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Abstract: The Three River Headwaters Region (TRHR) has great uncertainty on drought conditions
under climate change. The aim of this study is to compare the drought conditions detected by multiple
drought indices across the TRHR. We applied four single drought indices, i.e., Precipitation Condition
Index (PCI), Temperature Condition Index (TCI), Soil Moisture Condition Index (SMCI), and
Vegetation Condition Index (VCI), and two combined drought indices, i.e., Combined Meteorological
Drought Index (CMDI) and Combined Vegetation drought index (CVDI), to explore the drought
conditions across the TRHR. Three in situ drought indices, Standardized Precipitation Index (SPI),
Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Non-Parametric
Index (SNPI) were used to evaluate the performances of multiple drought indices. The results
include various drought conditions detected by multiple drought indices, as well as a comparative
study among different drought indices. Through the comparative study, we found that PCI was
a desirable single index to monitor meteorological drought. TCI was suitable for monitoring
agricultural/vegetation drought. SMCI and VCI should be avoided for monitoring drought in
this region. CMDI was an appropriate meteorological drought index, and CVDI was a promising
indicator in monitoring agricultural/vegetation drought.

Keywords: meteorological drought; agricultural/vegetation drought; drought index; comparison;
Three River Headwaters Region

1. Introduction

Drought is one kind of the costliest and the most complex disasters, which may bring
devastating damages to agriculture, vegetation ecology, industry and even threat human life [1–3].
Droughts can be categorized into four types, including meteorological drought, hydrological drought,
agricultural/vegetation drought and social economic drought [4]. Among them, the first three drought
types are related to water deficit in the hydrological cycle [5]. The below-normal precipitation
might result in meteorological drought. Hydrological drought is related to the deficit of streamflow
or groundwater. Agricultural/vegetation drought may occur when soil moisture falls below the
mean level. Social economic drought is associated with complicated social conditions, besides the
hydrological cycle aspect.

Numerous drought indices have been developed to evaluate droughts effectively by integrating
the station-based data into an indicator in previous studies, such as Standardized Precipitation Index
(SPI) [6,7], Standardized Precipitation Evapotranspiration Index (SPEI) [8] and Palmer Drought Severity
Index (PDSI) [9,10]. They have their own applications, advantages and effectiveness with respect
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to different drought types. SPI was calculated based on in situ precipitation data, and could be
obtained over space and time [6,7]. SPEI was obtained by standardizing the in situ precipitation
and evapotranspiration data [8]. According to research purposes of monitoring different drought
types, SPI and SPEI could be calculated at flexible time durations (e.g., 1-, 3-, 6-, 9-, 12-, and
24-month durations) [11]. These in situ drought indices can effectively monitor drought conditions
around the weather stations, but they lack sufficient spatial details to elaborate and characterize the
spatial distribution and variations of droughts. Although the statistical techniques, such as spatial
interpolation, could provide gridded data, the accuracy and the level of spatial resolution is subject
to the interpolation process and the distribution of weather stations [12]. Since remote sensing data
can provide spatial details, especially for the areas with limited ground observations, drought indices
based on satellite-based remote sensing data have attracted more attentions [13,14].

Remote sensing technology has enhanced the development of CI-based (Condition Index-based)
drought indices with simple input data, simple calculations and detailed spatial information,
e.g., Vegetation Condition Index (VCI) [15,16], Temperature Condition Index (TCI) [17], Standardized
Vegetation Index (SVI) [18] and Normalized Multiband Drought Index (NMDI) [19]. More recently,
drought indices based on the combined satellite-based remote sensing data were developed.
The Vegetation Health Index (VHI), combing VCI and TCI, was developed to evaluate the stress
of vegetation with respect to both water and temperature [16]. Rhee et al. [20] established the scaled
drought condition index (SDCI) through the combination of VCI, Precipitation Condition Index (PCI),
and TCI. Zhang and Jia [12] described the microwave integrated drought index (MIDI) for metrological
drought by integrating PCI, SMCI, and TCI. The optimized meteorological drought index (OMDI),
and optimized vegetation drought index (OADI) were introduced by Hao et al. [21] by combing VCI,
TCI, PCI, and SMCI.

Different drought indices own different characteristics, restrictions and applications. Previous
efforts mainly focused on establishing more drought indices. In fact, the applicability of different
drought indices may vary with respect to different environmental conditions. For example,
Seiler et al. [22] evaluated the severity of drought in Argentina using PCI and VCI, suggesting that
the similar patterns of precipitation and these CI-based drought indices. Rhee et al. [20] used SDCI,
the weighted combination of PCI, TCI and VCI, to evaluate the drought conditions in both the arid
regions and the humid regions, and then found that the drought conditions showed discrepancies in
spatial distribution in different areas. Quiring and Ganesh [23] compared the station-based drought
indices with VCI in Texas, and indicated that the in situ drought indices showed significant correlations
with VCI in the counties of northwestern and southwestern Texas. All these results indicated the
otherness of different drought indices. Thus, the comparative study of drought conditions using
multiple drought indices can provide not only a better understanding of drought events, but also a
comprehensive analysis of the sensitivity of drought indices.

