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Abstract: In this paper, to interpret the cost structure of decentralized wastewater treatment plants
(DWWTPs) in rural regions, a simple nonparametric regression algorithm known as multivariate
adaptive regression spline (MARS) was proposed and applied to simulate the construction cost (CC),
operation and maintenance cost (OMC), and total cost (TC). The effects of design treatment capacity
(DTC), removal efficiency of chemical oxygen demand (RCOD), and removal efficiency of ammonia
nitrogen (RNH3-N) on the cost functions of CC, OMC, and TC were analyzed in detail. The results
indicated that: (1) DTC is the most important parameter to determine cost structure with relative
importance of 100%, followed by RCOD and RNH3-N with relative importance of 16.55%, and 9.75%,
respectively; (2) when DTC is less than 5 m3/d, the slopes of CC and TC on DTC are constants of
1.923 and 1.809, respectively, with no relationship with RCOD and RNH3-N; (3) when DTC is less
than 20 m3/d, the OMC is a constant of 435 RMB/year; and (4) in other cases, CC, OMC, and TC are
related to RCOD and RNH3-N besides DTC. Compared with widely used support vector machine
(SVM) models and multiple linear regression (MLR) models, the MARS model has better statistical
significance with greater R values and smaller RMSE and MAPE values, which indicated that the
MARS model is a better way to approximate the cost for DWWTPs.

Keywords: multivariate adaptive regression spline (MARS); decentralized wastewater treatment
plants (DWWTPs); construction cost (CC); operation & maintenance cost (OMC); total cost (TC)

1. Introduction

“New rural construction” proposed in 2005 in China, is a new policy to realize sustainable
development in rural regions with a prosperous economy, perfect facilities, a beautiful environment,
and a harmonious civilization [1,2]. However, increasing amount of domestic sewage was drained into
rural water environment without proper treatment. To construct “new rural”, economic and effective
sewage treatment facilities are needed [3]. In rural regions with limited budgets, the cost structure
of wastewater treatment including construction cost (CC), operating and maintenance cost (OMC),
and total cost (TC) require better understanding to help create economically feasible water quality
management programs in the future, and to help in the planning of wastewater treatment plants [4–6].

In the past, cost structures of municipal wastewater treatment plants (MWWTPs) were
studied in lots of literatures, and wastewater treatment capacity was the primary consideration.
Regression methods, such as simple linear regression, multiple linear regression, non-linear regression
were applied to evaluate the relationship between treatment capacity and treatment cost [4,7].
Since uncertainties exist in cost estimations, such as wastewater generation, treatment, and reuse, fuzzy
technology was integrated into regression models to generate fuzzy linear regression models, fuzzy
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nonlinear regression models, and fuzzy goal regression models. The input and output variables and
regression coefficients were taken as fuzzy numbers in fuzzy regression models [4,7–10]. The effects of
treatment level (secondary treatment and advanced secondary treatment) or treatment units (anaerobic
pond, anaerobic tank, constructed wetland) combined with treatment capacity on CC and OMC
of MWWTPs were also analyzed and modeled [7–9,11]. In rural regions, the CC and OMC of
wastewater treatment plants (WWTPs) are higher than urban regions due to a smaller and dispersed
population, intermittent sewage discharge, lower water supply standard, significant fluctuation of
water consumption, smaller sewage treatment scale, more complex topographic conditions, and more
difficult to collect wastewater. To decrease CC and OMC of WWTPs in rural regions, the decentralized
wastewater treatment plants (DWWTPs), which means that sewage is collected according to the zoning
and the sewage is treated separately in each zone, are suitable. Therefore, DWWTPs are drawing wider
interest from all over the world, especially water-deficient countries and regions [12,13]. However, only
treatment capacity is given to the cost structure of DWWTPs [12–14]. In MWWTPs, it was reported
that removal of biological oxygen demand (BOD) and nutrients affects the cost significantly due to the
substantial increase of tank volume for nitrification [15]. In this paper, the effects of removal of organic
pollutants and nutrients on the cost of DWWTPs were analyzed by proposing a multivariate adaptive
regression spline (MARS) model. By partitioning training data sets into separate piecewise linear
segments (splines) of differing gradients (slopes), a MARS model fit the relationship between a set of
input variables and dependent variables in high-dimensional data [16], which has been successfully
applied to predict and classify in many engineering fields [17–21]. The MARS model has the advantages
of suitable for nonlinear systems, easy to interpret, and variables appear in the resulting model directly.
Additionally, MARS does not need to assume the distribution of the predictor variables, which is very
important because the variables in cost models are not normally distributed [20]. However, MARS has
not been applied to predict wastewater treatment costs to date.

In this paper, the MARS model was applied to predict CC, OMC, and TC for DWWTPs in
rural regions, which can help analyze cost-efficiency more accurately. In the MARS model, factors
taken into account included not only the design treatment capacity (DTC), but also the removal
efficiency (R) of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N), termed as RCOD
and RNH3-N, respectively.

