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Abstract: Groundwater depletion has become a hotly debated topic, particularly in arid land.
In this study, groundwater depletion and its dynamic factors were investigated in the Tarim
Basin. The groundwater data were collected randomly from 10 groundwater monitoring wells,
from September 2002–December 2014. Piezometric groundwater level decreased with the range from
667.00 cm to 1288.50 cm, and also with a linear decreasing rate of 73.96 cm per year, on average.
Significant spatial variation characteristics have been detected. Groundwater depletion was more
serious in the northwest than the southeast of the study area. A correlation analysis was conducted
to explore the major influence factors. These results showed that the annual irrigated land area was
the primary influencing factor. Driving force analysis also suggested that electricity consumption
could be an effective and convenient factor to assess groundwater exploitation. This study indicated
that human activity was the major impact factor for groundwater decline. The seasonal-trend
decomposition analysis supported these findings, as observed from the correlation analysis and the
spatial variation. It also provided new insight into the groundwater time-series and enhanced the
identification of groundwater-flow characteristics. These findings may be useful for understanding
the groundwater fluctuations in high water demand regions and also for developing safety policies
for groundwater management.

Keywords: groundwater depletion; influence factors; irrigation water source; groundwater management;
arid land; Tarim Basin

1. Introduction

Groundwater is a large storage of freshwater, which can be exploited for sustaining agricultural,
and industrial and domestic activities. It plays a strategic importance in the security of human
and natural ecosystems, notably, both in populous countries and semi-arid and arid lands [1–3].
The groundwater system is a huge water reservoir, under the earth. It is opaque and concealed,
and can be easily ignored. It is also poorly monitored and not accurately quantified [4]. Due to its slow
updates and relative insensitivity to seasonal or even multi-year climatic variations [5–7], groundwater
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resources have been a more reliable water resource than surface water. The depletion of groundwater
resources has been increasing in recent years [8,9].

Long-term and intensive groundwater pumping may cause groundwater depletion and regional
water resource scarcity [10–14]. Groundwater depletion is one of the main factors that determines
the sustainability of groundwater resources. The sustainable use of groundwater is a critical issue
for the global economic development and food production [15–17]. During the past several decades,
intensive pumping, the prominent user of groundwater, has accounted for more than 70% of the total
usage, causing dramatic groundwater decline around the world [9,18]. Groundwater pumping is an
obstruction that disrupts the long-term equilibrium state, which may require hundreds of years to
re-establish [3,19–21]. The global population will exceed 9 billion, food demand may encounter a 50%
increase, and the agricultural output is expected to be required to keep up with the demands, by 2050 [9].
Therefore, it is urgent to investigate water-flow modes and the causes of groundwater depletion.

Numerous groundwater scholars have tried to estimate the causes and results of groundwater
decline, and have shown that groundwater is being used at rates that exceed the natural rates
of recharge, globally [3,9,22–26]. Both climate change and excessive extraction, for irrigation,
were responsible for groundwater level decline [8]. Chaudhuri and Ale [26] studied the relationship
between groundwater depletion and irrigated agriculture, and suggested that irrigated agriculture
is the major cause of depletion in the Texas Panhandle. Mustafa et al. [27] suggested that
groundwater overexploitation for irrigation seemed to be the main reason for the groundwater-level
decline in North-Western Bangladesh. Some research also showed that irrigation was one of
the main impact factors for groundwater depletion in India and China, respectively [15,16].
These above-mentioned studies revealed that efficient and reasonable irrigation management is
essential for groundwater recovery.

Geostatistical modeling is widely utilized in studying spatial variability and field data with
uncertainty [28,29]. Inverse distance weighting (IDW) and stochastic methods routinely used for
groundwater level mapping, and IDW, show similar performance with stochastic methods [30].
The IDW model is a rapid, straightforward, and non-intensive geostatistical deterministic method,
which is universally used in groundwater level mapping. The IDW model was applied for mapping
groundwater level in areas with scattered data, in this study.

The Seasonal-trend decomposition based on Locally Weighted Scatterplot Smoothing (LOESS),
known as STL (Seasonal and Trend decomposition using Loess) decomposition, was used to extract
the trend and seasonality component from the groundwater time-series. STL is a filtering procedure
for decomposing a seasonal times-series into three components—trend, seasonal, and remainder or
residual [31]. Advantages of this technique include its simplicity, speed of computation, robustness of
results, flexibility, and excellent data visual analytics [31,32]. This decomposition procedure is widely
used in the natural sciences, environmental science, ecology, epidemiology, and public health [33–36].

