Model and Validation

2.1. Numerical Model Setup

In this study, FLOW-3D fluid calculation software was used to calculate the hydraulic
characteristics of the energy dissipation of a dovetail slit. The renormalization group (RNG) model
was adopted for turbulence calculation. The RNG k-ε model took the turbulence anisotropy into
account, corrected the turbulent viscosity, and could make complex turbulent simulation more accuracy.
The control equations included the continuity equation, momentum equation, energy equation,
k equation and ε equation. The VOF model was used for free surface tracking. The VOF method
defined a fluid volume function F at each unit of the computational domain, when F = 1, it meant
that the unit was filled with a fluid phase; when F = 0, it meant that there was no fluid phase in the
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unit; when 0 < F < 1, this unit was called the gas-liquid interface. The VOF model mainly used the
geometric reconstruction method to determine the position of the free surface of the liquid. It could
simulate two-phase flow and multi-phase flow, and by solving the momentum equation and tracking
the volume fraction of the fluid in each unit, the free surface could be obtained. The water nappe spread
to the downstream channel was a transient process, and VOF method had significant advantages for
transient tracking.

The size of the numerical model and the dovetail sill are shown in Figure 1.
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2.2. Design of the Validation Experiments

To verify the accuracy and credibility of the numerical simulation method, a simplified experiment
was carried out, the purpose of this experiment being to verify the accuracy of the numerical model
simulation method in simulating the air water nappe problem with complex overhanging flows. The
model was designed with the Froude similarity, and the scale was 50:1. The complete experimental
model included an upstream rectangular tank, water pump, WES weir, drain tank, flip bucket segment,
downstream rectangular drainage trough, measuring weir, U-shaped connection back to the sink, and
underground and other components of the reservoir. The slope of spillway was 30◦, and the width of
the model was 25 cm. The spillway end was connected with the flip bucket segment. Figure 2 shows a
schematic diagram of the experimental setup.
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Figure 3. Point gauge and sharp-crested weir.

The central axis of the arc was equipped with eight pressure orifices that measured the pressure
head. The water level measuring needle at the sharp-crested weir was used to determine the flow rate,
as shown in Figure 3. The flow rate for a rectangular sharp-crested was as follows:

Q = m0b
√

2gH3/2 (1)

where m0 is the discharge coefficient, b is the width of the sharp-crested weir, H is the weir head, and g
indicates gravity.

In this model experiment, the height of the sharp-crested weir was P = 22.9 cm, and the width of
the weir was b = 40 cm. The flow coefficient for the rectangular sharp-crested weir could be calculated
with the following equations.

Bazin [19] formula:

m0 = (0.405 +
0.0027

H
)

{
1 + 0.55(

H
H + P

)
2
}

(2)

This equation was applicable for 0.2 m < P < 1.13 m, b < 2.0 m, and 0.1 m < H < 1.24 m.

2.3. Boundary Condition Setting and Mesh Convergence Analysis

The inlet boundary condition was defined as a pressure inlet (including both static pressure and
dynamic pressure) according to the water level, the downstream was a subcritical flow, which was
defined as a pressure outlet, and the wall boundary condition was defined as a non-slip wall boundary
condition. The specific boundary conditions are shown in Figure 4. To coincide with the experiments,
the same depth was used in the model. Four flow monitoring sections were defined for the mass
flow calculation. When the flow in each section did not change significantly and the area of the flow
difference at each monitoring section in the calculation decreased below 10−3, the calculation was
considered to be convergent.
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The scale experiment and numerical simulation were intended to analyze the hydraulic
characteristics of the launching nappe under three working conditions, as summarized in Table 1.

Table 1. Working conditions for the calculation.

Modeling Scheme Working Condition A Working Condition B Working Condition C

Flow Rate (m3/s) 0.030 0.025 0.020
Flow Depth (m) 0.143 0.127 0.109

In order to verify the influence of grid density on discharge flow, GCI (Grid Convergence Index)
convergence factor [20] was used to calculate discrete error, and then the convergence of grid was
judged. When the GCI convergence factors were used for judgment, at least three mesh schemes were
required, and the safety factor was taken as Fs = 1.25. Taking working condition A as an example, the
calculation results for the GCI are shown in Table 2.

Table 2. GCI calculation results.

Mesh Size D (m) Total Grid (Millions) r(Dk/Dk+1) Q (m3/s)
Fractional Error
|ε|=| Qk−Qk+1

Qk+1
| GCI= Fs|ε|

rp−1 ×100(%)

0.018 5.04 - 2.997808 × 10−2 - -
0.015 7.02 1.2 3.017997 × 10−2 0.006895 4.18
0.010 9.37 1.5 3.022485 × 10−2 0.001485 0.37

As shown in Table 1, the GCI decreased gradually with the mesh decerasing and was less than
5%, indicating that the discrete error is small.