China is vulnerable to the costly drought impacts according to past drought events [3]. Previous
studies reported that an average annual crop area affected by drought was about 209,000 km2 and
the annual direct economic losses exceeded 32 billion Yuan (based on the 2013 price levels) in the
period from 1949 to 2013 [24–26]. Thus, the variation of drought conditions in China ranging from
regional to national scales under the context of climate change has become a hotspot in China. In
several studies, the drought conditions in China were analyzed regionally by using the station-based
drought indices. For example, previous drought studies by using SPI indicated that the eastern part of
China was prone to be more hazardous than the western part of China [27]; an increase in the drought
severity was observed in Xinjiang [28]; locations of the drought area had a forward trend from south to
north and from west to east in northwest China [29]. In recent years, more endeavors have been made
to study the drought conditions in China through remotely sensed data. Zhang et al. [30] proposed a
remotely sensed Drought Severity Index (DSI), integrating both vegetation and evapotranspiration
information, and found that the DSI was effective to quantify moisture conditions at the province level
in North China. Based on a modified Temperature Vegetation Drought Index (mTVDI), Zhao et al. [31]
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found that droughts occurred more frequently in Northwest China and the southwest of Tibet, and the
Huanghuaihai Plain and Yunnan-Guizhou Plateau were identified as the drought centers, respectively.
Although such a variety of studies have aimed at the variations of drought conditions in China, yet the
regional studies about different characteristics of different drought indices are still limited. Studying
drought phenomena across a wide range of geographical region using various drought indices can
help us not only to understand the drought events better, but also to comprehensively understand the
drought indices.

The Three-River Headwaters Region (TRHR), located in western China, is well known as the
sources of the Yangtze River, the Yellow River and the Lancang River, and plays an important role in
China’s ecological system. The TRHR belongs to a typical plateau continental climate with obvious
interannual and interdecadal variations in precipitation. Summer experiences frequent rainstorms
with relatively high temperature. Meanwhile, the distribution of precipitation is extremely uneven,
and precipitation mainly occurs in the eastern and southern regions. In view of the importance of
the TRHR in ecological and water resources security, regional droughts monitoring and exploration
have practical significance. Several previous studies have monitored the drought conditions in TRHR
by using the station-based weather data [32,33]. Only a few studies explored the drought events
based on remote-sensing data [34,35]. In terms of regional drought conditions in the TRHR, few
studies compared the performances of different CI-based drought indices to deeply study drought
phenomenon and comprehensively analyze different drought indices. In the summer of 2006, the
TRHR experienced one of the worst droughts in the history of this region [36]. Thus, July 2002–2011
and April–October 2006 were selected to exemplify the spatial variation of drought conditions in
this study.

This study explores the drought conditions in the TRHR by using multiple drought indices.
Two specific questions are addressed: (1) For the drought conditions across the TRHR, what are the
drought statuses of different drought types? (2) For the CI-based drought indices, what are the features
of drought indices across the TRHR, Western China? The rest of this paper is organized as follows.
Section 2 describes materials and methods, which includes the study area, the data and the methods
used in this study. Section 3 presents the drought conditions based on multiple drought indices, and
discusses the performances of different drought indices through a comparative study. Discussion and
Conclusions are drawn in Sections 4 and 5.

2. Materials and Methods

2.1. Study Area

The study area (31.53–37.10◦ N, 89.41–102.40◦ E) is located in the hinterland of the Qinghai-Tibet
Plateau (Figure 1a). It covers an area of 312,000 km2, which involves the source regions of the Yellow
Rivers (46%), Yangtze Rivers (44%) and Lancang Rivers (10%). The TRHR experiences a wet and warm
summer, and a cool and dry winter. Due to the high elevation and the influence of the Asian monsoon,
approximately 85% of the annual precipitation occurs between May to September, and the average
temperature is −1.45 ◦C. As a result of the large spatial and temporal variations in precipitation and a
rapid increase in air temperature, the drought events in this region were found to increasingly expand
after the 1990s [37]. Figure 1 also shows other information of TRHR, including the distribution of the
annual mean values of vegetation, precipitation and temperature for the study period of 2002 to 2011.
The mean values of Normalized Difference Vegetation Index (NDVI) during the study period is derived
from GIMMS (Global Inventory Modelling and Mapping Studies) AVHRR (Advanced Very High
Resolution Radiometer) NDVI dataset [38], which could reflect the growth status of vegetation and the
degree of vegetation coverage. From Figure 1b, it is observed that the NDVI values in this region have
obvious spatial differences with a decreasing trend from the southeastern part to the northwestern part.
The spatial distribution of mean annual precipitation values for the study period, which is derived
from China’s Ground Precipitation 0.5◦ × 0.5◦ Gridded Dataset (V2.0) [39], is shown in Figure 1c.
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The annual precipitation has an obvious spatial inhomogeneous, of which the precipitation in the
southeastern part is more than that of in the northwestern part. The spatial distribution of annual
mean values in the air temperature during the study period, which is derived from China’s Ground
Temperature 0.5◦ × 0.5◦ Gridded Dataset (V2.0) [40], is shown in Figure 1d. The annual average
temperature becomes low with high elevation. Figure 1e describes the land use situation of TRHR,
which is derived from the FROM-GLC (Finer Resolution Observation and Monitoring of Global Land
Cover). FROM-GLC is the first 30-meter resolution global land cover maps produced by using Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data [41,42]. Details of the GLC
dataset were described in FROM-GLC [43]. As shown in Figure 1e, there are nine types of land in
TRHR, i.e., croplands, forest, grassland, shrubland, wetland, water, impervious surface, bareland and
snow/ice.
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2.2. Data

A wide range of local and remote datasets was used in the present study to calculate the in situ
drought indices and the multiple CI-based drought indices in the TRHR for the period of June 2002 to
October. 2011.