Groundwater resources also play a very key role in social development in arid lands. The Tarim
Basin in China is a typical arid land with an aridity index <0.06 [37–39]. The vegetation composition is
extremely simple and scarce, and the ecosystems are substantially fragile. Due to the rapid economic
development, the Tarim Basin has experienced severe land desertification, and degradation. According
to the statistics of Water Resources Bulletin of the Xinjiang province, in 2015, the groundwater
exploitation was 12.00 billion m3; agricultural water was 10.29 billion m3, accounting for 85.08%
of total groundwater exploitation [40]. A sharp decline of the water table has been witnessed in the
Bosten Lake, during the early 21st century [41,42]. Therefore, assessing the groundwater depletion in
the Tarim Basin is a matter of utmost urgency.

Although some research work is available in the literature on Tarim River, the previous research
works are mainly about climate change and surface water [37–39,43–46], and not much information
is available on the groundwater trends and groundwater decline. Moreover, little research has been
carried out to identify the impact factors on groundwater depletion, in this study area. Hence, it is
essential to identify the groundwater fluctuation and its driving factors. The purpose of this study was



Water 2019, 11, 186 3 of 19

to ascertain the fluctuation trends and characteristics of groundwater depletion with STL, and identify
the impact factors on the changes in the groundwater level, in a typical agricultural water source at the
Tarim River basin. This issue is important to groundwater regulators to work out more reasonable and
efficient irrigation management, to reduce the growing pressure on groundwater resources and ensure
a sustainable water management.

2. Materials and Methods

2.1. Site Description

The Seven Stars–Baoerhai water source (85◦13′19”–86◦44′00” E, 41◦45′31"–42◦20′45” N) is located
in the Yanqi County, Tarim River Basin, Northwestern China, and covers an area of about 150 km2

(Figure 1). The climate is characterized by an arid continental monsoon, with an annual average
potential evaporation of 1344.4 mm and precipitation of 73.3 mm (aridity index = 0.05) [40]. About 90%
rainfall is concentrated from May to September. The annual mean temperature is 8.4 ◦C, with an
extreme maximum of 38 ◦C, and an extreme minimum of −35.2 ◦C, respectively. The Kaidu River is
the main surface water source for the Yanqi County, and it originates from the Tianshan Mountain
System, and is injected into the Bosten Lake. Therefore, the surface runoff of the Kaidu River may act
as one of the factors for analyzing changes in the piezometric groundwater level, in this study.
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The Seven Stars–Baoerhai water source (operated in 2004) is a typical agricultural irrigation
reservoir in the Tarim River Basin. Groundwater was mainly sourced from the Quaternary
unconsolidated sediments aquifer, in the sedimentary strata. Drilling and stratigraphic analyses of the
subsurface geology were conducted to evaluate the hydrogeological characteristics. The subsurface
hydrogeological analysis was to a depth of approximately 400 m. The lithology of the phreatic water
aquifer ranged from clay to fine sand, with low permeability. The depth of the phreatic groundwater
was generally 1–10 m. The shallow confined water was distributed in strips. There were 2–3 confined
aquifers buried in the depth of 200 m. The layer thickness of the aquifers ranged from 30 to 60 m,
which were the main mining target layers of groundwater (Figure 2). The planned total mining
volume was 5000 × 104 m3/year, with a total number of 70 wells. Groundwater mining periods were
from April to October each year, and the single well design mining volume was about 3338 m3/d,
and groundwater quantity extraction was relatively greater in June, July, and October. The water source
was always in good operation and management, even after it had been exploited. The piezometric
groundwater level data had sufficient sequences for scientific analyses.

Water 2019, 11, 186 4 of 19 

 

The Seven Stars–Baoerhai water source (operated in 2004) is a typical agricultural irrigation 
reservoir in the Tarim River Basin. Groundwater was mainly sourced from the Quaternary 
unconsolidated sediments aquifer, in the sedimentary strata. Drilling and stratigraphic analyses of 
the subsurface geology were conducted to evaluate the hydrogeological characteristics. The 
subsurface hydrogeological analysis was to a depth of approximately 400 m. The lithology of the 
phreatic water aquifer ranged from clay to fine sand, with low permeability. The depth of the phreatic 
groundwater was generally 1–10 m. The shallow confined water was distributed in strips. There were 
2–3 confined aquifers buried in the depth of 200 m. The layer thickness of the aquifers ranged from 
30 to 60 m, which were the main mining target layers of groundwater (Figure 2). The planned total 
mining volume was 5000 × 104 m3/year, with a total number of 70 wells. Groundwater mining periods 
were from April to October each year, and the single well design mining volume was about 3338 
m3/d, and groundwater quantity extraction was relatively greater in June, July, and October. The 
water source was always in good operation and management, even after it had been exploited. The 
piezometric groundwater level data had sufficient sequences for scientific analyses. 