2. Methods

2.1. Data Set

The cost data for rural sewage treatment systems were collected from 215 sets of DWWTPs
located in Changshu region of Jiangsu Province in China, which were in operation. The research
scope included 11 districts: Bixi District, Southeast Street, Yushan Town, Meili Town, Haiyu Town,
Guli Town, Shajiabang Town, Zhitang Town, Dongbang Town, Shanghu Town, and Xinzhuang Town.
Since rural wastewater has the characteristic of fair biological treatability without toxic or harmful
substances, four treatment technologies were adopted: membrane bioreactor (MBR), sequencing batch
reactor (SBR), biological filter and artificial wetland (BFAW), and purification tank (PT). In the cost
model of MWWTPs, treatment capacity and treatment level are regarded as two most important
drivers [8,22]. However, in rural regions, the sewage is primarily consisted of domestic wastewater,
in which COD and NH3-N are the main pollution factors [23]. Therefore, RCOD and RNH3-N were
selected to represent treatment level. The mean values of parameters with various treatment capacities
are shown in Table 1.
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Table 1. Mean value of parameters for the selected samples.

x1 (DTC)
(m3/d) x2 (RCOD) x3 (RNH3-N) y1 (CC)

(104 RMB/Year)
y2 (OMC)

(104 RMB/Year)
y (TC)

(104 RMB/Year)

1 (109) 0.57 (0.14) 0.63 (0.15) 0.08 (0.02) 0.01 (0.00) 0.09 (0.02)
2 (9) 0.64 (0.11) 0.65 (0.11) 0.25 (0.13) 0.02 (0.01) 0.27 (0.13)
5 (36) 0.62 (0.17) 0.58 (0.15) 0.92 (0.14) 0.06 (0.03) 0.98 (0.15)

10 (23) 0.64 (0.17) 0.55 (0.16) 1.57 (0.39) 0.11 (0.08) 1.68 (0.38)
15 (16) 0.66 (0.08) 0.61 (0.07) 1.63 (0.45) 0.12 (0.11) 1.76 (0.47)
20 (9) 0.69 (0.14) 0.59 (0.12) 1.94 (0.23) 0.21 (0.11) 2.15 (0.27)
45 (3) 0.64 (0.09) 0.52 (0.17) 4.34 (0.85) 0.38 (0.21) 4.72 (1.01)
50 (3) 0.74 (0.05) 0.68 (0.04) 5.45 (1.58) 0.6 (0.3) 6.05 (1.86)
60 (5) 0.62 (0.17) 0.61 (0.10) 5.53 (0.67) 0.3 (0.18) 5.83 (0.78)

100 (1) 0.61 (0) 0.57 (0) 6.01 (0) 0.5 (0) 6.52 (0)
110 (1) 0.71 (0) 0.63 (0) 11.54 (0) 0.57 (0) 12.11 (0)

Note: In column 1, numbers in parenthesis refer to the set numbers of specific design treatment capacity, and in
other columns, numbers in parenthesis refer to standard deviations.

In Table 1, x1 refers to DTC (ranges from 1 m3/d to 110 m3/d), x2 stands for RCOD, x3 represents
RNH3-N, y is TC including y1 (CC) and y2 (OMC). In this paper, CC and OMC refer to annual
construction cost, and annual operation and maintenance cost, respectively. The annual construction
cost is obtained using Equation (1):

CC =
r · (1 + r)t

(1 + r)t − 1
· IC (1)

where IC is the investment cost (104 RMB); r is the discount rate, which is set to be 0.035; and t is the
expected life of the plant, which is assumed to be 10 years.

The construction costs were supplied by the Construction Bureau in Changshu City, and the
operation and maintenance costs were supplied by Suzhou Hongyu Wastewater Treatment Engineering
Limited Corporation. In the MARS model, the dataset was divided into two subsets: a training set
with 160 samples for developing the MARS model and a testing set with 55 samples for verifying the
developed MARS model. The training set included 88 sets with DTC of 1 m3/d, 9 sets with DTC of
2 m3/d, 21 sets with DTC of 5 m3/d, 23 sets with DTC of 10 m3/d, 7 sets with DTC of 15 m3/d, 5 sets
with DTC of 20 m3/d, 2 sets with DTC of 45 m3/d, 2 sets with DTC of 50 m3/d, 2 sets with DTC of
60 m3/d, and 1 set with DTC of 110 m3/d. The other data were selected for the testing set.

The data were normalized between 0 and 1 by Equation (2) as follows:

dnorm =
d− dmin

dmax − dmin
(2)

where dnorm is the normalized value of the dataset, d is the input/output variable, dmin is the minimum
value of the dataset, and dmax is the maximum value of the dataset. In the following discussion, if there
is no special explanation, all the variables refer to the variables being normalized.

2.2. Multivariate Adaptive Regression Spline (MARS)

Multivariate adaptive regression spline (MARS) was introduced by Friedman, which is a
nonparametric regression modeling procedure that can approximate the relationship between a
dependent variable (y) and a set of independent variables (x1, x2, . . . , xn) with a piecewise
regression [16,19,23,24]. Functions fitted in piecewise regression are called basis functions (BFs)
of the MARS methods. BFs can be either single spline function or a product of two or more spline
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functions for different explanatory variables [19,20,24–30]. The form of MARS is expressed based on
multivariate spline basis functions as follows:

Y = β0 +
M

∑
m=1

βmBm(X) = β0 +
M

∑
m=1

βm

Km

∏
i=1

max{Sim(xj(i,m) − tim), 0} (3)

where Y represents the predicted value of the response; β0 is the constant; βm is the coefficient of
the mth term of the basis function Bm(X); M is the number of basis functions; Sim = ±1; xj(i,m) is
the explanatory variables associated with the basis function Bm(x1, x2, · · · , xn), i.e., the values of
the jth explanatory variables at the ith node of the mth basic function; Km is the level of interaction
between j(i,m) variables; and tim indicates the node locations for Bm(x1, x2, · · · , xn), which are the
interface points between pieces, called knots in the MARS model. In this paper, X = (x1, x2, x3) and
Y = (y, y1, y2).