2.2.1. In Situ Reference Data

Monthly precipitation and mean temperature data over the TRHR were obtained from China’s
Ground Precipitation/Temperature 0.5◦ × 0.5◦ Gridded Dataset (V2.0) [39,40], which were compiled
from the 2472 ground stations over China. The spatial interpolation is carried out by using Thin
Plate Spline Interpolation method coupling with Global 30 Arc-Second Elevation (GTOPO30) Digital
Elevation Model (DEM) dataset [44]. Details of the gridded data were described in National
Meteorological Information Center (NMIC) [39,40]. This gridded dataset has been widely used
in previous studies [45,46], thus we used the gridded precipitation and temperature from this gridded
dataset directly in this study. Table 1 lists the general information of meteorological stations shown in
Figure 1 within the TRHR. In this study, the gridded precipitation and mean temperature data were
then interpolated to 0.25◦ resolution to match the corresponding remote sense pixel (0.25◦ × 0.25◦) by
using cubic convolution interpolation method [47,48].

Table 1. General information on the meteorological stations in the TRHR.

Station Name Longitude (◦ E) Latitude (◦ N) Elevation (m)

Jiangxigou 100.29 36.35 3201
Gonghe 100.37 36.16 2835
Guide 101.22 36.01 2237

Huangzhong 101.35 36.3 2668
Wudaoliang 93.05 35.13 4612
Shazhuyu 100.16 36.16 2872
Xinghai 99.59 35.35 3323
Guinan 100.44 35.35 3120
Tongde 100.36 35.15 3148
Jianzha 102.01 35.56 2086
Zeku 101.28 35.02 3663

Xunhua 102.27 35.51 1921
Tongren 102.01 35.31 2491

Tuotuohe 92.26 34.13 4533
Zhiduo 95.37 33.51 4179
Zaiduo 95.17 32.53 4066

Qumalai 95.48 34.07 4175
Yushu 96.58 33.00 3717
Maduo 98.13 34.55 4272

Qingshuihe 97.08 33.48 4415
Maxin 100.14 34.29 3719
Gande 99.54 33.58 4050
Dari 99.39 33.45 3968

Henan 101.36 34.44 3500
Jiuzhi 101.29 33.26 3629

Nangqian 96.28 32.12 3644

2.2.2. GIMMS AVHRR NDVI

In this study, the monthly GIMMS (Global Inventory Modelling and Mapping Studies) AVHRR
(Advanced Very High Resolution Radiometer) NDVI dataset, which was obtained from the NASA
Earth Exchange [49] with a spatial resolution of 8 km, was used to calculate vegetation-related drought
index. The Maximum Value Composite (MVC) method was applied to the NDVI dataset to avoid
the data noises. Studies showed that the degree of influence of clouds, sun angle, water vapors,
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aerosols and directional surface reflectance was minimized in MVC NDVI imagery [50]. The data were
resampled to be 0.25◦ resolution by using pixel aggregate method.

2.2.3. CHIRPS Precipitation

The monthly CHIRPS (Climate Hazards Group Infrared Precipitation with Stations) precipitation
dataset from Climate Hazards Group [51] with a spatial resolution of 0.05◦ was used in this study to
reflect precipitation variations and precipitation-related drought conditions. Like the NDVI dataset
mentioned above, the data were resampled to maintaining the consistency of spatial resolution in
this study.

2.2.4. MODLT1M Temperature

The land surface temperature data for calculating temperature-related drought indices in this
study was derived from MOD11 products [52] by Chinese Academy of Sciences with a spatial resolution
of 1 km [53]. The average values of MODLT1T product were calculated as the values of the monthly
temperature dataset.

2.2.5. AMSR-E Soil Moisture

In this study, soil moisture product from the National Snow and Ice Data Center (NSIDC) was
used. The spatial resolution of the dataset is 25 km × 25 km and the temporal resolution is one day.
The maximum value of ascending and descending orbits was chosen as the value of the raster. Then,
the average value of a month was defined as the monthly value of each raster cell.

2.3. Methods

2.3.1. In Situ Drought Indices

Three in situ drought indices, SPI, SPEI and SNPI, are used in this study to evaluate the
performance of CI-based drought indices across the TRHR. All of these three drought indices were
designed to quantify the drought conditions at multiple time durations [6,7]. In this study, the gridded
monthly precipitation and mean temperature series from 1970 to 2011 were used to construct SPI,
SPEI and SNPI series at 1-, 3-, 6-, 9- and 12-month time durations for each grid cells. The 1-month
SPI /SEPI/SNPI values were considered as the proper indicators for the meteorological drought,
while the 3-month and 6-month SPI/SPEI/SNPI values were applicable for agricultural/vegetation
drought [20,54].