 
Figure 2. Hydrogeological profile of the study area. The X-axis is the horizontal distant from 
mountains to the Bosten lake and the Y-axis is the altitude 

2.2. Data Collection and Analysis 

Ten groundwater wells were randomly selected from the overall seventy operating wells in the 
Seven Stars–Baoerhai water source, which represent the natural water profiles, not only in the Seven 
Stars–Baoerhai water source, but also for the whole Tarim Basin (Figure 1). Monthly piezometric 
groundwater level time-series data (cm per day) were collected from the ten typical observations, for 
over more than 10 years—September 2002–December 2014 (Table 1). As shown in Table 1, the total 
epochs of G02, G06, G08, and G09, was 129 months, 144 months, 132 months, and 144 months, 
respectively, while the other remaining sites were 148 months; these have been discussed in Section 
3.2. The limited monthly groundwater withdrawal of the whole water source was also collected, 
covering January 2004 to December 2007 (Table 2). Evaporation, precipitation, and temperature from 
1951 to 2015, were obtained from the China Meteorological Data [47]. The population density, 
irrigated land area, crop area, electricity consumed in rural areas, and gross regional product were 
obtained from the Statistical Yearbook of China. The runoff data came from the Hydrological 
Yearbook of China. Statistical analysis and driving factors analysis were carried out in Microsoft 
office Excel 2013. 
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2.2. Data Collection and Analysis

Ten groundwater wells were randomly selected from the overall seventy operating wells in the
Seven Stars–Baoerhai water source, which represent the natural water profiles, not only in the Seven
Stars–Baoerhai water source, but also for the whole Tarim Basin (Figure 1). Monthly piezometric
groundwater level time-series data (cm per day) were collected from the ten typical observations,
for over more than 10 years—September 2002–December 2014 (Table 1). As shown in Table 1, the total
epochs of G02, G06, G08, and G09, was 129 months, 144 months, 132 months, and 144 months,
respectively, while the other remaining sites were 148 months; these have been discussed in Section 3.2.
The limited monthly groundwater withdrawal of the whole water source was also collected, covering
January 2004 to December 2007 (Table 2). Evaporation, precipitation, and temperature from 1951 to
2015, were obtained from the China Meteorological Data [47]. The population density, irrigated land
area, crop area, electricity consumed in rural areas, and gross regional product were obtained from
the Statistical Yearbook of China. The runoff data came from the Hydrological Yearbook of China.
Statistical analysis and driving factors analysis were carried out in Microsoft office Excel 2013.
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Table 1. Geographical characteristics of the observation wells and the sampled information.

Site Latitude Longitude
Topographic

Ground
Altitude (m)

Well Depth
(m) Time Period (Month Year) Total Epochs

(Month)

G01 42◦03′13” 86◦19′39” 1084.56 67.2 September 2002–December 2014 148
G02 41◦59′44” 86◦19′13” 1064.74 67.7 September 2002–December 2014 129
G03 42◦03′42” 86◦21′46” 1072.82 62.2 September 2002–December 2014 148
G04 42◦01′31” 86◦22′22” 1064.37 69.5 September 2002–December 2014 148
G05 42◦03′25” 86◦26′29” 1061.09 65 September 2002–December 2014 148
G06 42◦01′19” 86◦26′19” 1058.82 131.2 September 2002–December 2014 144
G07 42◦01′13” 86◦25′52” 1059.36 67.2 September 2002–December 2014 148
G08 41◦59′54” 86◦26′35” 1059.48 35 September 2002–December 2014 132
G09 41◦59′04” 86◦25′59” 1057.07 72.3 September 2002–December 2014 144
G10 42◦00′17” 86◦29′44” 1055.78 64.4 September 2002–December 2014 148
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Table 2. Groundwater withdrawals volume in the Seven Stars–Baoerhai water source from 2004 to 2007.