2.4. Comparison of Validation Results

Figure 5 shows the flow patterns of the swallow-tailed slit under three operating conditions.
Owing to the angle of both sides of the spillway and swallow-tailed slit, in the middle and lateral
contraction of the water nappe were obvious, and the longitudinal diffusion was sufficient. The water
crown at the top of the water nappe was also obvious, and the end was fully aerated.
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A comparison between the experimental and simulated results are given in Table 3, and the result
indicates that both the inner edge and the outer edge of the water nappe was in good agreements.
However, the position error between the downstream water surface and the highest point of the water
nappe was large. The main reason for this discrepancy was that the nappe crown of measurement error
and the calculation grid size were not subtle enough in the simulation process. As a result, some thin
water crowns could not be simulated, and thus the simulation values for the highest point of the water
nappe were smaller than the corresponding measured values. However, considering the horizontal
length of the jet flow, this meshing scheme fitted well.
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Table 3. Comparison of the experimental and simulation results with a swallow-tailed bucket.

Working
Condition

Inner Edge Jet Trajectory
Length (m) Relative

Error (%)

Outer Edge Jet Trajectory
Length (m) Relative

Error (%)

Water Nappe Highest
Point (m) Relative

Error (%)
Experimental

Value
Simulation

Value
Experimental

Value
Simulation

Value
Experimental

Value
Simulation

Value

A 0.37 0.37 0.00 2.17 2.14 1.38 0.52 0.48 7.69
B 0.43 0.41 4.65 1.97 1.93 2.03 0.45 0.42 6.67
C 0.47 0.46 2.13 1.78 1.77 0.56 0.43 0.39 9.30

To compare the simulation pressure with the measured pressure under corresponding working
conditions, Figure 6 shows the surface pressure along the wall of the swallow-tailed bucket between
3.31–3.87 m under working condition A. The results show that the simulation scheme was feasible.
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3. Engineering Application and Case Analysis

3.1. Introduction and Research Condition

This study was based on the ShiZiYa reservoir, and a reasonable scheme was proposed to address
the main energy dissipation problems. The ShiZiYa reservoir project is located along the XingLong
River, which is a first-grade tributary of the LengShui River in HanZhong city, Shanxi Province.
The total capacity is 5.79 million m3, with an irrigation capacity of 4.15 million m3, thus making it a
type IV small engineering project. The flood control standard of the dam is based on a 200-year flood
event, while it is designed according to 30-year flood levels and the energy dissipation and anti-erosion
design are based on the 20-year flood standard. The spillway energy dissipation structure consists of
two sand wash bottom holes, three overflow gate holes, and a spillway. The gates are numbered from
left to right as #1, #2, and #3, as shown in Figure 7.
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Based on the topographical characteristics and flood discharge conditions of the ShiZiYa reservoir,
the deviation angles of the left and right bank sidewalls of the spillway were determined. Thus,
the point at which the water nappe plunging into the water could be adjusted to the downstream main
channel as close as possible. After debugging, the left sidewall angle was taken to θ1 = 13◦, the right
bank sidewall angle was taken to θ2 = 6◦, and the radius R = 10.2 m. The flow state of the nappe was
controlled by changing the deflecting angle and the width of the dovetail slit. Figure 8 shows the shape
of the dovetail slit, while the designed schemes are summarized in Table 4.
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Figure 8. Geometrical configuration of the swallow-tailed bucket (unit: m).

Table 4. Designed schemes for the swallow-tailed bucket.

Scheme Left/Right Side-Wall
Deflecting Angle

Width of Dovetail-Shaped
Bucket (m)

Deflecting Angle of
Dovetail Slit

I θ1 = 13◦, θ2 = 6◦ 6 θ3 = 0◦

II θ1 = 13◦, θ2 = 6◦ 6 θ3 = −5◦

III θ1 = 13◦, θ2 = 6◦ 8 θ3 = 0◦

IV θ1 = 13◦, θ2 = 6◦ 8 θ3 = −5◦

3.2. Establishment of the Numerical Model

The calculation region of the numerical simulation was determined based on a site investigation
and CAD topographic map. Using the specific data in the measured topographic map combined with
the actual topography of the upstream and downstream locations and the layout of buildings in the
area and their influence on the downstream flow condition, some reasonable simplifications of the
actual topography and buildings were carried out, as shown in Figure 9. This study was based on a
topographic model of the ShiZiYa reservoir. Upstream of the reservoir, a grid size of 2.5 m was used,
while the mesh at the downstream of the reservoir was 1.5 m. The overflow dam and the discharge area
were the focus of this study, hence the mesh in this location should be finer. Therefore, this area was
meshed with a grid of 0.5 m, yielding a total of grid number of approximately 7 million. The boundary
conditions are shown in Figure 10.
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3.3. Analysis of the Calculated Results