Standardized Precipitation Index (SPI)

The SPI values are used to reproducing the wet and drought conditions contributed by
precipitation change in the TRHR [6,7]. In the present study, the monthly precipitation time series from
1970–2011 are used. The procedure of calculating SPI is briefly described as follows. First, a proper
probability distribution is selected to fit the precipitation values. Then the cumulative probability is
calculated from the fitted distribution. Lastly, the standard normal deviation is converted from the
cumulative probability with mean zero and standard deviation unity. In this study, the log-distribution
is used [5,55].

Standardized Precipitation Evapotranspiration Index (SPEI)

SPEI is a multiscale drought index based on climatic variables [8]. The monthly precipitation
and air temperature time series from 1970–2011 are used in this study to obtained the SPEI series.
There are several steps for calculating the SPEI values: (1) calculating the monthly values of potential
evapotranspiration (PET) by using the meteorological parameters; (2) calculating the differences
between the precipitation (P) and PET for a given month with the PET value; (3) aggregating the
calculated differences at different time durations; (4) calculating the probability density function by
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using the log-logistic probability distribution function based on three parameters; (5) standardizing
the probability distribution function to obtain the SPEI values.

Among them, calculating PET is difficult because it involves numerous parameters, e.g., surface
temperature, air humidity, soil incident radiation, water vapor and sensible heat fluxes. Different
methods have been developed to calculate PET based on different meteorological parameters measured
from weather stations [56,57]. Studies recently showed that the use of simple or complex methods
to calculate the PET could obtain similar results when a drought index is calculated [58]. Thus, we
have used one of the simple approaches, i.e., the Thornthwaite method, to calculate PET [59,60], which
owns the advantage of only the monthly mean temperature required. Following this method, the
monthly PET (mm m−1) is obtained as follows:

PET = 16x(
10T

I
)

a
, (1)

where T is the monthly mean air temperature in ◦C; I is a heat index, which is calculated as the sum of
12 monthly index values i, i is derived from mean monthly temperature:

i = (
T
5
)

1.514
, (2)

a is given by a third-order polynomial in the heat index I: a = 6.75E−7 I3 − 7.71E−5 I2 + 1.79E−2 I +
0.492, and x is a correction coefficient computed as a function of the latitude and month:

x =

(
N
12

)(
NDM

30

)
, (3)

where NDM is the number of days of the month, and N is the maximum number of sunshine duration
(hr), which is estimated by the following formula:

N =

(
24
π

)
arcos

(
−tanϕtan0.4093sen

(
2π J
365

− 1.405
))

, (4)

where ϕ is the latitude in radians and J is the average Julian day of the month.

Standardized Non-Parametric Index (SNPI)

SNPI is a new non-Parametric drought index that has been proposed recently [61]. Results
indicated that the SNPI values were highly comparable to the SPEI values in characterizing the
meteorological dry and wet conditions, but with minimally skewness [61]. In this study, the monthly
precipitation insufficiency (precipitation minus potential evapotranspiration) series from 1970–2011
was used to obtain the SNPI series. The procedure for calculating SNPI is two-fold. Firstly, temporal
aggregation of the monthly time series at the given relevant time scale (e.g., 1-month, 3-month) is
performed. Secondly, the aggregated results are used to obtain SNPI series by using the non-parametric
rescaling. The negative and positive SNPI values are used to characterize the dry and wet conditions
of TRHR, respectively.

2.3.2. Single CI-Based Drought Indices

Four single CI-based drought indices were calculated to detect the drought conditions from a
comprehensive prospect, including Precipitation Condition Index (PCI), Soil Moisture Condition Index
(SMCI), Temperature Condition Index (TCI), and Vegetation Condition Index (VCI).

The PCI is used to evaluate the precipitation variations and drought conditions [20], which is
calculated as

PCI =
Pi,j − Pmin,j

Pmax,j − Pmin,j
, (5)
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where I = 1, 2, 3 . . . , n denotes for year and j = 1, 2, 3 . . . , 12 denotes for month. Pmax,j and Pmin,j are
the maximum and minimum values of the precipitation for month j, respectively. As described by the
equation, PCI values are calculated based on the group of 12 maximum and minimum values for each
grid cell, which are used to minimize the influences of seasonality to the results.

The VCI is the percentage of NDVI with respect to its maximum amplitude. The VCI is
calculated as

VCI =
NDVIi,j − NDVImin,j

NDVImax,j − NDVImin,j
, (6)

where NDVImax,j and NDVImin,j are the maximum and minimum values of the NDVI for month j,
respectively.

The TCI is used to determine the temperature-related vegetation stress caused by excessive
wetness [30], which is calculated as

TCI =
Tmax,j − Ti,j

Tmax,j − Tmin,j
, (7)

where Tmax,j and Tmin,j are the maximum and minimum values of the temperature for month j,
respectively.

Similarly, SMCI [21] is also introduced to monitor the drought condition of the study area, which
is calculated as

SMCI =
SMi,j − SMmax,j

SMmax,j − SMmin,j
, (8)

where SMmax,j and SMmin,j are the maximum and minimum values of the soil moisture for month
j, respectively.