Period Jan.
(×104 m3)

Feb.
(×104 m3)

Mar.
(×104 m3)

Apr.
(×104 m3)

May
(×104 m3)

Jun.
(×104 m3)

Jul.
(×104 m3)

Aug.
(×104 m3)

Sep.
(×104 m3)

Oct.
(×104 m3)

Nov.
(×104 m3)

Dec.
(×104 m3)

Yearly
Volume

(×104 m3)

2004 0 0 0 129.18 128.52 246.48 329.21 138.40 68.00 119.92 90.12 0 1249.83
2005 0 0 0 331.03 278.43 515.72 472.06 318.17 282.99 525.30 33.37 0 2757.07
2006 0 0 4.67 290.23 243.74 510.74 627.56 489.58 289.65 618.89 35.05 0 3110.11
2007 0 0 366.78 158.40 158.40 524.83 633.05 342.16 120.46 608.01 118.62 0 3030.70
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2.3. Inverse Distance Weighting (IDW)

The accurate mapping of the piezometric groundwater level is important for an effective
management and monitoring of decisions. Estimation of the unsampled locations could be obtained
by applying geostatistical and deterministic interpolation methods to the available data. IDW is an
exact and effective interpolation method [30] for mapping the piezometric groundwater level. In this
study, IDW was applied for investigating the spatiotemporal variation of the piezometric groundwater
level, from 2002 to 2014.

The IDW method is given by means of the following equation,

Z(s 0) =
N

∑
i=1

λiZ(si) (1)

where s0 is the set of sampling points in the search neighborhoods of si. The neighborhoods are
empirically chosen, so as to optimize the cross-validation measures; N is the number of sample points
around the prediction point, to be used in the prediction calculation process; λi is the weight of each
sample point to be used in the prediction calculation process; its value decreases as the distance
between the sample point and the prediction point increases; Z(s0) is the prediction at s0; Z(si) is the
measured value obtained at si. The IDW analysis was done by ArcMap.

2.4. Seasonal Decomposition of Time-Series by Loess

Seasonal-trend decomposition based on the LOESS (STL) filtering method was utilized for the
time-series analysis. STL is a filtering procedure for decomposing a time-series, which decomposes the
time-series into three components—long-term trend, seasonal periodicity, and the remainder, to which
LOESS smoothing models and locally weighted regression are applied [31]. Each component represents
one type of the underlying patterns, the sum of which is the original time-series. The trend component
describes a long-term change pattern in the data. The seasonality of a time-series is a pattern that
regularly repeats with a fixed interval. The remainder component is essentially the remaining variation.
The STL method is a powerful time-series decomposition technique and has been implemented in
many statistical packages, being flexible in adjustments [31]. The equation is as follows:

Yt = St + Tt + Et (2)

where Yt is the original time-series (data), St is the seasonal component, Tt is the trend component
consisting of the underlying long-term aperiodic signal; and Et is the residual component that cannot
be attributed to the trend or the seasonality. This decomposition method involves selecting a set
of parameters that determines the degree of smoothing of the trend and seasonality. STL utilizes
two important parameters—the trend window (t) and the seasonal window (s). The choice of the
seasonal smoothing parameters determines the extent of variation of St. The STL function in the R
software was initially applied with default parameters, for the degree of smoothing of the seasonal and
trend components. Annual (12 month) patterns were determined as the seasonal components, for the
analysis of groundwater fluctuation time-series; this was then removed for smoothing, to determine
the trends [34].

3. Results

3.1. Spatial Characteristics of the Piezometric Groundwater Level

Groundwater depth/level records for 2002–2014 were collected from ten wells. The data were
used to analyze the inter-annual spatial variations in groundwater conditions (Figure 3). Generally,
there was a clear distinction between the northwest of the Seven Stars–Baoerhai water source reservoir,
which showed a higher groundwater depth than the southeast, and the depletion was observed to be
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seriously spotted in the north. It should also be noted that the central part of the study area showed
a lower piezometric groundwater level. The original data analysis has been discussed in Section 3.2
(see Table 4). These findings might suggest that the central part of the basin has been experiencing
more water consumption. It could also be deduced that the groundwater depletion has been getting
worse from 2002 to 2014. Bosten Lake is located in the eastern of the Seven Stars–Baoerhai water
source reservoir, these differences between the variation of the geomorphological characteristics and
the piezometric groundwater levels indicate that local surface water played a positive influence on the
piezometric groundwater level. Figure 3 shows that groundwater depletion was detected in the water
source reservoir, and all of these fluctuations showed a similar downward trend.
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3.2. Seasonal Component Analysis

Owning to the fact that the data of the six groundwater sites (G01, G03, G04, G05, G07, and G10)
were over the 148 months (from September 2002 to December 2014), while the other four sites were not
a complete time-series (Table 1), only these six groundwater sites were detailed analyzed. The STL
method was used to investigate the fluctuation characteristics. The groundwater monthly fluctuations
and the trend component, which was obtained from the STL decomposition results, have been plotted
in Figure 4. As shown in Figure 4, the STL fitted trend was observed in the decomposition plot,
in comparison with the raw data. It showed an overall increasing trend in the groundwater depth
from 2002 to 2014. As present in Figure 4, the trend component showed minor fluctuations during
2002–2012, while it showed a relatively rapidly rising model, in the year ranging from 2012 to 2014.
It also showed a variation and obvious seasonality, across years, for most months. This inter-annual
variation was more obvious in the seasonal cycle subseries plot, where particularly, July was the
highest point, although a small peak in October was also noted. The seasonal signal detected by STL,
agreed with the results of the following Figure 5.
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Figure 5. Seasonal subseries plot of the seasonal component estimated by the STL decomposition of
depth of the piezometric groundwater level and the annual average groundwater withdrawals.

