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Abstract: The negative scaling rate between precipitation extremes and the air temperature in tropic
and subtropic regions is still a puzzling issue. This study investigates the scaling rate from two
aspects, storm characteristics (types) and event process-based temperature variations. Heavy storms
in South China are developed by different weather systems with unique meteorological characteristics
each season, such as the warm-front storms (January), cold-front storms (April to mid-May), monsoon
storms (late May to June), convective storms, and typhoon storms (July to September). This study
analyzes the storm characteristics using the hourly rainfall data from 1990 to 2017; compares the
storm hyetographs derived from the one-minute rainfall data during 2008–2017; and investigates the
interactions between heavy storms and meteorological factors including air temperature, relative
humidity, surface pressure, and wind speed at 42 weather stations in Guangzhou during 2015–2017.
Most storms, except for typhoon and warm-front storms, had a short duration (3 h) and intense rates
(~13 mm/h) in Guangzhou, South China. Convective storms were dominant (50%) in occurrence
and had the strongest intensity (15.8 mm/h). Storms in urban areas had stronger interactions with
meteorological factors and showed different hyetographs from suburban areas. Meteorological
factors had larger variations with the storms that occurred in the day time than at night. The air
temperature could rise 6 ◦C and drop 4 ◦C prior to and post-summer storms against the diurnal mean
state. The 24-h mean air temperature prior to the storms produced more reliable scaling rates than the
naturally daily mean air temperature. The precipitation extremes showed a peak-like scaling relation
with the 24-h mean air temperature and had a break temperature of 28 ◦C. Below 28 ◦C, the relative
humidity was 80%–100%, and it showed a positive scaling rate. Above 28 ◦C, the negative scaling
relation was likely caused by a lack of moisture in the atmosphere, where the relative humidity
decreased with the air temperature increase.
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1. Introduction

Heavy storm rainfall is the driving force of urban pluvial flooding. Mega cities, especially in the
developing countries, such as China and India, suffered frequent flooding disasters in recent years in
the context of global warming and fast urbanization [1–3]. Urban pluvial flooding or waterlogging
is a common problem in many mega cites of China, such as Nanjing, Wuhan, and Guangzhou [4].
Guangzhou faces severe challenges for its over-stressed storm water drainage systems due to the
heavy tropical storms and rapid urbanization in the past 30 years [5]. The impervious urban areas
have a complicated impact on local weather systems, resulting in the phenomena of a heat and rain
island [6]. Numerical modeling studies found that the increase of urban areas would significantly
intensify the local extreme rainfall [1,7,8]. Experimental observations reported that the precipitation
down-wind of large cities could increase 5%–25% from the background values [1,6]. There are urgent
needs to study and update the heavy rainfall characteristics for better storm water management and
emergency response in the metropolitan areas of Guangzhou, South China.

Heavy storms in South China are developed by different weather systems each season. They have
dynamically unique environment structures largely controlled by three-dimensional meteorological
factors, such as air temperature, humidity, pressure, and wind speed and direction, leading to
different storm types and forming mechanisms. Four types of warm season storms are reported
in the literature [9,10], that is, cold-front storms (April to mid-May), monsoon storms (late May to
June), convective storms, and typhoon storms (July to September). Most warm season storms have a
short duration and intense rates in Guangzhou, except for typhoon storms [5,11].

Heavy storms have complicated interactions with air temperature. The impact of air temperature
on precipitation extremes have been extensively investigated after the pioneering work of Lenderink
and van Meijgaard [12] in the Netherlands. The ideal gas law and Clausius–Clapeyron (CC) equation
is the theoretical basis for such studies. The water-holding capacity of the atmosphere increases with
the air temperature by about 7% ◦C−1 globally for a given relative humidity, thus the precipitation
extreme is proposed so as to scale with the precipitable water content in the atmosphere [12,13]. Many
studies have investigated the scaling rate using numerical models and field observations at regional
and global scales. Overall, five types of scaling rates between surface daily mean air temperature and
precipitation extremes were reported, namely sub-CC (~3% ◦C−1), close-CC (~7% ◦C−1), super-CC
(~14% ◦C−1), peak-like CC (positive and negative), and negative CC [14–17].

The apparent scaling rates are mostly affected by the regional climatic settings, namely air
temperature variation ranges and available water vapor. Sub-CC, close-CC, and super-CC were
reported in mid and high latitude regions with a daily mean air temperature below ~20 ◦C, such as
in the Netherlands [12], Germany [18], France [13], and Canada [16], and in the winter time of
mid-latitude regions, such as the United States [14], southern Australia [19], and China [20]. Peak-like
CC were reported in the mid latitude regions (20–55◦ N and 20–55◦ S), with the upper range of
daily mean temperature above 25 ◦C [14,21,22], such as in Central Australia [19], South China [20],
and Southern France [13]. The negative CC were reported in the tropic regions and the summer of the
subtropical regions with a daily mean temperature above 25 ◦C [14], such as in Brazil [15], Northern
Australia [19,23], South China [20], and Hong Kong [24].

Other factors affecting the scaling rates include the available moisture source (humidity),
percentiles, and durations used to quantify the precipitation extremes. Higher percentiles and a
shorter duration display a better close-CC or supper-CC [13,14,16]. The negative part of the peak-like
scaling was explained by the lack of a moisture source, such as in Southern France [13]. This was
supported by the fact that there was a general decrease in the relative humidity with a temperature
increase at most stations in Australia, which suggests that the precipitation extremes were not only
associated with how much moisture the atmosphere can hold, but also with how much moisture was
available in the first place [15,19,23,25,26].

In summary, the current studies are mostly aimed at how global/regional warming intensifies
the precipitation extremes conditional to the rainfall occurring with an available moisture source.
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The orographic and other meteorological factors influencing rainfall occurrence are also important in
constraining the changes of the precipitation extremes. However, few studies investigate the feedback
and interactions of precipitation extremes with air temperature and other meteorological factors prior
to and after a storm, especially in the tropical and subtropical regions. The behavior and mechanisms
of tropical and subtropical heavy storms are worthy of further investigations.

The primary objectives of this study are (1) to analyze the characteristics of the different types
of heavy storms in the metropolitan areas of Guangzhou, South China (subtropical, 23◦ N), and (2)
to reveal the interactions of the heavy storms with air temperature and other meteorological factors,
including relative humidity, surface pressure, and wind, using event process-based analysis.