The definition of each BF is selected from the collection C where:

C = {{max{(xj − t), 0}, max{(t− xj), 0}}t,j : t ∈ {xj1, · · · , xjn}, j = 1, · · · , k}. (4)

Each basis function is piecewise linear with a knot t at xji, which can be multiplied together to
form non-linear functions. The location and number of the needed spline basis functions were found
through a second-order forward/backward stepwise regression procedure. For example, a two-sided
basis function with knot t of 0.5 is shown in Figure 1.
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Figure 1. A graphical representation of a spline basis function: The left spline (max (0, t −x)) is shown
as a dashed line and the right spline (max (0, x − t)) is shown as a solid line.

The basis functions are generated through two steps, which are the forward phase and backward
pruning phase, detailed as follows.

2.3. Step 1 (Forward Phase)

In the forward stage, MARS becomes larger by considering a great number of basis functions and
all possible variables among the predictor variables. In this phase, potential knots are continuously
found to be added into basis functions to improve the performance until the model reaches a
predetermined allowable maximum number of basis functions. Consequently, an over-fit model
is generated as follows:

y′ = β0 +
M

∑
m=1

βmBm(x) (5)

where y′ is the predicted value for the response variable.
The regression coefficients βm, m = 0, 1, · · · , M are estimated using the MARS method to obtain

the center of the dependent variable.
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2.4.Step 2 (Backward Pruning Phase)

In this phase, the basis function with the least contribution to the model performance was deleted
one by one, leading to a simplified and generalized MARS model. Generalized cross-validation (GCV)
criterion is used to assess the importance of variables, which can be expressed as follows:

GCV(M) =

1
N

N
∑

i=1
[yi − f (xi)]

2

[1− C(M)
N ]

2 (6)

in which N is the number of observations, and f (xi) is the predicted values of the MARS model. C(M)

is a complexity penalty that increases with number of basis functions in the model, defined as:

C(M) = (M + 1) + d×M (7)

where M is the number of basis functions, and d is the penalizing parameter. With the rise of the d
value, fewer knots are obtained and function estimation becomes smoother. The optimal value of d is
among 2 to 4 [16,29]. In this study, a default value of 3 is assigned to the penalizing parameter.

The importance of the variable can be obtained by assessing the decrease in the GCV values when
the variable is removed from the model. The most important variable with the highest decrease in the
GCV values is assigned a score of 100. The scores of the other variables are obtained according to the
ratio of the decrease in the GCV values by these variables to that of the most important variable.

The effect of the input variables on the output variables can be explained well using analysis of
variance (ANOVA) decomposition of the calculation results. In this paper, the relative importance of
the input variabls x1, x2, and x3 to the output variables y, y1, and y2 can be identified using ANOVA
decomposition. The ANOVA decomposition of the developed MARS model is given by Equation (8)
as follows:

f (x) = β0 + ∑
B=1

fi(xi) + ∑
B=2

fij(xi, xj) + ∑
B=3

fijk(xi, xj, xk) (8)

where ∑
B=1

fi(xi) is the overall basis function involving only a single variable, ∑
B=2

fij(xi, xj) is the overall

basis function involving exactly two variables, and ∑
B=3

fijk(xi, xj, xk) is the overall basis function

involving three variables. The MARS model is created using the Software Salford Predictive Modeler
8.2, Salford Systems Company, San Diego, U.S.

3. Results and Discussion

3.1. Choose the Maximum Basis Function Number and Order Number

The maximum basis function number determined the performance of the MARS model in the
forward step. The effects of numbers of maximum basis functions on the training performance are
significantly different for model order in the MARS model, shown in Figure 2. Model order refers to
the maximum interaction number of the basis functions.

The training performance was assessed in terms of coefficient R. The value of R was determined
using Equation (9) as follows:

R =

n
∑

i=1
(yi − yi0)(y

′
i − y′i0)√

n
∑

i=1
(yi − yi0)

2

√
n
∑

i=1
(y′i − y′i0)

2
(9)
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where yi and y′i are the actual and predicted y values, respectively, and yi0 and y′i0 are the means of
actual and predicted y values corresponding to n patterns. In this study, the value of n was 160 and 55
for the training and testing datasets, respectively.

It can be shown from Figure 2 that for the first order curve, the training performance increased
with the maximum basis function number initially, and then remained invariable when the maximum
basis function number was greater than 5, which means that the maximum basis function number
can be chosen to be greater than 5. For the second order curve and the third order curve, we found
that the two curves kept the same variation trend when the maximum basis function number was
lower than 20. When the maximum basis function number was greater than 20, the third order training
performance curve was better than that of the second order. However, the advantage was not apparent.
The coefficient R was 0.981 with a maximum basis function number of 20 for the second order, which
was close to 1. Consequently, to simplify the MARS model, model order was set to be 2, and the
maximum basis function number was set to be 20. The input and output datasets were normalized
using Equation (2).
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3.2. Basis Functions and ANOVA Decomposition

3.2.1. Construction Cost (CC)

Through the forward phase and backward pruning phase, six basis functions were used to reach
the minimum GCV value, which can represent the construction cost (CC) with the best solution.
The MARS expression of CC (y1) was given according to Equation (10) and Table 2:

y1 = 0.071 +
6

∑
m=1

βmBm(x) (10)

Table 2. Basis functions of y1 and corresponding coefficients.