The STL seasonal component and monthly average groundwater exploitation observed (from
January 2004 to December 2007) in the decomposition plot (Figure 5). The seasonal patterns suggested
an increasing trend in the groundwater depth, from March to November, and a maximal decrease in
February. The water withdrawals picture showed that the groundwater mining periods were from
March to November, each year, and the groundwater quantity extraction was relatively greater in June,
July, and October, respectively. The annual cycle could be divided into two “seasons”, based on the
month-to-month variability. The period of “Winter” was approximately November to March and was
characterized by a low variability. “Summer” had a much higher variability and lasted from April to
October. Figure 5 shows the monthly seasonal component pattern for the groundwater observations.
G1, with a peak in July, had a large difference (576.70 cm), with the trough month in December. G3,
with a peak in July, had a large difference (620.32 cm), with the trough month in December. G4, with a
peak in July, had a tremendous difference (1008.84 cm), with the trough month in February. G5, with a
peak in July, had a difference of 253.32 cm, with the trough month in February. G7, with a peak in
October, had a large difference (703.62 cm), with the trough month in February. G10, with a peak in
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August, had a difference of 260.97 cm, with the trough month in December. The seasonal data variation
presents a shift in the peak months from July to October, except for September, and the trough months
ranged from December to February (Table 3). It was also clear, as shown in Figure 5, that all sites were
characterized by a strong seasonal oscillation (for G4, the approximate maximum was 618.833 cm and
the minimum was −390.00 cm). This pattern in groundwater change was consistent, across years and
across the different sites.

Table 3. Groundwater well cases, mean yearly and monthly decline, seasonal peak/trough month and
seasonal D-value, 2002–2014.

Observation
Well

Mean Yearly
Decline (cm)

Mean Monthly
Decline (cm)

Seasonal Peak/Trough
Month Seasonal D-Value a (cm)

G01 99.12 9.29 July/December 576.70
G03 97.62 8.78 July/December 620.32
G04 88.65 8.33 July/February 1008.84
G05 51.31 4.91 July/February 253.32
G07 67.23 6.67 October/February 703.62
G10 64.65 4.54 August/December 260.97

a D-value was the difference between the value of seasonal peak month and the seasonal trough month.

As shown in Figure 5, the monthly seasonal component pattern in September was almost zero,
thus, the piezometric groundwater level of September was selected for data analysis (Table 4), and the
result could be explained by seasonality. Table 4 summarizes the long-term time trends and seasonal
characteristics for all observed wells. Piezometric groundwater level showed a significant decline from
226.90 cm (average value) in September 2002, to 961.50 cm (average value) in September 2014 (Table 4),
with an approximate average annual decline of 73.96 cm/year. Likewise, the monthly piezometric
groundwater level of all sites showed a downward trend component, with a mean monthly decline
of 9.29 cm (G1), 8.78 cm (G3), 8.33 cm (G4), 4.91 cm (G5), 6.67 cm (G7), and 4.54 cm (G10) (Table 3).
The average values in Table 4 shows that the depth of the piezometric groundwater level increased
rapidly from September 2010 to September 2014; these results could also be validated by Figure 4.

Table 4. Linear trend analysis of trend components of the ten groundwater sites recorded during the
period 2002 to 2014. The four columns show the monthly change in September, during 2003, 2007, 2010,
and 2014.

Observation
Well

September
2003 (cm)

September
2007 (cm)

September
2010 (cm)

September
2014 (cm)

D-Value a

(cm)
Annual Change

(cm/year)

G01 819.67 1153 1655 2081.5 1288.5 99.12
G02 130 338 484.5 939 834 64.15
G03 472.67 839 1050 1673 1269 97.62
G04 269.67 744 598.5 1352.5 1152.5 88.65
G05 239 322 422 879 667 51.31
G06 142 352 379.5 898.5 768.5 59.12
G07 159.67 366 418 1009 874 67.23
G08 150.67 402 457 1035.5 910.5 70.04
G09 120.67 317 410.5 1099 1010.5 77.73
G10 147.33 344 394 917 840.5 64.65

Average 226.9 517.7 626.9 1188.4 961.5 73.96
a D-value was the difference between the depth of the piezometric groundwater level at September 2014 and at
September 2003.