2.3.3. Combined Drought Indices

Two combined CI-based drought indices, i.e., Combined Meteorological Drought Index (CMDI)
and Combined Vegetation Drought Index (CVDI), were also applied in this study to explore the
evolution of droughts across the TRHR. The combined drought indices were calculated as the optimum
linear combinations of CI-based indices, with the objective of maximum correlation with in situ indices,
i.e., SPI or SPEI or SNPI. The calculation is carried out as follows [21]:

f (x, y) = max
{

E[(X − ux)× (Y − uy)]
σx × σy

}
, (9)

X =


SPI

SPEI
SNPI

, (10)

Y =

{
α × TCI + β × PCI + (1 − α − β)× SMCI

α × TCI + β × PCI + γ × SMCI + (1 − α − β − γ)× VCI
, (11)

subject to 
0 < α < 1
0 < β < 1
0 < γ < 1

, (12)

where X includes SPI/SPEI/SNPI indices calculated by in situ reference data. Y is the combined
drought indices derived from TCI, PCI, SMCI and VCI. The first row of Y is CMDI, and the other row
is CVDI with the inclusion of VCI. σx and σy are the standard deviations of X and Y, ux and uy are the
means of X and Y, E is the expectation. α, β and γ are optimization variables for TCI, PCI and SMCI
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when f(x,y) reaches its highest value. The Constrained Nonlinear Optimization algorithm is used in
this study for determining the optimal weights (α, β and γ) [21].

3. Results

3.1. Combined Drought Indices

Based on the data and the methods described above, four single CI-based drought indices are first
calculated, i.e., VCI from GIMMS AVHRR NDVI dataset, PCI from CHIRPS precipitation dataset, TCI
from MODLT1M temperature dataset and SMCI from AMSR-E soil moisture dataset. The combined
drought indices are then derived from four single CI-based drought indices by using the constrained
optimization method described in Section 2.3.3. The best weights for CMDI and CVDI are listed in
Table 2.

Table 2. Correlations of Combined Meteorological Drought Index (CMDI) and Combined Vegetation
drought (CVDI) with in situ drought indices.

Index
Percent

SPI-1 SPI-3 SPI-6 SPEI-1 SPEI-3 SPEI-6 SPNI-1 SNPI-3 SNPI-6
TCI PCI SMCI VCI

CMDI 29.00% 64.00% 7.00% - 0.70 0.44 0.32 0.73 0.53 0.31 0.58 0.32 0.31
CVDI 65.00% 26.00% 6.00% 4.00% 0.57 0.49 0.34 0.65 0.63 0.40 0.56 0.34 0.32

From Table 2, it is observed that CMDI has a higher correlation with SPI-1 and SPEI-1, suggesting
that it is a reasonable indicator for meteorological drought. The percentage of PCI in CMDI is 64%,
followed by TCI (29%) and SMCI (7%). This indicates that precipitation might provide more precise
information, while SMCI has the minimum effects on monitoring meteorological drought across the
study area. Although the percentage of VCI is only 4%, CVDI obtains a controlling factor of TCI and
receives higher correlation with SPEI-3, which indicates that CVDI considers more information of
the vegetation drought in this region. The dominant proportion of TCI suggests the importance of
surface temperature for exploring the vegetation drought in this study area. Overall, both CMDI
and CVDI consider the detailed information of the single drought indices, and the high correlation
coefficients indicate that they are desirable indicators for monitoring meteorological drought and
vegetation drought, respectively.

The scatter plots between monthly combined drought indices (CDIs) averaged over the whole
region and averaged in situ drought indices (i.e., SPI, SPEI and SNPI) are presented in Figure 2a,b.
Both CMDI and CVDI show high correlations with in situ drought indices and passed the 99%
significant level. Yearly changes of CDIs averaged over the whole region are compared to in situ
drought indices in July (Figure 2c,d). From Figure 2c, it is observed that the driest year appears in 2006
and the wettest year appears in 2009 for both CMDI and the in situ drought indices. The driest year is
2006 for both CVDI and SPEI-3, while the wettest year is 2009 for CVDI (see Figure 2d). The yearly
changes show some discrepancies between different drought indices. CMDI and SPI/SPEI-1 change
consistently each other, while CMDI and SNPI-1 behave differently around 2003. CVDI shows the
good consistency with SPI-3 and SPEI-3, whereas CVDI seems overestimate the drought extent in 2003
when compared with the SNPI-3 value. Overall, yearly changes of CDIs agree well with changes of in
situ drought indices in most cases, but CMDI is more consistent with SPI/SPEI-1, and CVDI is more
consistent with SPI/SPEI-3.
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Figure 2. Comparisons of combined drought indices and in situ drought indices (a) scatter plots of
monthly CMDI and 1-month in situ drought indices, (b) scatter plots of monthly CVDI and three-month
in situ drought indices, (c) year-to-year changes in July of CMDI and 1 month in situ drought indices,
and (d) year-to-year changes in July of CVDI and three-month in situ drought indices.