2. Study Area and Data

2.1. Study Area

The City of Guangzhou is located in the upper Pearl River Delta in Southern China (Figure 1a).
It has a sub-tropic climate controlled by the Indian summer monsoon and the South China Sea monsoon
later in the year, with an annual mean air temperature of 22 ◦C and precipitation of 1700 mm [27,28].
The warm and wet rainy season starts from April through to September, and falls over 80% of the
annual precipitation [4,29]. The rainy season is usually divided into three periods [30]. From April to
mid-May, rainfall is dominated by frontal systems, being affected by the large-scale cold air south down
from the mid-latitudes and the southwest warm air along the west flank of the western North Pacific
subtropical high [31]. From late May to June, after the summer monsoon onset over the South China
Sea, the monsoonal rain band advances up to the Pearl River Delta areas (Guangzhou), and the rainfall
mainly results from a southeasterly direction, which transports water vapor into Guangzhou [9,10,32].
From July to September, monsoon rainfall becomes relatively weakened, and convective thunderstorms
and tropical cyclones contribute appreciably to the rainfall in Guangzhou [33,34]. The first two periods
are also called the first rainy season, while the third period is called the second rainy season [11].
The warm season storms in Guangzhou can be classified into four classes, mostly based on the location
of the subtropical high (i.e., the cold-front storms, monsoon storms, convective storms, and typhoon
storms) [30].

At present, the administration area of Guangzhou is 7434 km2. It includes 11 districts—Yuexiu,
Haizhu, Liwan, Tianhe, Baiyun, Huangpu, Huadu, Panyu, Nansha, Chonghua, and Zengcheng [5].
The metropolitan area has undergone fast urbanization during the past 30 years, and the built-up
area ratio increased from 3% to 24% from 1990 to 2013, according to Landsat images [5]. There are 42
standard automatic weather stations in Guangzhou. These stations are divided into two groups of
urban and suburban, so as to examine the generic characteristic of the meteorological factors and their
variations with storms in this study (Figure 1b). In addition, six stations in the Tianhe (Site 2/rain
gauge) and Panyu (Site 1, 3–6) Districts had a one-minute record of rainfall and water depth data,
which were used to develop the rain hyetograph (Figure 1c).

2.2. Rain Depth and Other Meteorological Data

The 42 automatic weather stations contained data on the rainfall accumulation, air temperature,
relative humidity, surface pressure, wind speed, and direction. All of the data were processed
and archived in an hourly interval. Their precisions were 0.1 mm for precipitation, 0.1 ◦C for air
temperature, 0.1% for relative humidity, 0.1 m/s for wind speed data, and 1◦ for wind direction.
The data duration was 28 months, from July 2015 to October 2017. All of the climate data were
validated by using quality control procedures [35–37].

Two sources of rainfall data from six automatic gauges were used to develop the storm hyetograph.
The first one was from the national standard weather stations (Sites 1 and 2) of China, where the rainfall
data were automatically recorded at one-minute intervals with a precision of 0.1 mm (Figure 1c). Site 2
is in the downtown area of the Tianhe District, Site 1 is in the suburban Panyu District, and both sites
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are 25 km apart. In addition, the processed hourly-interval rainfall data from 1990–2017 at Sites 1 and
2, and the hourly data at Sites 3–6 from 2014–2017, were used to analyze the storm features separately
for the suburban and urban stations at the climatic time scale. Sites 3–6 were set up in the summer of
2014 at the Panyu District by our own research team. The rainfall data were recorded at one-minute
intervals with a precision of 1 mm, which aimed to record the heavy storm rainfall. The five-year
rainfall data (one-minute interval) from 2008 to 2012 at Sites 1 and 2, and the three-year rainfall data
from 2014–2017 at Sites 3–6, were obtained in order to develop the rain hyetographs, respectively.

Water 2018, 10, x FOR PEER REVIEW  4 of 26 

 

were recorded at one-minute intervals with a precision of 1 mm, which aimed to record the heavy 
storm rainfall. The five-year rainfall data (one-minute interval) from 2008 to 2012 at Sites 1 and 2, 
and the three-year rainfall data from 2014–2017 at Sites 3–6, were obtained in order to develop the 
rain hyetographs, respectively. 

 

Figure 1. Meteorological sites (urban: 23 triangles; suburban: 19 squares) in the administration areas 
of Guangzhou (b), South China. The urban areas include the four districts of Haizhu, Liwan, Tianhe, 
and Yuexiu, and the suburban areas comprise the seven districts of Baiyun (BY), Huadu (HD), 
Conghua (CH), Zengcheng (ZC), Huangpu (HP), Panyu (PY), and Nansha (NS). Map (c) shows the 
meteorological sites in the Panyu District, where Sites 3–6 are maintained by our research team, and 
Sites 1 and 2 are the national standard meteorological sites. 

2.3. CMPA 

The China Hourly Merged Precipitation Analysis (CMPA) data merged the hourly precipitation 
products with 0.1° × 0.1° spatial resolution [38](http://cdc.nmic.cn/home.do), and are available from 
2008 to present. They show a much better performance in quantifying the extreme rainfall than the 
other satellite and reanalysis precipitation data in China [11,38,39]. The CMPA data are used to 
illustrate the spatial distributions of five typical storms for the peak intensity and event total 
precipitation.  

3. Methodology 

3.1. Storm Events Classification  

This study does not analyze all of the rain events and only focuses on heavy storms, as they can 
produce a severe impact on meteorological factors and cause surface flooding. Storm events are 
identified at the individual stations based on the following criteria: (a) rain duration >20 minutes for 
one-minute data or one hour for hourly data [40], (b) rain depth in a one-hour moving window >20 

Figure 1. Meteorological sites (urban: 23 triangles; suburban: 19 squares) in the administration areas of
Guangzhou (b), South China. The urban areas include the four districts of Haizhu, Liwan, Tianhe, and
Yuexiu, and the suburban areas comprise the seven districts of Baiyun (BY), Huadu (HD), Conghua
(CH), Zengcheng (ZC), Huangpu (HP), Panyu (PY), and Nansha (NS). Map (c) shows the meteorological
sites in the Panyu District, where Sites 3–6 are maintained by our research team, and Sites 1 and 2 are
the national standard meteorological sites.