3.3. Monthly Evaluation for Different Sites

Results regarding the monthly pattern trends over the study period are shown in Figure 6,
which showed different monthly series, with different trends. In G1, G3, and G4 site, the seasonal
cycle subseries of the monthly plot showed that the average depth of the piezometric groundwater
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level was highest in July, followed closely by August (Figure 6); the least point emerged in January,
and gradual increases occurred with time. However, G5 and G10 displayed different trends from
the G1, G3, and G4 sites. The maximum of the average depth of the piezometric groundwater
level was in July, followed closely by October (Figure 6), and variability of the mean piezometric
groundwater level, between months, was lower than the other regions analyzed. As plotted in
Figure 6, the seasonal cycle subseries plot of G7 also showed a different tendency with other sites.
G7 showed that the maximum was in October, while the second was observed in July. The average
depth of the piezometric groundwater level of January and February was nearly equivalent in all sites.
The curve growth and oscillation bending trends also showed that G3, G4, and G7 were in an obviously
inter-annual variability. G4 demonstrated the strongest oscillating pattern, especially, in April, May,
June, September, October, and November, which was in accord with the mining periods (Figure 5).
The variables in January, February, March, and December, in G4, G5, G7, and G10 presented minor
growth at each year, while this phenomenon seemed to be inconspicuous in G1 and G3. Although
variation among the years existed, the maximum was noted to be in an almost similar month (July or
October), for different years and different sites.Water 2019, 11, 186 11 of 19 
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3.4. Driving Factors Analysis

R square is a useful statistical measure to evaluate the regression predictions and is widely
used in accuracy measures, for comparisons. Thus, the R square was utilized in this present study.
The yearly data ranged from 2003 to 2015 and originated from the Statistical Yearbook of China.
Nine factors which were assumed to have a relatively high probability of impact were selected,
in terms of two criteria—climate and human activities. These factors were all for statistical dispersion
analysis and for the components correlation with groundwater depth. The correlation coefficient
variance of each time-series component was calculated (Table 5) and Figure 7 shows the radar plot
about the correlation coefficients.

Table 5. Correlation coefficient between the nine factors and the depth of the piezometric groundwater
level, respectively.
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Results showed that, the mean correlation coefficients were 0.95 for the annual irrigated land
area, 0.94 for the annual electricity consumed in rural areas, 0.94 for the annual gross regional
product, 0.81 for the annual population density, 0.4 for the crop area, 0.36 for the annual mean
evapotranspiration, 0.09 for the annual mean runoff,−0.26 for the annual mean temperature, and−0.31
for the annual mean precipitation; the irrigated land area per year was the primary correlation factor
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(Figure 7). These influenced factors can be classified into two parts—climate change and human
activities. The former includes evapotranspiration (ET), temperature (T), runoff and precipitation (P),
which were confirmed to have minor or negative correlation effects on the groundwater depth; the latter
contained irrigated land area (ILA), electricity consumed in rural areas (ECRA), gross regional product
(GRP), population density (PD), and crop area (CA), which were verified to have a high correlation
coefficient with a piezometric groundwater level decline, except for crop area.

4. Discussion

Overall, the monthly piezometric groundwater level in the Seven Stars–Baoerhai agricultural
irrigation water source in the Tarim basin revealed a consistent downward trend, with a seasonal peak
in midsummer and a trough in winter. The present results were highly dependent on the quality and
accuracy of the data. Agriculture, especially irrigation, was the principal water user in China, and the
Chinese water scarcity condition is deteriorating [8,9,48–50]. It is a particular concern to analyze
the groundwater depletion in arid land, where agricultural water contributes to most of the domain
groundwater decline.

4.1. Trend and Seasonality

Changes in the month-to-month features were identified using STL, a method that has proven
to be highly useful and efficient for analyzing groundwater data covering a time period for more
than one annual cycle [36,51]. The trend was summarized with raw data, which showed an overall
increasing pattern in groundwater depth from 2002 to 2014 (only minor fluctuations during the year
from 2002 to 2012, and a relatively rapidly rising model, from 2012 to 2014). These results might
suggest that groundwater extraction volume was on the rise and was strengthened during 2012 to 2014.
A correlation analysis was conducted to explore the reason behind groundwater encountering such a
rising trend. Yearly change tendencies of the annual ILA (0.95), annual ECRA(0.94), annual GRP(0.94),
and annual PD(0.81) has been plotted (Figure 8). Seen from these curves, the ILA presents a sharply
increasing trend from 2012 to 2014; the ECRA showed a rapid growth from 2010 to 2014; the GRP also
showed a growth from 2007 to 2014; while the annual PD presented a reducing trend during 2011 to
2014. These results might suggest that the irrigated land area could be the major determinant factor,
and that other factors could also have a great influence on groundwater depletion.