3.2. Drought Patterns

3.2.1. Monthly Maps

The drought index maps for April to October in 2006 display the seasonal variations among
different CI-based drought indices. In this study, CI-based drought indices less than 0.2 can be
identified as severe drought according to Zhang and Jia [12] and Hao et al. [21] (see Table 3).
As illustrated in Figure 3, the location and severity of droughts vary greatly from months to months.
TCI shows that severe drought mainly occurs in June and July in most areas of TRHR, while PCI shows
that most areas of TRHR are not under drought conditions in June. SMCI shows that the major areas
of TRHR are experiencing drought conditions in July. VCI shows the greatest differences from the
other single CI-based drought indices, of which severe drought mainly occurs in October. The single
drought indices TCI, PCI, SMCI and VCI do not show obviously spatial coincidence in seasonal level.
The similar conditions are observed between combined CI-based drought indices. Meteorological
drought and agricultural drought conditions are obviously distinguished by using CMDI and CVDI.
Severe meteorological droughts mainly occur in July in most area of TRHR, and in May, June and
October in the west TRHR, while most areas of TRHR are under severe agricultural/vegetation drought
during the same period. The spatial distributions of CMDI and CVDI agree with previous studies
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of Liu et al. [32], which indicated that the northern and western regions of TRHR were more prone
to drought.

Table 3. Classification of drought severity for the CI-based drought indices used in this study.

Name PCI TCI SMCI VCI CMDI CVDI

Extreme drought 0–0.1 0–0.1 0–0.1 0–0.1 0–0.1 0–0.1
Severe drought 0.1–0.2 0.1–0.2 0.1–0.2 0.1–0.2 0.1–0.2 0.1–0.2

Moderate drought 0.2–0.3 0.2–0.3 0.2–0.3 0.2–0.3 0.2–0.3 0.2–0.3
Mild drought 0.3–0.4 0.3–0.4 0.3–0.4 0.3–0.4 0.3–0.4 0.3–0.4

Abnormally dry 0.4–0.5 0.4–0.5 0.4–0.5 0.4–0.5 0.4–0.5 0.4–0.5
No drought 0.5–1 0.5–1 0.5–1 0.5–1 0.5–1 0.5–1Water 2019, 11, x FOR PEER REVIEW  11 of 20 
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Figure 3. Seasonal changes of drought monitored by CI-based (Condition Index-based) drought indices
from April to October in 2006.

3.2.2. Year-to Year Maps

From Figure 4, drought patterns in July from 2002 to 2011 are discovered. Both TCI and SMCI
indicate that severe drought occurs over the most areas of TRHR in 2006, while PCI shows that
severe drought occurs over the most areas of TRHR in 2003. Moreover, drought mainly occurs in
the western regions in 2006 as for PCI, while drought mainly occurs in the western regions in 2002
and 2004. VCI indicates that only a few regions are experiencing drought in July among all these
years, which is different from the other drought indices. As regards the combined CI-based drought
indices, the meteorological drought areas in 2003, 2004, 2006 and 2007 are larger than that in the other
years. The distribution of agricultural/vegetation drought is much similar to that of meteorological
drought. These results are consistent with the results from Zheng et al. [44], which indicated that
drought occurred in 2002–2004 and 2007–2009 across the TRHR based on the station-based drought
indices. Severe agricultural/vegetation droughts are barely identified during the period of 2002 to 2011.
Overall, droughts in TRHR show regional and seasonal differences, which require fine distinctions of
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the regional and seasonal fluctuations in drought provided by these CI-based drought indices from
remote sensing data.Water 2019, 11, x FOR PEER REVIEW  12 of 20 
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to 2011.

3.3. Correlation Analysis

3.3.1. Monthly Temporal Comparisons

Based on the massive datasets, we can determine the temporal similarity between multiple
CI-based drought indices and in situ indices across the TRHR. Maps showing the monthly correlation
coefficients between CI-based drought indices and in situ indices in the whole study period, the
growing season (April–September) and the non-growing season (October–March) are drawn in
Figure 5.
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For the monthly correlations, the correlation coefficients between CI-based indices and in situ
drought indices vary for different drought indices and for different time durations (Figure 5a).
In general, all the single CI-based drought indices do not always show significant correlations with
SPI, with r ranging from −0.28 to 0.70. PCI always show the highest correlation with 1-month
in situ drought indices, and then the value decreases as time durations increases. TCI shows
the highest correlation with SPI-3/SPEI-3, which indicates that TCI is suitable for monitoring
agricultural/vegetation drought. Both SMCI and VCI show a higher correlation with long-term
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drought indices (e.g., SPI/SPEI-9 and SPI/SPEI-12). The correlation coefficients of single drought
indices are much similar among different in situ drought indices, especially for SPI and SPEI, where the
correlation coefficients vary from −0.29 to 0.67 (p < 0.01). In general, PCI has the best correlation with
one-month in situ drought indices, followed by TCI, SMCI and VCI, which indicate that the remote
sensing data from CHIRPS can provide valuable information for meteorological drought monitoring.
TCI shows a high correlation with three-month drought indices, which indicate that TCI contributes
more for monitoring agricultural/vegetation drought. The results show that both CMDI and CADI
perform better than the single CI-based drought indices (r ranging from 0.24 to 0.73 with p < 0.01),
which suggest that CMDI and CADI are more suitable to describe the meteorological and vegetation
drought conditions for the study area, respectively.