3.3.1. Distribution of the Water Nappe Flow of Each Scheme

Figure 11 shows the flow pattern of water nappe for 200-year flood conditions under the four
schemes with energy dissipation provided by a swallowtail cantilever. Comparing schemes I with II
and schemes III with IV (because deflecting angle of dovetail slit in the latter schemes was 5◦), it could
be concluded that the longitudinal stretching effect was more pronounced. Comparing schemes I with
III and schemes II with IV, (because the central opening width, B, in the latter schemes was equal to 8 m)
the water flow rate increased, and the flow rate through slit on both sides decreased, which resulted
in a decreasing length of the flip shot for both the nearest and farthest distances. It can be seen in
Figure 11 that because the water nappe could not deflect in the air, the furthest impact position was
closer to the concave bank slope, which could cause greater erosion of the bank slope.
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Figure 11. Nappe distribution of each scheme under the conditions of a 200-year flood.

The flowrate in this project were mainly moderate or small discharge. For further calculation
of the small discharge, scheme II was used for the modeling combined with the specific engineering
conditions. The flow rate was adjusted through operation of different gate openings; the specific
working conditions are summarized in Table 5.

Table 5. Characteristics of the water level and discharge conditions used in the numerical simulations.

Working
Condition Flood Standard Gate Opening

(Numerical Simulation)

Maximum
Reservoir Water

Level (m)

Rated Flow Rate of
Flood Discharge
Building (m3/s)

Tail Water
Level (m)

1 Check flood standard: once in 200 years Three-hole full opening 735.5 672 689.7
2 Design flood standard: once in 30 years Three-hole full opening 734.8 506.2 688.6

3 Energy dissipation and anti-impact
design standard: once in 20 years

Three-hole opening 20%
(e = 1.5 m) 733.4 345.9 687.2

4 Flood standard: once in 5 years #1, #3 table opening 20%
(e = 1.5 m) 733.4 230.6 685.3

Figure 12 shows the flow pattern and location of the water nappe entry point under three working
conditions for the 30-year flood standard, 20-year flood standard, and 5-year flood standard. In the
case of the 30-year flood standard, because the flow discharge was large, the longitudinal extension of
the water nappe was significant and continuous. In the case of the 20-year flood standard, owing to a
20% opening of the three-hole gate, the flow discharge was reduced and the water nappe was thinner.
When water flowed through the slit, the stretching of this water nappe was relatively small because
the deflecting angle was −5◦. As a result of the compression effect of the large angle of the anti-arc
segment and the angle of the sidewall, the two water streams were forced toward the central axis,
and entered the downstream channel after colliding in the air. In the case of the 5-year flood standard,
the flow rate was very small, the #2 surface hole was closed, and the #1 and #3 surface holes were
opened to 20%.

The anti-arc notch did not play a role in this case, and the water flowed through both sides and
entered the main downstream channel after collision in the air due to the extrusion of the sidewall.
Owing to the friction and mixing of the water, the energy of the water flow was effectively eliminated,
and the erosion of the riverbed was alleviated.
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3.3.2. Distribution of the Bottom Velocity under Different Working Conditions

The velocity at the wall of the spillway and the riverbed are shown in Figure 13. The velocity at
the impact point of the water nappe with the downstream riverbed was relatively large because the
flow was large. The maximum velocity was approximately 32 m/s, with the main stream located in
the main river location. Under working condition 3, due to the decreased flow rate, the water flow
at the slit was not squeezed by the flow from both sides, but was affected by the jet angle of the slit.
The water nappe in the middle thus overhung to the downstream, and had a large transverse diffusion.
It can be seen in Figure 13 that the flow velocity near the bulge hill on the right bank was relatively
large, which was a result of the transverse diffusion of the water nappe in the middle. The elevation of
the impact point at this location was relatively low, however, less than 687 m. The flow rate was lowest
under working condition 4, which was caused by the collision of two water nappes in the air with a
high energy cost; the flow velocity near the bottom of the riverbed was approximately 26 m/s.
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3.3.3. Distribution of the Bottom Pressure under Different Working Conditions

Figure 14 shows the pressure distribution on the wall surface of the spillway and the bottom the
riverbed under various working conditions. All of the pressures of the wall surface were given for
working conditions 2 and 3. The pressure on surface hole wall #2 was less than that on #1 and #3.
The pressure on surface hole wall #1 and #3 were given under working condition 4, because the #2
surface hole was closed, only #1 and #3 were opening. The downward flow on both sides did not
have the constraint of the #2 surface hole, but were influenced by the angle of sidewall, and the flow
in the reverse arc was more disordered than under working conditions 2 and 3, causing the pressure
distribution to fluctuate.