There is little information on the seasonal-trend decomposition of the intra-monthly variability
of groundwater in Tarim River, an arid and semiarid land in China. It was clear that all sites were
characterized by obvious variations and had strong seasonal oscillations, across years. The annual
cycle was divided into two “seasons” (summer and winter). Most of the seasonal data present a
peak month July, and a trough month in December or February. It also identified that the seasonal
variability of the “summer” period range was consistent with the exploitation time. A dominant
feature found was the seasonal cycle of the mean months. The peak months influenced the model
in manner similar to that of groundwater extraction in mining periods (Figure 5). The amplitude of
the seasonal signal at those sites, increased after the groundwater was mined and decreased after
mining was stopped. These results show that artificial mining has a significant impact on changes in
the piezometric groundwater level.

Seasonal cycle subseries plots demonstrated the individual average well piezometric groundwater
level, for the same month, in each year. The average depth of the piezometric groundwater level
(horizontal line) could be influenced by large values, and these plots were visual representations of
the data. Although there were several outliers, almost all monthly curves presented a similar and
significant growth trend. These results confirmed that water resource exploitation was continuous
in the Tarim Basin and there might have been an over-consumption. The phenomenon that average
piezometric groundwater level in January and February seemed to be equal, showed an increasing
trend might also provide evidence that water withdrawals play an important role on groundwater
decline (Figure 6). The result that G4 presented an obvious inter-annual oscillation bending trend
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might suggest a possibility that the piezometric groundwater level was more susceptible to artificial
exploitation. This is consistent with the earlier finding that the central part might be facing more water
consumption. Statistical assessment of factors of groundwater depletion was conducted through a
correlation analysis. It was identified that man-made influence factors played a greater role than the
natural environmental factors. The variables presented a minor growth in January, February, March,
and December in G4, G5, G7, and G10 than other months, in each year, while this phenomenon seemed
to be little clear in G1 and G3. It can be explained that the location of G1 and G3 were closer to the
desert area (Figure 1) and the groundwater aquifer, in this formation, might be more vulnerable to
external environmental impact. Thus, these studies offer evidence that groundwater abstractions
exceed the recharge for prolonged periods, and might have a devastating effect on natural ecosystems.
It is necessary to formulate some groundwater management measures in water sources to mitigate the
trend of groundwater reduction.
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4.2. Driving Force Analysis

Overexploitation of water resources might be continuing in the study area. An evaluation was
conducted for the correlation between yearly mean piezometric groundwater level and some factors
(Table 5). R square was used to evaluate the level of relevance. The impact factors were classified
into two patterns (climate change and human activities). It could be identified that human activities
played a more important role in the groundwater depletion. A negative relation of precipitation and
temperature was observed. It could be deduced that precipitation played a light role on groundwater
recharge in the arid land. Snowmelt runoff from the mountains was the main water source for arid
land, and the amount of snow melting increased along with temperature increase, which was good for
the replenishment of groundwater [52,53]. Combining the research of the STL trend and seasonality,
it was held that irrigation could be the primary factor, in accordance with the results of previous
research work [8,15,27,54].
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It should be also noted that the electricity consumed in rural areas had a significant influence
(0.94) on the piezometric groundwater level decline. The result showed that groundwater withdrawals
were highly correlated with the electricity consumed in rural areas. In many regions in the Tarim
Basin arid land, which covers an area of about 1,020,000 km2, it is a common phenomenon of dig
private wells, and these groundwater wells are not equipped with water meters. Electricity can be
used to monitor the amount of groundwater quantity when the relationship between electricity and
water consumption is determined. The monitoring of electricity is timelier and more accurate than
measurement of the irrigated area. Therefore, the monitoring of electricity usage can be more useful
to control the exploitation of groundwater, and could also be more accurate and effective than the
irrigated area measurement, annual gross regional product, and annual population density.

The quantification of groundwater withdrawal might be a hot spot for arid land; this has been
studied here. MATLAB’s Curve-Fitting Toolbox with a least squares fitting curve was used for inferring
the correlation of groundwater depletion and water withdrawals. Corn, wheat, and cotton were the
main crops. The main irrigation technologies included drip tape and flood irrigation [55]. Due to a
high correlation between groundwater depletion and water withdrawals, the monthly groundwater
withdrawals and groundwater fluctuations data (covered from 2004 to 2007) was fitted to a Linear
Fitting curve (R2 = 0.75), along with groundwater level recovery with hysteresis, with a one or two
month hysteresis (G1, G3, G4, G5, and G7 was in a one-month hysteresis, and G10 was in a two-month
hysteresis, thus, the time lag ∆t was one-month in this study, Figure 9).