From Figure 5b, it is founded that PCI shows stronger correlations with SPI-1, SPEI-1 and SNPI-1
than the other single indices in the growing season. This indicates that PCI is a preferable indicator
for monitoring meteorological drought in the growing season. TCI varies slightly among different
time scales in the growing season, and shows a better performance than SMCI generally, especially for
the long-time drought. Although correlations between VCI and in situ drought indices are improved
in the growing season, VCI is still not significantly correlated to the in situ drought indices nearly
at all the time scales. This might be because the human-induced variations reduce the correlation
between vegetation and the water balance in this region, such as over cultivating, over grazing and
so on. Generally, the combined drought indices perform better than the single drought indices in
the growing season. However, the advantages of both CMDI and CVDI are not significant for the
long-term drought, e.g., SPI-9, SPI-12, SPEI-9, SPEI-12, SNPI9 and SNPI12.

In general, correlations between all the drought indices and the in situ drought indices are
lower in the non-growing season than that in the growing season. Correlations between PCI and
SPI-1/SPEI-1/SNPI-1 are higher than that of the other single drought indices, suggesting that it is still
appropriate for monitoring vegetation drought in the non-growing season (see Figure 5c). The VCI in
the non-growing season shows a strong negative correlation with SPI/SPEI/SNPI, which may due
to the reason that vegetation has a rapid response to water stress situation to adapt the water loss
conditions under the low-level water balance. Moreover, the vegetation type of the study area is mainly
evergreen coniferous forest, and snow/ice covers the major area of the TRHR in the non-growing
season. These have determined that water balance condition is not the principal influencing factor to
vegetation in the non-growing season. Although the combined drought indices (CMDI and CVDI)
perform worse in the non-growing season than in the growing season, they are still recommended
among all the CI-based indices.

Overall, although the correlation coefficients vary greatly at different seasons, the combined
drought indices are more favorable in monitoring one-month drought (meteorological drought) and
three-month drought (vegetation drought) among all these CI-based drought indices. Furthermore, all
these CI-based drought indices have lower correlations with 6-, 9-, 12-SPI/SPEI/SNPI, which indicate
that CI-based drought indices are non-appropriate for monitoring the long-time drought (more than
six months). This might be because that all these CI-based drought indices are calculated by using the
current month data, which could not reflect the delay processes more than six months.

3.3.2. Monthly Spatial Comparisons

Figure 6 displays maps describing the spatial distributions of the monthly correlation coefficients
between the CI-based indices and the in situ drought indices. TCI shows a stronger correlation with
SPI-3 in the south part of the TRHR than the other single indices considered expect PCI. Additionally,
TCI shows a stronger correlation with SPEI-3 than all the other single drought indices in almost all
parts of the TRHR. However, the correlations between TCI and SPNI values are low in most of the
TRHR. The correlations between PCI and one-month in situ drought indices are higher than those of
TCI, SMCI and VCI in majority area of the TRHR, which indicate that PCI could properly describe
the meteorological conditions in this region. Both SMCI and VCI show the weak correlation in this
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region, which indicates that both of them might not be suitable for drought detection as single drought
indices. As for the combined CI-based drought indices, CMDI shows a stronger correlation with
SPI-1/SPEI-1 than all the other single drought indices except PCI, which has a coefficient >0.5 in most
regions of TRHR. CVDI shows a stronger correlation with long-term drought (i.e., three months) than
CMDI. CVDI improves the correlations in the southern and eastern regions of TRHR. Despite there
exists some disagreement among different in situ drought indices. We could still get some general
conclusions, which are listed as follows. From the above analysis, we find that PCI is a desirable
index for monitoring meteorological drought indices. TCI would be more reliable for monitoring
agricultural/vegetation drought. Both VCI and SMCI should be avoided for monitoring drought in
this region because of their low correlations with in situ drought indices. For the Combined CI-based
drought indices, the constrained nonlinear optimization method can improve the performance of
drought indices, although the improvement is not dramatically.
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drought indices.

4. Discussion

There exist some uncertainties that can affect the performances and the comparison results of
different drought indices. Firstly, the validation scale might affect the results from different drought
indices. The in situ reference data, i.e., the monthly precipitation and mean temperature series from
1970–2011, is collected from the stations, and then interpolated to grids. Although the station-based
meteorological data are accurate and widely used all over the world, the distribution and density
of meteorological stations are inadequate to provide the spatial detail for drought detection [12].
The spatial distribution of drought is unable to be determined properly unless the meteorological
stations are well distributed throughout the region. Even so, the time and cost requirements for data
preparation may hinder the drought mitigation procedures. Moreover, although the station-based
data can provide gridded information by using the spatial interpolation technology, e.g., the gridded
dataset used in this study, they can only give a rough estimation of the study area, due to the subject
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of the station locations and the limitations of interpolation technology. The details of these gridded
data are incompatible with the fine pixel values from the remote sensing data, which may result in the
phenomenon that the values recorded at local stations may not be accurately represented by remote
sensing drought indices.