Bm(x) Equations βm

B1(x) max(0, x1 − 0.037) 1.19
B2(x) max(0, 0.037 − x1) −1.923
B3(x) B1(x) ×max(0, x2 − 0.746) −15.299
B4(x) B1(x) ×max(0, x2 − 0.716) 10.63
B5(x) max(0, x1 − 0.083) −0.937
B6(x) B5(x) ×max(0, x3 − 0) 0.802
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The details of the basis functions in the MARS model for construction cost (y1) are shown in
Table 2. The effects of variables x1, x2, and x3 on y1 were determined using the slopes and intervals of
basis functions.

(1) In Table 2, the first column Bm(x) (m = 1, 2, . . . , 6) refers to the basis functions in the MARS model,
the second column describes the equation form for Bm(x) (m = 1, 2, . . . , 6), and the third column
is the coefficient for Bm(x) (m = 1, 2, . . . , 6). For example, for B1(x) in Table 2, if (x1 − 0.037) is
greater than 0, i.e., DTC greater than 5 m3/d, then the value of B1(x) is equal to (x1 − 0.037); and
B1(x) is equal to 0 if (x1 − 0.037) is less than or equal to 0. A positive estimated coefficient βm for
the basis function indicated an increased construction cost, and a negative estimated coefficient
βm indicated a decreased construction cost. From this information, the effect of x1 on y1 had three
impacts. When x1 was less than 0.037 (DTC less than 5 m3/d), then y1 (CC) had no relationship
with either x2 (RCOD) or x3 (RNH3-N), and increased by 1.923 for each 1% increase in x1.

(2) When x1 was greater than 0.037 and less than 0.083 (DTC greater than 5 m3/d and less than
10 m3/d), then y1 (CC) depended on both x1 and x2 (RCOD) with no relationship with x3

(RNH3-N).

(i) When x2 was less than 0.716 (RCOD less than 69.5%), then y1 (CC) depended on x1 without
relationship with x2, and increased by 1.19 for each 1% increase in x1.

(ii) When x2 was greater than 0.716 and less than 0.746 (RCOD greater than 69.5% and less
than 72.0%), then y1 (CC) had a relationship with both x1 and x2, and increased by 1.19 to
1.509 for each 1% increase in x1 corresponding to x2 values of 0.716 and 0.746, respectively.
The slope of y1 increased with the increase of x2.

(iii) When x2 was greater than 0.746 (RCOD greater than 72.0%), then y1 (CC) increased
by 0.323 to 1.507 for each 1% increase in x1 corresponding to x2 values of 1 and 0.746,
respectively. The slope of y1 decreased with the increase of x2.

In summary, when x1 was greater than 0.037 and less than 0.083 (DTC greater than 5 m3/d and
less than 10 m3/d), the maximum slope of CC on DTC was a constant of 1.509.

(3) When x1 was greater than 0.083 (DTC more than 10 m3/d), then y1 (CC) also depended on x1, x2

(RCOD), and x3 (RNH3-N) together, which are described in detail as follows:

(i) When x2 was less than 0.716 (RCOD less than 69.5%), then y1 (CC) had a relationship with
both x1 and x3 without consideration of x2, and increased by 0.253 (x3 = 0) to 1.055 (x3 = 1)
for each 1% increase in x1. The effect of x1 on y1 increased with the increase of x3.

(ii) When x2 was greater than 0.716 and less than 0.746 (RCOD greater than 69.5% and less
than 72%), then y1 (CC) is related to x1, x2 and x3 together. With an increase of x2 and x3,
the slope of y1 on x1 increased accordingly, and increased by 0.253 (corresponding to x2 =
0.716 and x3 = 0) to 1.374 (corresponding to x2 =0.746 and x3 = 1.0) for each 1% increase
in x1.

(iii) When x2 was greater than 0.746 (RCOD greater than 72%), then y1 (CC) was also related
to x1, x2, and x3 together. However, the slope of y1 on x1 increased with the increase of x3

and the decrease of x2, and increased by −0.614 (corresponding to x2 = 1 and x3 = 0) to
1.374 (corresponding to x2 = 0.746 and x3 = 1.0) for each 1% increase in x1.

In summary, when x1 is greater than 0.083 (DTC greater than 10 m3/d), the maximum slope of
CC on DTC was 1.374.

Therefore, conclusions can be drawn as follows:

(1) The construction cost (CC) increased with design treatment capacity (DTC), and the maximum
slope of CC on DTC decreased gradually from 1.923 to 1.374 in accordance with x1 from 0 to 1.0.
The variation of slope was also determined by x2 and x3.
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(2) When x1 was less than 0.037 (DTC less than 5 m3/d), the slope of y1 kept a constant of 1.923, and
had no relation with neither x2 (RCOD) nor x3 (RNH3-N). The result indicated that when DTC
was less than 5 m3/d, the relationship between CC and DTC was linear with a coefficient of 1.923.

(3) When x1 was greater than 0.037 and less than 0.083 (DTC ranged from 5 m3/d to 10 m3/d), the
slope of y1 had a relationship with x1 (DTC) and x2 (RCOD) without any consideration of x3

(RNH3-N).
(4) When x1 was greater than 0.083 (DTC greater than 10 m3/d) and x2 was less than 0.716 (RCOD

less than 69.5%), and the slope of y1 had a relationship with DTC (x1) and RNH3-N (x3) without
any consideration of RCOD (x2).

The ANOVA decomposition of the MARS model aims to put together the basis functions with the
same input variables. The ANOVA decomposition of y1(CC) is shown in Table 3, from which it is clear
that the variable DTC had the maximum effect on y1, which has a maximum value of GCV, indicating
the importance of the corresponding ANOVA function.