2.3. China Hourly Merged Precipitation Analysis (CMPA)

The China Hourly Merged Precipitation Analysis (CMPA) data merged the hourly precipitation
products with 0.1◦ × 0.1◦ spatial resolution [38] (http://cdc.nmic.cn/home.do), and are available
from 2008 to present. They show a much better performance in quantifying the extreme rainfall
than the other satellite and reanalysis precipitation data in China [11,38,39]. The CMPA data are
used to illustrate the spatial distributions of five typical storms for the peak intensity and event
total precipitation.

http://cdc.nmic.cn/home.do
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3. Methodology

3.1. Storm Events Classification

This study does not analyze all of the rain events and only focuses on heavy storms, as they
can produce a severe impact on meteorological factors and cause surface flooding. Storm events
are identified at the individual stations based on the following criteria: (a) rain duration >20 min
for one-minute data or one hour for hourly data [40], (b) rain depth in a one-hour moving window
>20 mm, and (c) storm event separation with an hourly rain depth <1 mm for at least for three
hours [41]. According to these criteria, there were 2611 storms at Sites 1 to 6 during 1990–2017, which
were used to analyze the storm features. Among them, there were 214 storms recorded at Sites 1–2
from 2008 to 2012 and at Sites 3–6 from 2014 to 2017, using the one-minute interval. There were
another 1454 storms at the 42 weather stations from July 2015 to October 2017. The 1454 storms were
not physically separate storm events defined in meteorology, and occurred in Guangzhou. Some of
them were actually the same storm events that occurred at the same or at a slightly later time in the
metropolitan areas of Guangzhou, but were recorded at different weather stations. Those storm events
at the 42 weather stations were mainly used to analyze the variations of the meteorological factors
along the process of storm development and evolution.

In order to analyze the interactions between the storm (rainfall) and meteorological factors (air
temperature, relative humidity, surface pressure, and wind speed), the 42 weather stations were first
divided into urban and suburban groups using the K-means cluster analysis, while considering their
location and neighboring land use/cover (Figure 1b). The K-means cluster algorithm set the initial
center values of the meteorological variables for the two clusters of urban and suburban, and then
calculated their minimum squared distance from the samples to their centers iteratively [11,42]. Finally,
all of the stations were classified into the two clusters by the K-means cluster analysis using the time
series of the hourly observations of the five meteorological factors for each storm event in this study.
There were 23 urban stations (55%) and 19 suburban (Figure 1b) stations. All of the heavy storm events
at both the urban and suburban clusters were generally classified into five types according to the season
or the locations of the subtropical high, which determines the vapor source and forming mechanisms
of heavy storms [9,10]. They are (a) warm-front storms (occurred in January), (b) cold-front storms
(April to mid-May), (c) monsoon storms (late May to June), (d) convective storms (July to September),
and (e) typhoon storms (July to September). The typhoon storms were precisely identified.

The cold-front storms, monsoon storms, and convective storms were further divided into three
groups by occurrence time (i.e., 8:00–12:00, 13:00–18:00, and 19:00–0:00–7:00), so as to assess the impact
of the heavy storms on the meteorological factors during the storm process in different periods/solar
radiation, and thus could better analyze their interaction with storms. Warm-front and typhoon storms
had a limited storm count and did not have such an analysis carried out.

3.2. Anomaly Curves

After the storm events were classified, anomaly curves 36 h prior to and post the storm peak hour
were generated so as to analyze the impact on and the interaction of the storms with meteorological
factors. The reference values are the diurnal mean of each factor during two weeks centered on the
storm time, excluding their values during the 72-h period affected by the storm. The anomalies are the
residuals between the actual meteorological factors’ value and their reference value during the 72 h
centered at the storm peak intensity hour.

3.3. Rain Hyetograph

The rain hyetographs in this study are derived by the Improved Huff curve model reported
by Pan et al. [5]. The Huff curve is a dimensionless hyetograph initially developed by Huff for
characterizing rainfall temporal distributions in an area, and has been widely applied to describe
the hyetograph and to predict the runoff in a catchment [43–46]. In traditional analysis, the storm
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events are first classified into four quartiles according to their normalized time of peak rain intensity.
Next, a quartile curve is developed at a certain provability, normally varying from 10% to 90%, by a
10% increment. Then, a series of Huff curves are developed at different probabilities within each
quartile [46]. The 50% probability (median) curve is the most representative in each quartile.

The improved Huff curve method does not separate storms into the four quartiles as usual, but
divides each storm into the rising and falling limbs, according to the occurrence time of the peak rain
intensity [5]. Then, the dimensionless hyetographs are developed by the Huff curve method based on
the normalized rain intensity and the time in the rising and falling limbs separately. Finally, both of the
hyetographs are combined to form an Improved Huff curve. The Improved Huff curves in this study
were developed at the probability of 50% in both the rising and falling limbs, based on the one-minute
rainfall data of Sites 1–6 from 2008 to 2017.

3.4. Precipitation Extremes and Temperature Scaling

The approach of Clausius–Clapeyron (CC) scaling is applied in order to assess the impact of air
temperature on precipitation extremes in the subtropical Guangzhou, based on all of the available
hourly precipitation and temperature data [12]. Only the hourly precipitation data are analyzed.
The daily mean air temperature is computed from the hourly temperature data during the 24-h period
prior to the storm, as well as the natural daily mean temperature. The precipitation data were stratified
based on the 24-h and daily mean air temperature in bins of 2 ◦C widths, within which the precipitation
extremes were computed from the 75th, 90th, 99th, and 99.9th percentiles. Only the 75th and 99th
percentiles have been presented for graph clarity [47,48].

4. Results and Discussions

4.1. Characteristics of Meteorological Factors

The administration area of Guangzhou is located in the upper Pearl River Delta (PRD), facing the
low-lying delta plain in West and South China Sea in the southeast, and surrounded by hills in the
North and East (Figures 1b and 2a). At the 42 weather stations from July 2015 to October 2017, the
main wind direction during the storm duration was from the south (42%) and east (28%), followed
by the west (19%) and a few (11%) from the north. The suburban districts of Baiyun, Huangpu,
Zengcheng, and Conghua had much larger precipitation than the downtown area of Guangzhou
(Figure 2b). Meanwhile, attention must be paid to the big orange area, which has less precipitation
as a result of the statistical artifacts caused by lack of weather stations in the hills, and thus its actual
annual precipitation could be larger. In the downtown areas of Guangzhou with more weather stations,
the urban stations showed distinct patterns of meteorological factors from the suburban stations, that is,
less precipitation (Figure 2b), higher air temperature (Figure 2c), lower relative humidity (Figure 2d),
lower surface pressure (Figure 2e), and smaller wind speed (Figure 2f) at the urban stations compared
with the suburban stations. Considering the short duration of the records, they were just the typical
mean states for this area. The precipitation extremes were also found to be positively associated with
the urban extent in the Pearl River Delta [39].
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Figure 2. The elevation and built-up areas of Guangzhou and the locations of the meteorological sites
(a), annual total rainfall (b), annual mean air temperature (c), relative humidity (d), air pressure (e),
and wind speed (f) for two complete years from July 2015 to June 2017.