A × Di = 0.66Wi−1 − 612.1 (3)

where Wi−1 is the groundwater withdrawal at the time-step month i − 1, 104 m3; Di is the average
groundwater depletion of all these observed wells at the time-step month i (including G1, G3, G4, G5,
G7, and G10), in cm; A is the area of agricultural irrigation water resource.
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The yearly groundwater withdrawals and groundwater fluctuations data (covered from 2004 to
2007) were also fitted to a Linear Fitting curve (R2 = 0.92):

A × Di = 0.57Wi − 493.30 (4)

where Wi is the groundwater withdrawals at the i year, 104 m3; Di is the average groundwater
depletion of all these observed wells at the i year (including G1, G3, G4, G5, G7, and G10), in cm; A is
the area of the agricultural irrigation water resource. When Di equals 0, the water withdrawal Wi is
860.76 × 104 m3, which shows that it might reach a water balance and the groundwater depth would
not increase, to some extent. If the groundwater withdrawals volume was reduced to 860.76 × 104 m3,
the associated irrigated areas might have also decreased, and only 70.0% of the current irrigation land
area would be used.

4.3. Limitations of the Method

The groundwater change research in a typical arid agricultural irrigate water source, proposed
here, has several limitations. For example, it is suitable for a rough estimate of groundwater spatial
variation characteristics, since the insufficient underground water wells data and the results might
have been affected by the number of observation wells. However, the ten observation wells selected
were typical, reasonable, scattered, and the time-series was complete, with sufficient data sequences
which could basically represent the groundwater trend of the irrigation water source. The results were
influenced by the size of the data, but they could provide a reasonable explanation and evidence.

As groundwater depletion is a complex system process, in this study we have not collected the
information on the number of years for which groundwater-discharge/supply took place, which could
be modeled by the groundwater numerical model method or traditional water balance method. Both of
these methods need a large number of data-points, such as river lateral supply volume, river discharge
volume, precipitation infiltration volume, evaporative discharge, and other volumes. The monthly
groundwater withdrawals fluctuation might cause the hydrogeological conditions to change monthly
(from the river water supply of the irrigated water source to the irrigated water source discharge
to the river). In addition, the collected water withdrawal volumes from the irrigated management
department and the groundwater withdrawals from common privately dug wells was not included.
Thus, there are also many uncertainties in the quantification of groundwater withdrawal.

5. Conclusions

Global groundwater over-exploitation can be seen worldwide, especially in arid and semi-arid
lands. Unsustainable water problems have emerged in many countries and are key issues for
economic development and food production. The amount of water extracted is higher than water
supplied, resulting in decreasing piezometric groundwater level. Water extracted from the earth might
temporarily alleviate water shortages.

STL has a clear application in trend and seasonal fluctuation analysis of the piezometric
groundwater level and disclosed that artificial mining played a significant role in groundwater
depletion. Results obtained from the Seasonal-Trend Decomposition analysis revealed that the trends
of piezometric groundwater level in the study’s dryland area continued on a path of significant decline
and has become more and more serious, in recent years.

This study also revealed that human activities have strong influence on the groundwater decline,
while the effect of climatic changes was insignificant. Results from driving force analysis indicated
that irrigation was the primary factor and temperature and precipitation could be used as positive
criteria for groundwater recharge. Electricity consumed in rural areas could be an effective, convenient,
and practical factor to assess groundwater exploitation in the Tarim Basin. Electricity consumption
fluctuations are easier to monitor and calculate than the piezometric groundwater level. The research of
the relationship between electricity and water consumption might need further discussion. The optimal
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groundwater exploitation and irrigation area might be 860.76 × 104 m3 and 70% of the current water
withdrawals and irrigation land area, respectively.

Overall, this study indicated that human activities are the main factors affecting the decline
of piezometric groundwater level. The problem of groundwater in the agricultural water dryland
sources is serious and needs to be highly valued. Groundwater is like a huge reservoir under the
earth. It is opaque, concealed, and can be easily ignored; also it is often poorly monitored and not
accurately quantified. The relationship between electricity and water consumption may provide a new
flexible insight to solve that question. Mechanized production and modern management of farms and
irrigation could also be effective for water-saving, and it is also necessary to raise the awareness of
farmers regarding water-saving.
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