Table 3. Results of ANOVA decomposition in construction cost.

Function Standard Deviation GCV Basis Variable

1 0.068 0.0034 3 DTC
2 0.019 0.0009 2 DTC, RCOD
3 0.057 0.0007 1 DTC, RNH3-N

In Table 3, the ANOVA function number is listed in the first column; the second column provides
the standard deviation of this function, which gives an indication of its relative importance to the
overall model and can be interpreted in a manner similar to the standardized regression coefficient in a
linear model; the third column also gives an indication of the importance of the corresponding ANOVA
function by listing the GCV score for a model with all BFs corresponding to that particular ANOVA
function removed; the fourth column gives the number of BFs comprising the ANOVA function; and
the last column gives the particular input variables associated with the ANOVA function.

3.2.2. Operation and Maintenance Cost

The MARS expression of operation and maintenance cost is given by Equation (11). Only two
basis functions were obtained by the forward phase and backward pruning phase of the MARS model
to get the minimum GCV value.

y2 = 0.044 +
2
∑

m=1
βmBm(x)

= 0.044− 1.829×max(0, x1 − 0.174) + 4.221×max(0, x1 − 0.174)×max(0, x3 − 0)
(11)

It can be shown that the effect of x1 has two impacts:

(1) When x1 was less than 0.174 (DTC less than 20 m3/d), then y2 was a constant of 0.044, i.e., OMC
was a constant of 435 RMB/year.

(2) When x1 was greater than 0.174 (DTC greater than 20 m3/d), then slope of y2 increases from
−1.829 to 2.392 (i.e., −1.829 + 4.221) corresponding to an x3 value of 0 (RNH3-N of 3.42%) and
1.0 (RNH3-N of 91.89%). When the value of x3 increases from 0 to 0.13 (RNH3-N increased from
3.42% to 14.9%), the slope of y2 increased from −1.829 to 0, and the value of y2 decreased with the
increase of x1 due to negative slopes. When the value of x3 increased from 0.13 to 1.0 (RNH3-N
increased from 14.9% to 91.89%), the slope of y2 increased from 0 to 2.392, and the value of y2

increased with the increase of x1 due to positive slope values.

Therefore, the conclusion about operation and maintenance cost (OMC) can be drawn as follows:
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(1) When DTC was less than 20 m3/d, y2 was a constant of 0.444 (OMC is 435 RMB/year) without
relationship with the value of DTC. When DTC was greater than 20 m3/d, and x3 was less than
0.13 (RNH3-N less than 14.9%), y2 decreased with an increase of x1 due to the negative slope of y2.
In contrast, when DTC was greater than 20 m3/d, and x3 was greater than 0.13 (RNH3-N greater
than 14.9%), y2 increased with the increase of x1 due to a positive slope of y2.

(2) The value of y2 had no relationship with x2 (RCOD).

The ANOVA decomposition of y2 (OMC) showed that only variable DTC had an effect on the
MARS model of y2 (OMC) separately with a standard deviation of 0.095 and GCV of 0.015.

3.2.3. Total Cost

The MARS expression of total cost is given by Equation (12). The details of basis functions in the
MARS model for total cost y are shown in Table 4.

Table 4. Basis functions of y and corresponding coefficients.

Bm(x) Equation βm

B1(x) max(0, x1 − 0.037) 1.336
B2(x) max(0, 0.037 − x1) −1.809
B3(x) B1(x) ×max(0, x2 − 0.818) −64.45
B4(x) B1(x) ×max(0, x3 − 0.709) 74.024
B5(x) B1(x) ×max(0, x2 − 0.8) 43.353
B6(x) B1(x) ×max(0, x2 − 0.844) 19.429
B7(x) B1(x) ×max(0, x3 − 0.703) −78.757
B8(x) max(0, x1 − 0.083) −0.828
B9(x) B8(x) ×max(0, x3 − 0.648) 9.071

y = 0.067 +
9

∑
m=1

βmBm(x) (12)

The MARS model of TC (y) combined the models of y1 (CC) and y2 (OMC) with consideration of
all the variables.

The ANOVA decomposition of y (TC) is given in Table 5. Similar to y1 (CC), the effect of DTC on
y (TC) was the most significant in all three variables with the maximum value of GCV.

Table 5. Results of ANOVA decomposition for total cost.

Function Standard Deviation GCV Basis Variable

1 0.1 0.0069 3 DTC
2 0.034 0.0012 3 DTC, RCOD
3 0.026 0.0008 3 DTC, RNH3-N

The effects of x1 (DTC) on y (TC) are three-fold (shown in Figure 3a,b):

(1) When x1 was less than 0.037 (DTC less than 5 m3/d), then y (TC) increased by 1.809 for each 1%
increase in x1, and variables x2 (RCOD) and x3 (RNH3-N) had no effects on slope of y, which can
also be seen in Figure 3a,b.

(2) When x1 was less than 0.083 and greater than 0.037 (DTC was less than 10 m3/d and greater than
5 m3/d), then y (TC) depended on x1 (DTC), x2 (RCOD), and x3 (RNH3-N) together, which is
described in detail as follows:

(i) When x2 was less than 0.8 (RCOD less than 76.6%), then y (TC) depended on both x1 and
x3 together without consideration of x2 (shown in Figure 3a). The slope of y was a constant
of 1.336 when x3 was less than 0.703. When x3 ranged from 0.703 to 0.709 (i.e., RNH3-N
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from 65.6% to 66.1%), the slope of y decreased from 1.336 to 0.863 accordingly. When x3

ranged from 0.709 to 1.0 (RNH3-N from 66.1% to 91.89%), the slope of y decreased from
0.863 to −0.514 accordingly.