Besides the annual scale, meteorological factors also demonstrated different patterns for urban
and suburban stations at the seasonal and diurnal scales (Figure 3). The urban stations had less rainfall
in the first rainy season, from April to June, than the suburban stations, while they had larger rainfalls
in the second rainy season of July, September, and October (Figure 3a). At the diurnal cycle, all of
the stations showed two peaks of storm events in the morning and afternoon. The urban stations
had a shorter duration in the morning peak and a longer duration in the afternoon peak than the
suburban stations (Figure 3b). The surface air temperature and pressure showed an inverse temporal
pattern at the seasonal scale (Figure 3c,g), while the temperature and relative humidity had an inverse
temporal pattern at the diurnal scale (Figure 3d,f). The air pressure also showed a semidiurnal pattern
(Figure 3h). Similar to the annual scale, the urban stations generally had a higher temperature, lower
humidity and pressure, and much smaller wind speed than the suburban stations (Figure 3).
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Figure 3. The seasonal (monthly) and diurnal (hourly) distributions of (a,b) rainfall, (c,d) surface
temperature, (e,f) relative humidity, (g,h) air pressure, and (i,j) wind speed at the urban and suburban
sites in Guangzhou from July 2015 to October 2017.

4.2. Characteristics of Storms

The storm features displayed little differences between the urban and suburban stations at an
event scale, with a similar storm duration, event total, and intensity (Table 1). Half of the storms had
an event duration of less than three hours, nearly a quarter of them were three to five hours, and over
another quarter were longer than five hours, based on all of the hourly storm rainfall data from 1990 to
2017 (Table 1).
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Table 1. Statistics of storm events at Sites 1–6 for the hourly rainfall data from 1990 to 2017.

Stations Storm
Count

Duration (h) Mean (h)
Duration

Mean (mm)
Event Total

Mean (mm/h)
Rain Intensity≤1 1–3 3–5 >5

Urban 1327
165 505 297 360

4.4 46 10.5
12% 38% 23% 27%

Suburb 1284
144 493 292 355

4.6 47 10.3
11% 38% 23% 28%

The occurrence time of the peak rainfall plays a crucial role in determining the temporal
distribution of the storm rainfall, that is, the rain hyetograph, which further impacts on the design
storm, local drainage planning/design, and flooding risk. Figure 4 illustrates the rain hyetographs
for the four types of summer storms at urban and suburban stations using the improved Huff curve
established by Pan et al. [5]. Table 2 summarizes the statistics of these storms used in Figure 4.
The urban stations had similar hyetographs, for example, having a similar peak rainfall occurrence
time (29%–32% of event duration) and peak rainfall percentage (52%–57% of total rainfall) during a
0.5-h peak rainfall time. In contrast, the suburban stations had a wider range and later peak rainfall
occurrence time (30%–41%) and a larger range (45%–61%) of peak rainfall percentage. The difference
in the storm hyetograph will generate a different peak runoff, requiring a different drainage capability
even for a same scale storm event. This indicates that different rain hyetographs are required in the
storms for the design of drainage planning and flooding infrastructure in urban and suburban areas,
even in the same administration area of Guangzhou [5].
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Items Stations All 
Warm-Front 

Storm 

Cold-Front 

Storm 

Monsoon 

Storm  

Convective 

Storm 

Typhoon 

Storm 

Storm Count 
Urban (23) 752 *3% 13% 26% 50% 8% 

Suburb (19) 702 *4% 23% 29% 39% 7% 

Storm Urban 3.2  7.8 3.3 3 2.6 5.9 

duration (h) Suburb 3.6  11.9 3.2 3.3 2.9 6 

Mean rainfall  Urban 41.3  82.1 37.9 37.4 41 43.8 

(mm/event) Suburb 44.0  83.1 37.2 37.9 43.3 76.7 

Mean rain rate 

(mm/h) 

Urban 12.8  10.5  11.5  12.5  15.8  7.4  

Suburb 12.2  7.0  11.6  11.5  14.9  12.8  

Figure 4. Storm hyetographs derived from the Improved Huff curve model at a probability of 50%
from the one minute-interval rainfall data at Sites 1–2 during 2008–2012, and Sites 3–6 from 2014–2017
for the cold-front storms, monsoon storms, convective storms, and typhoon storms in (a) urban and (b)
suburban areas.
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Table 2. Statistics of storm events for the one minute-interval data during 2008–2012 (Sites 1–2) and
2014–2017 (Sites 3–6). The peak rainfall time is determined using the maximum five-minute rainfall
accumulation. The rainfall time is normalized using the total rainfall duration.

Stations
Storm
Types

Event Mean
Rainfall (mm)

Percent of Max
0.5h Rainfall

Peak Rainfall
Time

Rainfall Depth Intensity (mm/min)

Rising Falling Rising Falling

Urban

Cold-front 45 52% 29% 40% 60% 0.64 0.31
Monsoon 39 56% 32% 46% 54% 0.64 0.27

Convective 41 57% 28% 41% 59% 0.77 0.39
Typhoon 29 57% 32% 31% 69% 0.17 0.20

Mean 41 55% 29% 42% 58% 0.68 0.33

Suburban

Cold-front 55 52% 34% 40% 60% 0.76 0.54
Monsoon 52 49% 30% 37% 63% 0.64 0.40

Convective 36 61% 33% 42% 58% 0.67 0.44
Typhoon 34 45% 41% 50% 50% 0.32 0.21

Mean 46 54% 32% 40% 60% 0.69 0.45

Table 3 summarizes the storm information recorded at the 42 weather stations from July 2015
to October 2017. The coastal zone had more rainfall than the inner land for the warm-front events
(Figure 5b). There were only two actual warm-front events that occurred during 27–29 January 2016.
For example, one, which occurred on 28 January 2016, was a wide spread and long-duration storm
(Figure 5a,b), and most of the stations reported this storm. Another storm on 27 January 2016 had a
smaller intensity, and only a few stations reported it as a storm event. This explained why there were
50 storm events at the 42 weather stations for the actual two events.

Table 3. Statistics of the storms at the 42 weather stations from July 2015 to October 2017.