Figure 15 shows the simulation results for the pressure along the wall surface of the number 1,
number 2, and number 3 spillways at locations of 0–045.75 m to 0–010 m from the dam. It can be seen
that the pressure distribution at the spillway surface and bed bottom is in line with the actual results.
The pressure head of the arc under working conditions 3 and 4 was significantly smaller than that
under working condition 2, because the angles of both sidewalls of the spillway were different, and the
extrusion effect and impact effect on the water flow were thus also different.
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These different working conditions yielded different throw distances, as summarized in Table 6.
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Table 6. Analysis of the water nappe features under different working conditions of the swallow-tailed
bucket scheme II.

Modeling Scheme Working Condition 2 Working Condition 3 Working Condition 4

Inner edge jet trajectory length (m) 32.8 41.7 56.4
Outer edge jet trajectory length (m) 62.1 62.3 60.9

Longitudinal stretch length (m) 29.3 20.6 4.5
Water nappe highest point (m) 706.63 705.93 706.4

The longitudinal stretching of the water nappe along the river was suitable under working
conditions 2 and 3. The longitudinal stretching lengths were 30.5, 29.3, and 20.6 m under working
conditions 2, 3, and 4, respectively. Under working condition 4, two water streams did not pass
through the anti-arc notch, and enter the downstream channel after collision in the air. As a result,
there was no obvious longitudinal stretching. It could be seen that the operation mode of the gate had a
significant influence on the shape of the water nappe. With increasing discharge flow, the longitudinal
extension of the water nappe became fully stretched, and the outer edge of the water nappe was
closer to the bank slope. Thus, it was necessary to protect a certain range of the bank slope. When the
discharge flow was small, although the water nappe failed to stretch along the longitudinal direction,
however the inner edge distance was far, and the entry of the water nappe occurred in the main
channel, which could meet the flood discharge requirements. Thus, it can be concluded that the water
nappe could meet the safety discharge requirements for the ShiZiYa reservoir.

4. Summary

In this study, the FLOW-3D computational fluids software was combined with experiments to
simulate overflow over a flip bucket with dovetail slits under four working conditions. The following
conclusions were drawn:

1. Using the check flood level of 200-year flood conditions as the standard, after debugging,
the angles of both sidewalls were set to θ1 = 13◦ and θ2 = 6◦. Based on this, the width of
width B and the deflecting angle of dovetail slit θ3 were selected as variables. Four types of
solutions were presented: B = 6 m and 8 m, and θ3 = 0◦ and −5◦, and the water tongue hydraulic
characteristics were analyzed. The results showed that the dovetail slit could effectively stretch
the longitudinal length of the water nappe. As B increased, the flow rate increased, and the inner
and outer edges of the water nappe and the throw distance decreased. When the opening width
was smaller, the position of the water nappe entry was effectively distributed along a straight
line. When the opening width increased, the position of the water nappe entry exhibited a curved
distribution, and the direction of bending was opposite that of the river channel.

2. This study was based on the model of scheme II, and it analyzed the 30-year, 20-year, and 5-year
flood design standard conditions under three different working conditions of the characteristics
of the water nappe. The results showed that different working conditions resulted in different
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water flow patterns, but they all could be attributed to the main river channel. The differences
arose mainly due to the different operation of the gate opening, which contributed to the large
difference in the pattern of the water nappe. There was a slight difference between working
condition 1 and working condition 2. However, in working condition 3, three surface holes were
partially opened by 20%, and the flow discharge was small, resulting in the formation of three
water nappe. In working condition 4, both the number 1 and number 3 surface holes were opened
by 20%, and the water nappes on both sides entered the river channel after collision in the air.

3. As a result of the different operation models in various working conditions, the range and size of
the discharge flow, scouring of the downstream riverbed, and the area of negative pressure on
the back surface of the overflow dam were all different.

4. Different working conditions yielded different throw distances. The longitudinal stretching of the
water nappe along the river course was suitable under working conditions 2 and 3, with lengths
of 29.3 m and 20.6 m, respectively. Under working condition 4, two water streams did not pass
through the notch of the anti-arc segment, and they were collected in the downstream channel
after collision in the air without any obvious longitudinal stretching.

It could be seen that when the discharge flow was large, the energy dissipation scheme of a
dovetail-shaped slit could cause the water nappe to stretch fully along the river course; the outer edge
of the water nappe, however, would be closer to the riverbank slope. Although the water nappe could
not be fully stretched along the longitudinal direction under low flow rates, the water nappe entry
was located in the main channel, which could meet the flood discharge requirements. In conclusion,
this scheme could satisfy the safety flood discharge requirements for the ShiZiYa reservoir.
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