(ii) When x3 was less than 0.703 (RNH3-N less than 65.6%), then y (TC) depended on both
x1 and x2 together without consideration of x3 (shown in Figure 3b). When x2 ranged
from 0.8 to 0.818 (RCOD from 76.6% to 78.1%), the slope of y increased from 1.336 to 2.117
accordingly. When x2 ranged from 0.818 to 0.844 (RCOD from 78.1% to 80.3%), the slope
of y decreased from 2.117 to 1.568 accordingly. When x2 ranged from 0.844 to 1.0 (RCOD
from 80.3% to 93.47%), the slope of y decreased from 1.568 to 1.308 accordingly.

(iii) When x2 was greater than 0.8 and x3 was greater than 0.703, then the effect x1 on y was
connected with the effect of both x2 and x3.

(3) When x1 is greater than 0.083 (DTC greater than 10 m3/d), then y (TC) depended on x1, x2, and
x3 together, which is described as follows:

(i) When x2 was less than 0.8, then y (TC) depended on both x1 and x3 together without
consideration of x2 (shown in Figure 3a. When x3 was less than 0.648 (RNH3-N less than
60.7%), the slope of y was a constant of 0.508. When x3 ranged from 0.648 to 0.703 (RNH3-N
from 60.7% to 65.6%), the slope of y increased from 0.508 to 1.007 accordingly. When x3

ranged from 0.703 to 0.709 (RNH3-N from 65.6% to 66.1%), the slope of y decreased from
1.007 to 0.588 accordingly. When x3 ranged from 0.709 to 1.0 (RNH3-N from 66.1% to
91.89%), the slope of y increased from 0.588 to 1.851 accordingly.

(ii) When x3 was less than 0.648 (RNH3-N less than 60.7%), then y (TC) depended on x1 and
x2 together without consideration of x3 (shown in Figure 3b). When x2 ranged from 0.8 to
0.818 (RCOD from 76.6% to 78.1%), the slope of y increased from 0.508 to 1.288 accordingly.
When x2 ranged from 0.818 to 0.844 (RCOD from 78.1% to 80.3%), the slope of y decreased
from 1.288 to 0.74 accordingly. When x2 ranged from 0.844 to 1.0 (RCOD from 80.3% to
93.47%), the slope of y decreased from 0.74 to 0.48 accordingly.

(iii) When x2 was greater than 0.8 and x3 was greater than 0.648, then the effect of x1 on y was
connected with the effect of both x2 and x3.

Therefore, the conclusions for TC can be drawn as follows:

(1) When x1 was less than 0.037 (DTC less than 5 m3/d), the slope of y (TC) was a constant of 1.809,
and had no relation with neither x2 (RCOD) nor x3 (RNH3-N), which was similar to the slope of
y1 (CC).

(2) When x1 was greater than 0.037 and less than 0.083 (DTC range from 5 m3/d to10 m3/d), the slope
of y (TC) had a relationship with both x2 (RCOD) and x3 (RNH3-N). When x2 was less than 0.8
(RCOD less than 76.6%), the slope of y had a relationship with x3 without consideration of x2.
When x3 was less than 0.703 (RNH3-N less than 65.6%), the slope of y had a relationship with x2

without consideration of x3. In addition, when x2 was less than 0.8 (RCOD less than 76.6%) and
x3 was less than 0.703 (RNH3-N less than 65.6%), the slope of y had no relationship with either x2

or x3.
(3) When x1 was greater than 0.083 (DTC greater than 10 m3/d), the slope of y had a relationship

with both x2 (RCOD) and x3 (RNH3-N). When x2 was less than 0.8 (RCOD less than 76.6%),
the slope of y had a relationship with x3 without consideration of x2. When x3 was less than 0.648
(RNH3-N less than 60.7%), the slope of y had a relationship with x2 without consideration of x3.
In addition, when x2 was less than 0.8 and x3 was less than 0.648 (RCOD less than 76.6% and
RNH3-N less than 60.7%), the slope of y had no relationship with either x2 or x3.
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Figure 3. (a) Effect of design treatment capacity x1 on total cost under different x3 without consideration
of x2 < 0.8. (b) Effect of design treatment capacity x1 on total cost under different x2 without
consideration of x3 (x3 < 0.648).

The relative importance of variables and the relationship among variables are shown in Table 6,
from which we can find that DTC was the most important variable in determining the total cost of
sewage treatment facilities, which was the same as the results of ANOVA decomposition.

Table 6. Relative importance of variables and their relationship.

Variable x1 x2 x3 y Relative Importance Cm

x1 1 100
x2 0.221 1 16.55
x3 −0.02 0.47 1 9.75
y 0.963 0.248 −0.029 1
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From Table 6, we can also find that y (TC) had a significant relationship with x1 (DTC), which
means that TC increased with the development of DTC. Compared with x1 (DTC), the relationship
between y (TC) and x2 (RCOD), as well as the relationship between y (TC) and x3 (RNH3-N), were
lower. In addition, x2 (RCOD) was more significant than x3 (RNH3-N).