Items Stations All Warm-Front
Storm

Cold-Front
Storm

Monsoon
Storm

Convective
Storm

Typhoon
Storm

Storm Count
Urban (23) 752 *3% 13% 26% 50% 8%

Suburb (19) 702 *4% 23% 29% 39% 7%

Storm Urban 3.2 7.8 3.3 3 2.6 5.9
duration (h) Suburb 3.6 11.9 3.2 3.3 2.9 6

Mean rainfall Urban 41.3 82.1 37.9 37.4 41 43.8
(mm/event) Suburb 44.0 83.1 37.2 37.9 43.3 76.7

Mean rain rate
(mm/h)

Urban 12.8 10.5 11.5 12.5 15.8 7.4
Suburb 12.2 7.0 11.6 11.5 14.9 12.8

Storm count
8:00–12:00

Urban #25% 52% 19% 26% 24% 19%
Suburb #19% 40% 16% 17% 20% 15%

Storm count
13:00–18:00

Urban #40% 0% 38% 30% 51% 28%
Suburb #41% 12% 42% 43% 42% 34%

Storm count
19:00–7:00

Urban #35% 48% 43% 44% 25% 52%
Suburb #40% 48% 41% 40% 37% 51%

**Mean storm
rainfall (mm)

Urban 926 88 235 161 414 28
Suburb 1056 117 374 217 312 36

##Mean total
rainfall (mm)

Urban 2708 296 530 734 1095 53
Suburb 2822 289 609 860 1014 50

Note: * = count percentage of each storm type against all of the storm events. # = count percentage of the morning,
afternoon, and night for each storm type, against those that occurred all day. ** = mean storm rainfall at each site.
## = mean total rainfall, including storms and no storm, at each site.

The cold-front storms were fast moving and wide spreading (Figure 5c,d). The suburban stations
(158) had more storms than the urban stations (94) (Table 3). The afternoon had more storms than the
morning and night on average, for example, a quarter of a day (6 h) in the afternoon had 38% and 42%
of all of the storms in the urban and suburban stations, respectively.
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Figure 5. The spatial distribution of the peak rainfall and event-total rainfall plotted from the China
Hourly Merged Precipitation Analysis (CMPA) product for five typical storm events (types) that
occurred in the metropolitan areas of Guangzhou, China, that is, a warm-front storm (a,b), a cold-front
storm (c,d), a monsoon storm (e,f), a convective storm (g,h), and the typhoon Nida storm (i,j).
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Monsoon storms were the second most recorded storms next to convective storms, 26% in urban
and 29% in suburban (Table 3). They had a similar rain duration and rain depth, but a smaller rainfall
range than the cold-front storms (Figure 5e,f). The urban stations had more storms in the morning and
less storms in the afternoon than the suburban stations, plus an overall shorter duration.

Most of the convective storms were localized and small-range events (Figure 5g,h), while they
had the shortest duration and the largest mean intensity, resulting in most of the urban waterlogging
incidents (Table 3). They were dominant in both the urban (50%) and suburban (39%) stations.
The afternoon had the most events, especially in the urban areas (51%), due to strong solar radiation
and the urban heat island effect.

The typhoon-brought storms were the most-wide spreading (Figure 5i,j), and had the second
longest rain duration following the warm-front storms (Table 3). They were near evenly distributed
through the day. The suburban stations had much more rainfall and a stronger rain rate than the
urban stations.

4.3. Variations of Meteorological Factors with Storms

The interactions between the storm and meteorological factors were investigated from two
aspects. Firstly, five storm events that occurred at a typical station were used to illustrate their
specific interactions (Figure 6). Then, the mean conditions of all events were divided into three storm
occurrence periods of morning, afternoon, and night time, so as to show the impact of solar radiation
on their interactions with cold-front storms, monsoon storms, and convective storms (Figures 7–9).
Warm-front and typhoon storms were not separated into these three periods because of their limited
storm count.

4.3.1. Warm-Front Storms (in January)

The development of warm-front storms was mainly caused by the El Nino effect, a special case in
Guangzhou and Southern China in January 2016. They were controlled by the cold air in the winter
time, and then encountered the warm moist air that moved up from the Bengal Bay and the South
China Sea. During the two weeks centered on 27–29 January 2016, the mean diurnal air temperature
varied between 10 ◦C and 13 ◦C one week prior to and post storm, while it decreased to 5 ◦C prior to
the storm and increased to 18 ◦C after the storm, resulting in a mean storm total of 90 mm (Figure 6a).
The warming effect lasted over three days after the storm. As the warm and moist air moved up
and the temperature increased, the relative humidity dramatically increased from 25% to above 80%
(Figure 6b), the surface pressure was lower than the normal mean prior to and during the storm, and
was higher than the normal after the storm (Figure 6c). The wind speed had a much larger variation
than the normal mean (Figure 6d).

4.3.2. Cold-Front Storms (April to Mid-May)

The cold-front storms are controlled by the southwesterly wind (northeasterly) in South China,
before the South China Sea summer monsoon is formed [9,10]. It generates a heavy storm center
in Qingyuan and Shaoguan, the northern Guangzhou, mainly because of the uplifting effect of the
topography (Figures 1b and 5d). The suburban stations (158 events) in Northern Guangzhou had
much more cold-front storms than the urban stations (94 events) (Table 3).

Taking the storm on 9–11 May 2016 as an example, the air temperature rose by 2 ◦C above the
two-week diurnal mean before the cold front arrived, and it dramatically decreased from 32 ◦C to 23 ◦C
within 20 h as the cold front was approaching and the storm was formed (Figure 6e). It returned to the
normal diurnal variations about 24 h after the storm ended. Relative humidity always accompanied
the air temperature changes in an inverse pattern, that is, a lower and higher relative humidity than the
diurnal mean immediately before and after the storm (Figure 6f). The surface pressure was lower than
the diurnal mean 24 h before the storm, and the difference was reduced after the storm. It returned to
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the normal variation 12 h after the storm (Figure 6g). There was a larger wind speed about 20 h prior
to the storm, and it fell back to the normal variations during and after the storm (Figure 6h).Water 2018, 10, x FOR PEER REVIEW  14 of 26 
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decreased at a larger magnitude and longer duration at the urban stations than at the suburban 
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When the storm occurred in the afternoon, the air temperature was +2 °C higher than the 
diurnal mean about 18 hours prior to the storm, lasted about 6 hours at that positive status, and then 
dramatically decreased to −4 °C immediately before the storm (Figure 7e). The cooling effect was 
reduced quickly after the storm, and the urban stations had a much larger cooling magnitude than 
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Figure 6. The fluctuations of air temperature, relative humidity, surface pressure, and wind speed at
an urban station for a warm-front storm on 27–29 January 2016 (a–d), a cold-front storm on 9–11 May
2016 (e–h), a monsoon storm on 9–15 June 2016 (i–l), a convective storm on 14–20 July 2016 (m–p),
and the typhoon Nida storm on 1–4 August 2016 (q–t). The green lines are the diurnal average during
a two-week period centered at but excluded from the storm-affecting duration. This urban station
(G3221) is located in the Tianhe District downtown of Guangzhou.