Also, the method limitations may also affect the analysis of drought phenomenon by using
CI-based drought indices. In the present study, the single CI-based drought indices, e.g., PCI, VCI, TCI
and SMCI, are all normalized with respect to the minimum and maximum observation. The CI-based
drought indices have been proven useful for monitoring the related variables. For example, VCI is
considered useful as a means for drought onset detection, and drought impact measurement in regions
around the world [62–64]. However, some studies have indicated that the application of VCI should
be treated with caution. For example, there existed some disagreement when the VCI was compared to
in situ drought indices over the desert and desert steppe regions of Mongolia [65]. A similar situation
was observed in our study as well. The rough standardized method might be another reason for
this situation except for the validation scale. The standardization method used in this study is the
Max-Min method. The reason for choosing this method is that it requires simple calculation and
is easily applied. However, considering the fact that the remotely sensing time series used in this
study obey skewed distribution rather than normal distribution generally (see Figure 7), the Max-Min
method used in this study might affect the performances of the CI-based series. For example, if a
time series shows a positive skewness, the CI-based drought indices tend to overestimate the drought
conditions. On contrary, if a time series shows a negative skewness, the CI-based drought indices tend
to underestimate drought conditions.Water 2019, 11, x FOR PEER REVIEW  17 of 20 
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Using a standardization method considering the distribution types of a time series seems to
be an effective way to solve this problem. However, seeking for proper way to standardize the
time series with respect to the distribution types is a complicated task, because different types of
data own different characteristics, and obey different distributions. The standardization method for
calculating SPI values is one widely used method in this aspect [6,7]. SPI takes into account the fact
that precipitation follows the skewed distribution, and then carries out the normal standardization
processing. Thus, drought index can reflect the variations of water resources at different time scales.
However, due to the intrinsic statistical nature of such indices, a period of at least 25–30 years is
necessary to ensure the reliability of the indices [6,7]. In most cases, the length of the remote sensing
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time series is not long enough to support this method, especially for soil moisture series. Thus,
although the limitations mentioned above might affect the performances of CI-based drought indices,
we still use the widely used method (Max-Min), because this method is intuitive and simple. And a lot
of researchers have applied this method to remotely sensing data for drought detection and obtained
some valuable findings [12–14,20–22]. Moreover, the performances of different CI-based drought
indices were verified by using the qualitative analysis with previous studies, and the quantitative
analysis based on correlation analysis in this study. In general, this simple standardized method is
both an advantage and a disadvantage in this study. One of the major advantages of these CI-based
drought indices is that they provide continuous spatial information and attempt to detect drought
conditions directly by using a simple method. The disadvantage of this approach is that this is a
rough way without considering the distribution types of data. Thus, seeking a proper standardization
method with respect to the distribution types of time series needs further exploration in future studies.

Moreover, several additional factors may also influence the analysis of drought phenomenon from
this study. Residual cloud pollution in remote sensing images might affect the drought conditions in a
specific region. Different in situ drought indices might also influence the analysis of drought conditions.
In this study, we used three different station-based drought indices to even out the influence from
the choice of selection of the methods to derive drought indices. Although there still exists some
differences among different station-based drought indices, we can still get some general conclusions
from the comparative study. For example, although the values of correlation coefficients vary greatly
for PCI, PCI is more related with 1-month drought indices than that of three-month drought indices,
especially in the southeastern region (see Figure 6). These results indicate that PCI is a proper index for
monitoring meteorological drought. In addition, the different resolution and the different length of the
remote sensing data means that the pixel values must be resampled to be the same spatial resolution
and the same length (0.25 degrees and 10 years in the study), which might hinder the drought analysis
procedures at a finer spatial resolution and longer period.

5. Conclusions

The main feature of CI-based drought indices, e.g., TCI, VCI, PCI, and SMCI and so on, is that
they require limited computation, and can be easily applied over global, continental or regional scales.
In this study, a comparison study is conducted between CI-based drought indices and in situ drought
indices across the TRHR from 2002 to 2011. The drought patterns derived from these CI-based drought
indices show that CI-based drought indices vary greatly at temporal and spatial scales. These CI-based
drought indices are capable of detecting the drought conditions of the TRHR between 2002 and 2011.

From the comparison of drought indices in regions of the TRHR, PCI is a desirable choice to
monitor meteorological drought conditions because of the stronger correlation with one-month in situ
drought indices. Both SMCI and VCI are poor indicators to monitor droughts as its low sensitivity
to local conditions. As regards the combined drought indices, the optimized method can improve
the performance of drought indices, although the improvement is limited. This study discloses that
CI-based drought indices can be reasonably monitoring drought, but how to apply different drought
indices according to their own characteristics needs further exploration. By comparing multiple
CI-based drought indices, this study makes it possible to study the regional drought phenomena more
accurately. Therefore, this study would be useful for investigating regional drought conditions, which
might be valuable for the regional water resources security with respect to future climate change.
For future work, more extensive validation at the wider regional scale is recommended to help us
understand the performances of different drought indices. Also, improving the accuracy of the input
data is a promising way to enhance the capacity of these CI-based drought indices.
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