The relationships among variables in the MARS model is shown in Figure 4a,b. The value of y
(TC) rose with variables x1 and x2, and the contribution of x1 was greater than x2. A similar conclusion
that the contribution of x1 on TC (y) was greater than x3 can be seen from Figure 4b. The results are
consistent with the above analysis.
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Figure 4. (a) Contribution to total cost y of the second order term of the variables design treatment
capacity (x1) and removal efficiency of chemical oxygen demand (x2). (b) Contribution to total cost
y of the second order term of the variables design treatment capacity (x1) and removal efficiency of
ammonia nitrogen (x3).

The total cost of building wastewater treatment plants in rural regions is an important issue
concerning regional sustainable development, which is very difficult to be accurately simulated due
to its nonlinear characteristics. Consequently, the multivariate adaptive regression spline (MARS)
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model is applied to predict the total cost of DWWTPs in this paper. The MARS model has its own
advantages: (1) it does not require assumption of relationships between input and output variables,
(2) automatically finds the best knots in basis functions, (3) can provide a more precise relationship
between the response variable and predictor, and (4) does not require a long training process to reduce
modeling time [29,30]. Therefore, the stepwise model obtained through MARS technology is a suitable
method to predict total cost.

The model obtained through the MARS method was able to predict CC, OMC, and TC in DWWTPs.
The comparisons of training dataset and testing dataset between real values and predicted values for
CC, OMC, and TC are shown in Figure 5. In Figure 5, all the variables are in their original scale, not in
the normalized scale.
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dataset between real total cost and predicted total cost. (f) Comparison of testing dataset between real 
total cost and predicted total cost. 

The comparisons of the training dataset and testing dataset between real and predicted values for CC 
are shown in Figures 5a,b, respectively. The results of CC obtained in the training dataset were better 
than the results obtained in the testing dataset, which can also be observed in Table 7. The value of R 
for the training dataset (0.985) was greater than the value of R for the testing dataset (0.983). The 
comparisons of the training dataset and testing dataset between real and predicted values for OMC 
are shown in Figures 5c,d, respectively. The results of OMC obtained in the testing dataset were better 
than the results obtained in the training dataset, which can also be observed in Table 7. The value of 
R for the testing dataset (0.846) is greater than the value of R for the training dataset (0.753). In 
addition, through the MARS method, the OMC model was obtained and expressed by Equation (11). 
When x1 was less than 0.174 (DTC less than 20 m3/d), OMC was a constant of 435 RMB/year. Since 

Figure 5. (a) Comparison of training dataset between real construction cost and predicted construction
cost. (b) Comparison of testing dataset between real construction cost and predicted construction cost.
(c) Comparison of training dataset between real OMC and predicted OMC. (d) Comparison of testing
dataset between real OMC and predicted OMC. (e) Comparison of training dataset between real total
cost and predicted total cost. (f) Comparison of testing dataset between real total cost and predicted
total cost.
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The comparisons of the training dataset and testing dataset between real and predicted values
for CC are shown in Figure 5a,b, respectively. The results of CC obtained in the training dataset were
better than the results obtained in the testing dataset, which can also be observed in Table 7. The value
of R for the training dataset (0.985) was greater than the value of R for the testing dataset (0.983).
The comparisons of the training dataset and testing dataset between real and predicted values for OMC
are shown in Figure 5c,d, respectively. The results of OMC obtained in the testing dataset were better
than the results obtained in the training dataset, which can also be observed in Table 7. The value of R
for the testing dataset (0.846) is greater than the value of R for the training dataset (0.753). In addition,
through the MARS method, the OMC model was obtained and expressed by Equation (11). When
x1 was less than 0.174 (DTC less than 20 m3/d), OMC was a constant of 435 RMB/year. Since there
were 148 samples among 160 samples in the training set with DTC less than 20 m3/d, and there were
45 samples among 55 samples in the testing set with DTC less than 20 m3/d, many data points in
Figure 5c,d were flat. The comparisons of training and testing datasets between real and predicted
total cost (TC) are shown in Figure 5e,f, respectively. Similar to CC, the results of TC obtained in the
training dataset were better than the results obtained in the testing dataset, which can also be observed
in Table 7. The value of R for the training testing dataset (0.968) was greater than the value of R for the
testing dataset (0.964).

Table 7. Accuracy comparison among multivariate adaptive regression spline (MARS), support vector
machine (SVM), and multiple linear regression (MLR) for the training and testing datasets.

Variables Dataset
R RMSE MAPE

MARS SVM MLR MARS SVM MLR MARS SVM MLR

y1
training 0.985 0.964 0.935 0.249 0.937 0.369 0.121 8.625 0.977
testing 0.983 0.965 0.918 0.044 0.825 0.997 0.027 3.893 0.703

y2
training 0.753 0.763 0.565 0.088 0.099 0.081 2.558 5.420 1.206
testing 0.846 0.825 0.673 0.093 0.093 0.091 1.300 3.199 0.893

y training 0.968 0.964 0.929 0.561 1.005 0.452 0.281 7.984 0.861
testing 0.964 0.956 0.904 0.421 0.833 0.770 0.273 3.599 0.813

According the results of TC, shown in Figure 5e,f, the cost of treating 1 m3 of sewage ranged from
147 RMB/year to 1512 RMB/year, with an average of 687 RMB/year.

3.3. Comparison with the Other Models

In this paper, the support vector machine (SVM) method and a multiple linear regression (MLR)
model were applied to compare the results with a training set and a testing set (the same sets that were
applied for validation of MARS model).