The impact of the storms on the meteorological factors were investigated by dividing the
occurrence time into morning 8:00–12:00 (Figure 7a–d), afternoon 13:00–18:00 (Figure 7e–h), and
night time 19:00–7:00 (Figure 7i–l). Prior to and after the storm, there were overcast clouds, which
blocked the shortwave solar radiation and retained the Earth’s surface long wave radiation. The storms
disturbed the normal diurnal variation of the meteorological factors, among which the air temperature
was most impacted. When the storm occurred in the morning, the air temperature was +6 ◦C higher
than the diurnal mean about 24 h prior to the storm, lasted about 8 h at that anomaly high status,
and then dramatically decreased to −4 ◦C after the storm (Figure 7a). It decreased at a larger magnitude
and longer duration at the urban stations than at the suburban stations.

When the storm occurred in the afternoon, the air temperature was +2 ◦C higher than the diurnal
mean about 18 h prior to the storm, lasted about 6 h at that positive status, and then dramatically
decreased to −4 ◦C immediately before the storm (Figure 7e). The cooling effect was reduced quickly
after the storm, and the urban stations had a much larger cooling magnitude than the suburban stations.

When the storm occurred in night, the air temperature was +2 ◦C higher than the diurnal mean
about 12 h prior to the storm, lasted about 12 h at that positive status and then immediately decreased
to −2 ◦C during the storm (Figure 7i). The cooling impact lasted 12 h after the storm. The mean
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wind speed was higher than the diurnal mean 12 h prior to, and after the storm at the urban stations
(Figure 7l).
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4.3.3. Monsoon Storms (Late May to June)

When the southwesterly (northeasterly) wind weakened in the mid-May, the southeasterly
strengthened and then dominated the monsoon rains in late May and June in South China [9].
One important feature of the South China Sea summer monsoon onset is that the upper tropospheric
(100 hPa) zonal wind shifts from westerly to easterly, corresponding to the northward move of the
South Asia High [10]. Thus, the storms occurring in late May and June are caused mainly by the
warm and moist South China Sea summer monsoon. Both the cold frontal and monsoonal rain are
the dominant rain sources in the first rainy season, from April to June. They normally form a storm
center in the southeast coast during the monsoon rain period (Figure 5f). The monsoon rain decreased
from the southeastern coast to the northwestern inland [9]. The monsoon storms had similar storm
durations, event total rainfall, and mean rain rates to the cold-front storms (Table 3). There were more
monsoon storms that occurred in the afternoon, especially at the suburban stations.

The monsoon storms did not form an evident front, such as the storm event that occurred on
12 June 2016 (Figure 5e,f). The air temperature did not show obviously changes before the storm,
but immediately decreased during the storm (Figure 6i). Both the relative humidity and surface
pressure were higher than the two-week diurnal mean for a few days after the storm (Figure 6j,k).
The wind speed was larger and smaller than the diurnal mean several hours prior to and after the
storm, respectively (Figure 6l).

When storms occurred in the morning, the air temperature was +3 ◦C higher than the diurnal
mean about 20 h prior to the storm, lasted about 6 h at that positive status, and then decreased to
−3 ◦C two hours prior to the storm. This negative value reduced slowly, and it returned to the normal
variations 10 h after the storm at the urban stations (Figure 8a). The cooling impact lasted about eight
hours longer at the suburban stations than at the urban stations.
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When the storm occurred in the afternoon, the air temperature was +2 ◦C higher than the diurnal
mean, about six hours prior to the storm, lasted about three hours at that positive status, and then
dramatically decreased to −4 ◦C (anomaly) during the storm (Figure 8e). The cooling impact quickly
reduced after the storm and lasted about 10 h.

When the storms occurred at night, the impact of the storms on the air temperature and other
meteorological factors were reduced compared with the morning and afternoon storms (Figure 8i–l).
The air temperature was +2 ◦C higher than the diurnal mean about 12 h prior to the storm, lasted
about three hours at that positive status and then decreased to −2 ◦C (anomaly) during the storm
(Figure 8i). The cooling impact lasted 10 h after the storm. The mean wind speed was higher than the
diurnal mean after the storm at the urban stations, while it was lower than the diurnal mean at the
suburban stations (Figure 8l).
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two-week period centered at but excluding the 72 h of storm period from July 2015 to October 2017.
The precipitation in the right-hand axis is the mean event-total rainfall.

4.3.4. Convective Storms (July to September)

There is strong solar radiation and intense surface heating in Guangzhou (~N23◦) from 22 June
to 23 September each year, when the sun can vertically shed light on the Tropic of Cancer, and then
moves southward back to the equator. Such a surface heating causes intense convection, resulting in
localized convective storms or thunderstorms at local (micro) scales, especially in urban areas. These
storms have unique dynamical structures largely controlled by the three-dimensional air temperature,
humidity, pressure, and wind in the environment of the convection developing. One example was the
convective thunderstorm that occurred in Guangzhou on the morning of 16 July 2016 (Figure 5g,h).
The air temperature was +3 ◦C above the diurnal mean 18 h prior to the storm, and then decreased to
−3 ◦C below the mean during the storm (Figure 6m). The relative humidity was much higher than the
diurnal mean prior to and after the storms (Figure 6n).

The convective storms had a dominant occurrence frequency in all of the storm types at both the
urban (50%) and suburban (39%) stations (Table 3). The afternoon had the largest share on average,
while night had the least possibility, especially at the urban stations, with 51% count in the afternoon
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(13:00–18:00) and only 25% in the night. When storms occurred in the morning, the air temperature
was +5 ◦C higher than the diurnal mean about 20 h prior to the storm, lasted about four hours at
that anomaly high status, and then dramatically decreased to −4 ◦C (anomaly) six hours prior to
the storm. That negative value reduced slowly and returned to the normal variations 12 h after the
storm (Figure 9a). The wind speed was 0.6 m/s higher than the mean 18–24 h prior to the storm, then
reduced to −0.4 m/s lower than the mean 10 h prior to the storm, and returned to the normal variation
after the storm (Figure 9d).

When the convective storms occurred in the afternoon, the air temperature did not show an
obvious change until several hours prior to the storm, and then dramatically decreased to −4 ◦C
(anomaly) during the storm (Figure 9e). The cooling impact quickly reduced, and it returned to the
normal variations 12 h after the storm. Wind speed was +0.4 m/s larger than the mean 6–12 h prior to
the storm, and −0.4 m/s smaller 0–6 h after the storm (Figure 9h).

When convective storms occurred at night, the impact of the storms on the air temperature and
other meteorological factors were reduced compared to the morning and afternoon-occurring storms
(Figure 9i–l). The air temperature was +2 ◦C higher than the diurnal mean about 10 h prior to the
storm, and then decreased to −2 ◦C (anomaly) during the storm (Figure 9i). The cooling impact lasted
12 h after the storm.
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to, and after the convective storms that occurred in the morning (8:00–12:00; a–d), afternoon (13:00–18:00;
e–h), and night (19:00–7:00; i–l). The references are the diurnal mean during a two-week period centered
at but excluding the 72 h of the storm period from July 2015 to October 2017. The precipitation in the
right-hand axis is the mean event-total rainfall.

4.3.5. Typhoon Storms (July to September)

Tropical cyclones are rapidly rotating storm systems featuring a low-pressure center, a closed
low-level atmospheric circulation, strong winds, spiraling storms, and heavy rain. They are called
typhoons in the northwestern Pacific Ocean and hurricanes in the Atlantic Ocean and northeastern
Pacific Ocean. Most tropical cyclones that made landfall in South China were formed in the South
China Sea and Philippine Sea in the northwestern Pacific Ocean, and the winds blew counterclockwise.
There were 2.8 landfall typhoons on average in South China during 1957–1996, contributing 20%–30%
to the annual rainfall [49].
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Typhoon storms are mesoscale weather systems (Figure 5i,j). They were accurately identified and
consisted 8% of all storms in the three years examined (Table 3). They occurred evenly within the three
periods, with no obvious difference between the urban and suburban stations. Meteorological factor
variations were illustrated as an example during the Typhoon Nida, which made landfall in the east of
Shenzhen at 04:00 on 2 August 2016 (Figure 6q–t). The surface pressure declined to 98 kPa, and the
hourly mean wind speed rose to 3 m/s during landfall at Tianhe in Guangzhou. The air temperature
was more than 6 ◦C lower than the diurnal mean 12 h prior to landfall, and the cooling impact lasted
three days after the landfall. It brought 100–200 mm rainfall in Guangzhou, and the peak rain intensity
was 90 mm/h 24 h after the landfall.

Generally, heavy storms are developed by different weather systems each season, and have unique
and dynamically environment structures largely controlled by the three-dimensional air temperature,
humidity, pressure, and wind (Figures 5 and 6). Prior to and after a storm, there is usually overcast
clouds, which scatters back the shortwave solar radiation and blocks in the Earth’s surface long wave
radiation. It disturbs the normal diurnal variation of the meteorological factors, thus heavy storms
had different impact on meteorological factors when they occurred in the morning, afternoon, and
night (Figures 8–10). Meanwhile, in the formation of clouds and storms, the condensation of water
vapor releases a large latent energy into atmosphere, resulting in an abnormal rise of air temperature.
Subsequently, the rainfall brings down cool water, and the evaporation of the surface rain water absorbs
the heat, resulting in a cooling effect on both the Earth’s surface and on the lower atmosphere [23].
Thus, the air temperature could rise several degrees above the normal range during the 24 h prior to
the storms, and immediately dropped several degrees below the normal range during and after the
storm, resulting in an approximately 6–10 ◦C air temperature difference before and during the storms
(Figures 6–9, Table 4). The 24-h mean air temperature prior to the storms could be a better indicator for
computing the scaling rates of the precipitation extremes with the surface air temperature.

Table 4. Mean air temperature (T. = ◦C) 24 h prior to the storms and during the storms, and the break
air temperature of the scaling rates using the 24-h mean and natural daily mean temperature at the 42
automatic weather stations from July 2015 to October 2017. *All storms only include the three types
of storms.

Storms 24 h Mean T.
Prior to Rain

Mean T. in
Rain Hours

T.
Difference

Break T. 24 h
Mean

Break T. Daily
Mean

*All Three 32.5 23.9 8.6 28 26
Cold-front 31.4 22.9 8.5 28 24
Monsoon 31.9 25.3 6.7 28 28
Convective 32.7 25.8 7.0 28 26

4.4. Scaling Rates

When all of the storms were considered except for the warm-front and typhoon storms, it showed
a peak-like scaling with a break temperature of 28 ◦C and a peak precipitation intensity of 67 mm/h in
the 99th percentile (Figure 10a). The hourly precipitation extremes in the 75th and 99th percentiles
increased at a close-CC rate (~7% ◦C−1), with air temperature below 28 ◦C, while a negative scaling
existed when it was above 28 ◦C (Figure 10a). The break temperature was 26 ◦C in the 75th percentile
for the cold-front and monsoon storms. The scaling rate of the cold-front storms was overall similar to
that of all of the storms, but with a smaller peak intensity of 57 mm/h in the 99th percentile (Figure 10b).
It displayed a super CC rate for monsoon and convective storms when the 24-h mean air temperature
was below 28 ◦C and a negative scaling rate when it was above 28 ◦C (Figure 10c,d). Their 24-h mean
air temperature varied from 24 ◦C to 34 ◦C prior to the storm. The hourly peak precipitation intensities
in the 99th were 57, 71, and 69 mm/h for the cold-front, monsoon, and convective storms, respectively.
Meanwhile, the scaling rates were generally similar for the precipitation extremes at the urban and
suburban stations (Figure 10e,f).
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Figure 10. The scaling rates between the 24-h mean air temperature prior to the storms and the
hourly precipitation extremes at the 75th and 99th percentile for (a) all of the storms from April to
September, (b) cold-front storms from April to mid-May, (c) monsoon storms from mid-May to June,
(d) the convective storms from July to September, (e) monsoon storms at the suburb stations, and (f)
convective storms at the urban stations. The marked values on each plot are the break temperature and
precipitation extremes. The gray dashed lines are the standard Clausius–Clapeyron (CC) scaling rate.
The Y-axis scale is in logarithm.
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In contrast, when using the natural daily mean air temperature as in literature, the peak-like
scaling structure almost disappeared and only the negative scaling existed, especially in the 75th
percentile for the monsoon storms (Figure 11c). The break air temperature dropped to 24 ◦C and
26 ◦C for the cold-front and convective storms, resulting in a break air temperature of 26 ◦C for all
three types of storms. A negative scaling rate existed for most of the convective storms (Figure 11d).
When the urban and suburban stations were separated, a negative CC scaling rate appeared for the
cold-front storms at the suburban stations (Figure 11e) and for convective storms at the urban stations
(Figure 11f). Meanwhile, the peak-like scaling structure still existed and was similar at the urban and
suburban stations for both the monsoon and convective storms when the 24-h mean air temperature
prior to the storms was used in computing the scaling rates (Figure 10e,f). On the one hand, although
the air temperature affects extreme precipitation, the atmospheric conditions and precipitation affect
the surface air temperature as well. The cooling effect of the storms on the air temperature disturbs
the scaling rate between the precipitation extremes and the air temperature. A lower temperature
during the storms is widely related to the local saturated downdraughts, rain evaporative cooling, and
the synoptic atmospheric properties of colder air in low-pressure systems [23]. This indicates that the
24-h mean air temperature could produce more reliable scaling rates than the naturally daily mean air
temperature used in literature.