Besides the correlation coefficient of R, the accuracy performance of models were also assessed by
root mean square errors (RMSE) and mean absolute percent error (MAPE), expressed by Equations
(13) and (14), respectively, as follows:

RMSE =

√√√√√ n
∑

i=1
(yi − y′i )

2

n
(13)

MAPE =

n
∑

i=1

∣∣yi − y′i
∣∣/yi

n
(14)

The comparisons of R, RMSE, and MAPE among the three methods of MARS model, SVM model,
and MLR model were calculated using Equations (9), (13), and (14), respectively, and shown in Table 7.

As can be seen, R training data values of y1 for MARS, SVM, and MLR were 0.985, 0.964, and 0.935,
respectively; and R testing data values of y1 for MARS, SVM, and MLR were 0.983, 0.965, and 0.918,
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respectively. Results show that MARS was the fittest model of y1 in terms of maximizing R values,
with a value roughly 2% above SVM, and 5% above MLR. In terms of RMSE and MAPE, the MARS
model was the lowest for both training and testing data. As for y2, R training data values for MARS,
SVM, and MLR were 0.753, 0.763, and 0.565, respectively; and R testing data values for MARS, SVM,
and MLR were 0.846, 0.825, and 0.673, respectively. Results also indicated that the MARS model fitted
y2 better than MLR and almost the same as SVM (1% below SVM for training data). In addition,
R training data values of y for MARS, SVM, and MLR were 0.968, 0.964, and 0.929, respectively; and R
testing data values of y for MARS, SVM, and MLR were 0.964, 0.956, and 0.904, respectively. Results
also indicated that MARS was the best model to fit y.

MARS model had better statistical results with higher R values than SVM model and the MLR
method. It can also be found that the simulation results of y2 for the three models were not as good as
that for y1 and y as seen by the relatively lower R values. In addition, although the R values of the
SVM model were closer to that of the MARS model, the RMSE and MAPE values of the SVM model
were greater than that of MARS model, especially for y1 and y, which verified that the performance of
the MARS model was better than the SVM model. The simulation accuracies of y, y1, and y2 for the
training and testing datasets among the three models were in the order of MARS > SVM > MLR, except
for y2 for the training dataset, which indicated that MARS model was a more effective method to
simulate the cost structure of DWWTPs than the SVM and MLR models. Moreover, the cost structure
of DWWTPs had the characteristics of being stepwise and nonlinear.

4. Conclusions

In this paper, a MARS model is proposed for predicting the cost structure of DWWTPs. The model
considers the effect of DTC, RCOD, and RNH3-N on CC, OMC, and TC. The results obtained can be
summarized as follows:

(1) The DTC was the most important parameter for predicting CC, OMC, and TC with a relative
importance of 100, followed by RCOD and RNH3-N with the relative parameters of 16.55 and
9.75, respectively.

(2) The slopes of CC and TC on DTC were related to DTC, RCOD and RNH3-N, which is described
in detail as follows:

(a) When DTC was less than 5 m3/d, the slopes of CC and TC on DTC were constants of 1.923
and 1.809 without consideration of RCOD and RNH3-N. The constant slope means that
that the relationship between CC or TC and DTC was linear. The positive and negative
slopes indicated the increasing and decreasing trend, respectively. The result indicated
that when DTC was less than 5 m3/d, each of the various treatment technologies with
differing RCOD and RNH3-N can be chosen by planners from an economic point of view.

(b) When DTC was greater than 5 m3/d, RCOD and RNH3-N affected the slopes of CC and
TC of DWWTPs, which can help choose treatment technology:

(i) The slopes of CC and TC on DTC had no relationship with RCOD when RCOD
was less than 69.5% and 76.6%, respectively.

(ii) When DTC was less than 10 m3/d, the slope of CC on DTC had no relationship
with RNH3-N.

(iii) When DTC was less than 10 m3/d and RNH3-N less than 60.7%, the slope of TC
on DTC had no relationship with RNH3-N.

(c) When DTC was greater than 10 m3/d and RNH3-N less than 65.6%, the slope of TC on
DTC had no relationship with RNH3-N.

(d) With the increase of DTC, the slope of CC on DTC decreased gradually from 1.923 to 1.374.

(3) The slopes of OMC on DTC were related to DTC and RNH3-N described as follows:
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(a) When DTC was less than 20 m3/d, then OMC was a constant of 435 RMB/year, which
means that 20 m3/d was the threshold for constructing DWWTPs. It can be concluded
that when the treatment scale is no more than 20 m3/d, the OMC is the same at
435 RMB/year. The conclusion is meaningful and can help managers make budget
between DTC and OMC.

(b) When DTC was greater than 20 m3/d, then slope of OMC on DTC increased with RNH3-N
and had no relationship with RCOD.

The results obtained provide useful information to perform techno-economic analysis for planners
to make decisions on treatment scale and treatment technology before construction. The developed
MARS model combined the merits of a nonparametric model and traditional multiple linear regression
with simplicity and good interpretation, which does not need to assume a statistical distribution of the
data. The non-linear structure of the cost function captured the inherent relationship between variables,
which can be expected to improve the accuracy of model. Compared with SVM and MLR models,
the simulation results obtained by the MARS model were closer to the real costs. The results showed
that the developed MARS model can be a valuable tool to predict CC, OMC, and TC of DWWTPs.
The cost–benefit evaluation can be performed more scientifically by simulating the cost structure with
the proposed MARS model. The proposed method can also be applied to other regions in China to
determine CC, OMC, and TC of DWWTPs based on DTC, RCOD, and RNH3-N, which can provide
helpful and meaningful information for local governments to make reasonable and economic plans to
protect the water environment, especially in rural regions.
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