The peak-like structure of the scaling rates between the precipitation extremes and air temperature
revealed in this study are similar to those reported in the literature [13,14,16,17], but are slightly
different from those who found negative scaling rates in the tropic and subtropical regions when
daily mean air temperature was above 25 ◦C, such as in Brazil [15], Northern Australia [19], Southern
China [20], and Hong Kong [24]. Such negative scaling rates were also identified by using the daily
mean temperature for the cold-front and convective storms (Figure 11e,f). Using the 24-h mean
air temperature prior to the storms, this study presents a break temperature of 28 ◦C, above which
there was a negative scaling rate for the warm season storms. Figures 6–9 demonstrate that the air
temperature normally increased by several degrees 4–24 h prior to the storm, while it decreased by
several degrees immediately during the storm. The transient cooling effect of the tropical storms could
be up to 4 ◦C in Northern Australia [23]. Table 4 shows that the 24-h mean air temperature prior to the
storms was about 7–8 ◦C higher than that during the rain hours. This suggests that the 24-h mean air
temperature prior to the storms could be a better indicator than the natural daily mean air temperature
in the scaling rate computation, especially for the sub-tropic and tropic storms [15,23,24].

The break air temperature acts like an atmospheric threshold of water vapor availability in the
subtropical Guangzhou. The values of the mean temperature 24 h prior to the storms were 31.4,
31.9, and 32.7 ◦C for the cold-front, monsoon, and convective storms, respectively, and their mean
temperatures during the rain hours were 22.9, 25.3, and 25.8 ◦C (Table 4). Although both the 24-h and
rain-hour mean air temperature were different for the cold-front, monsoon, and convective storms,
they all showed a similar break temperature of 28 ◦C in the 99th percentile (Figure 10). This was 4 ◦C
lower than the 24-h mean air temperature prior to the storms and 2–5 ◦C higher than those during
the rain hours. When the 24-h mean air temperature was lower than 28 ◦C, the relative humidity
was 80%–100%, and showed positive scaling rates (Figures 6–10). In contrast, when it was higher
than 28 ◦C, the relative humidity and precipitation extremes had a negative relationship with the air
temperature (Figure 12). This further confirms a previous explanation that the negative scaling rates
were mainly caused by a lack of moisture [15,20].

The primary mechanism of moisture lack for the high temperature range is likely caused by the
delay of evapotranspiration following the rapid increase of air temperature, rather than by the absolute
lack of water resource, especially in the humid subtropical area of Guangzhou. As the air temperature
rises above 28 ◦C, the atmosphere is more dynamic. A further rising temperature is potentially
associated with different synoptic systems, atmospheric circulation, and moisture advection, thus
resulting in different meteorological or precipitation regimes [19,50]. Meanwhile, the spatial variability
of the mean air temperature is much smaller than the precipitation extreme, and it might contribute
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to the negative scaling rates when the scaling rates were computed using all of the precipitation
extremes at each of the weather stations [14–17]. In other words, such negative scaling rates might be
partially related to the analytical method [51], such as those showed in Figures 10 and 11. They showed
some positive scaling rates in the tropical regions of Australia, by conditioning the precipitation
intensity and storm duration. Nevertheless, given enough time and moisture sources, the scaling rate
is still appropriate to project the future rainfall extremes in the context of climate change and global
warming [17,23].
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5. Summary and Remark

There is an ongoing debate on the negative scaling rates between precipitation extremes and
surface air temperature in tropic and subtropic regions. A lack of moisture resource was mainly applied
to explain the negative scaling rates. However, heavy storms are developed by different weather
systems each season in the Southern China. They have complicated interactions with meteorological
factors and are the driving force of urban pluvial flooding. This study analyzes the characteristics of
heavy storms in the administration areas of Guangzhou, South China, and investigates the variations
of meteorological factors with different types of storms, and quantifies the scaling rates between
the hourly precipitation extremes with the surface air temperature (i.e., the naturally daily mean
temperature and the 24-h mean values prior to the storms).

Except for the warm-front and typhoon storms, the warm season storms have a short duration
and intense rates in Guangzhou. Half of the storms had rain duration shorter than three hours, a
quarter were in the range of three to five hours, and another quarter were longer than five hours,
respectively. The convective storms were dominant by 50% in urban, followed by monsoon storms
and cold-front storms. Urban and suburban areas had different storm hyetographs.

The air temperature showed a different magnitude of fluctuations prior to and after the different
types of storms, while the storm types had little influence on the scaling rates between the precipitation
extremes and the temperature. Air temperature is one of the leading meteorological factors that
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interacts with heavy storms. It could rise by 6 ◦C and drop by 4 ◦C prior to and after summer storms.
The precipitation extremes showed peak-like scaling rates with the 24-h mean air temperature prior
to the storms. For the cold-front, monsoon, and convective storms, they all showed the same break
temperature of 28 ◦C in the 99th percentile, which was 4 ◦C lower than the 24-h mean air temperature
prior to the storms and 2–5 ◦C higher than those during the storms. Below 28 ◦C, the relative humidity
was 80%–100%, and it showed a positive scaling. In contrast, above 28 ◦C, the relative humidity
decreased with the air temperature increase, which suggests that the negative scaling rates were likely
caused by lack of moisture in the atmosphere, instead of by the atmospheric water vapor-holding
capacity. Meanwhile, when using the natural daily mean air temperature as in the literature, a lower
break temperature appeared for all of the summer storms, partially due to the transient cooling effect,
and even purely negative scaling rates appeared for the monsoon storms at the suburban stations and
the convective storms at the urban stations. This suggests that the 24-h mean air temperature could be
a better variable to use for compute scaling rates rather than the naturally daily mean air temperature.

The storm process-based analysis reveals detailed variations of the meteorological factors prior to,
during, and after the storms, especially for the cold-front, monsoon, and convective storms. For large
scale storms, such as the winter warm-front storms and typhoon storms, it is limited to analyzing the
interactions between the storms and the meteorological factors by using the local weather observations.
Fine atmospheric models are needed in order to investigate their full interactions and feedbacks.
The accurate forecasting of localized heavy storms is still a sever challenge in present-day climate and
weather forecasting models. This study paves a path towards a greater storm-process understanding
of the scaling relation between precipitation extreme and air temperature, and offers some suggestions
to the forecast of local heavy storms and the urban drainage management in the Southern China.
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