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Abstract: The negative scaling rate between precipitation extremes and the air temperature in 

tropic and subtropic regions is still a puzzling issue. This study investigates the scaling rate from 

two aspects, storm characteristics (types) and event process-based temperature variations. Heavy 

storms in South China are developed by different weather systems with unique meteorological 

characteristics each season, such as the warm-front storms (January), cold-front storms (April to 

mid-May), monsoon storms (late May to June), convective storms, and typhoon storms (July to 

September). This study analyzes the storm characteristics using the hourly rainfall data from 1990 

to 2017; compares the storm hyetographs derived from the one-minute rainfall data during 2008–

2017; and investigates the interactions between heavy storms and meteorological factors including 

air temperature, relative humidity, surface pressure, and wind speed at 42 weather stations in 

Guangzhou during 2015–2017. Most storms, except for typhoon and warm-front storms, had a 

short duration (3 h) and intense rates (~13 mm/h) in Guangzhou, South China. Convective storms 

were dominant (50%) in occurrence and had the strongest intensity (15.8 mm/h). Storms in urban 

areas had stronger interactions with meteorological factors and showed different hyetographs from 

suburban areas. Meteorological factors had larger variations with the storms that occurred in the 

day time than at night. The air temperature could rise 6 °C and drop 4 °C prior to and post-summer 

storms against the diurnal mean state. The 24-hour mean air temperature prior to the storms 

produced more reliable scaling rates than the naturally daily mean air temperature. The 

precipitation extremes showed a peak-like scaling relation with the 24-hour mean air temperature 

and had a break temperature of 28 °C. Below 28 °C, the relative humidity was 80%–100%, and it 

showed a positive scaling rate. Above 28 °C, the negative scaling relation was likely caused by a 

lack of moisture in the atmosphere, where the relative humidity decreased with the air temperature 

increase.  
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Heavy storm rainfall is the driving force of urban pluvial flooding. Mega cities, especially in the 

developing countries, such as China and India, suffered frequent flooding disasters in recent years in 

the context of global warming and fast urbanization [1–3]. Urban pluvial flooding or waterlogging is 

a common problem in many mega cites of China, such as Nanjing, Wuhan, and Guangzhou [4]. 

Guangzhou faces severe challenges for its over-stressed storm water drainage systems due to the 

heavy tropical storms and rapid urbanization in the past 30 years [5]. The impervious urban areas 

have a complicated impact on local weather systems, resulting in the phenomena of a heat and rain 

island [6]. Numerical modeling studies found that the increase of urban areas would significantly 

intensify the local extreme rainfall [1,7,8]. Experimental observations reported that the precipitation 

down-wind of large cities could increase 5%–25% from the background values [1,6]. There are 

urgent needs to study and update the heavy rainfall characteristics for better storm water 

management and emergency response in the metropolitan areas of Guangzhou, South China.  

Heavy storms in South China are developed by different weather systems each season. They 

have dynamically unique environment structures largely controlled by three-dimensional 

meteorological factors, such as air temperature, humidity, pressure, and wind speed and direction, 

leading to different storm types and forming mechanisms. Four types of warm season storms are 

reported in the literature [9,10], that is, cold-front storms (April to mid-May), monsoon storms (late 

May to June), convective storms, and typhoon storms (July to September). Most warm season storms 

have a short duration and intense rates in Guangzhou, except for typhoon storms [5,11]. 

Heavy storms have complicated interactions with air temperature. The impact of air 

temperature on precipitation extremes have been extensively investigated after the pioneering work 

of Lenderink and van Meijgaard [12] in the Netherlands. The ideal gas law and Clausius–Clapeyron 

(CC) equation is the theoretical basis for such studies. The water-holding capacity of the atmosphere 

increases with the air temperature by about 7% °C−1 globally for a given relative humidity, thus the 

precipitation extreme is proposed so as to scale with the precipitable water content in the 

atmosphere [12,13]. Many studies have investigated the scaling rate using numerical models and 

field observations at regional and global scales. Overall, five types of scaling rates between surface 

daily mean air temperature and precipitation extremes were reported, namely sub-CC (~3% °C−1), 

close-CC (~7% °C−1), super-CC (~14% °C−1), peak-like CC (positive and negative), and negative CC 

[14–17].  

The apparent scaling rates are mostly affected by the regional climatic settings, namely air 

temperature variation ranges and available water vapor. Sub-CC, close-CC, and super-CC were 

reported in mid and high latitude regions with a daily mean air temperature below ~20 °C, such as in 

the Netherlands [12], Germany [18], France [13], and Canada [16], and in the winter time of 

mid-latitude regions, such as the United States [14], southern Australia [19], and China [20]. 

Peak-like CC were reported in the mid latitude regions (20–55° N and 20–55° S), with the upper 

range of daily mean temperature above 25 °C [14,21,22], such as in Central Australia [19], South 

China [20], and Southern France [13]. The negative CC were reported in the tropic regions and the 

summer of the subtropical regions with a daily mean temperature above 25 °C [14], such as in Brazil 

[15], Northern Australia [19,23], South China [20], and Hong Kong [24]. 

Other factors affecting the scaling rates include the available moisture source (humidity), 

percentiles, and durations used to quantify the precipitation extremes. Higher percentiles and a 

shorter duration display a better close-CC or supper-CC [13,14,16]. The negative part of the 

peak-like scaling was explained by the lack of a moisture source, such as in Southern France [13]. 

This was supported by the fact that there was a general decrease in the relative humidity with a 

temperature increase at most stations in Australia, which suggests that the precipitation extremes 

were not only associated with how much moisture the atmosphere can hold, but also with how 

much moisture was available in the first place [15,19,23,25,26]. 

In summary, the current studies are mostly aimed at how global/regional warming intensifies 

the precipitation extremes conditional to the rainfall occurring with an available moisture source. 

The orographic and other meteorological factors influencing rainfall occurrence are also important 

in constraining the changes of the precipitation extremes. However, few studies investigate the 
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feedback and interactions of precipitation extremes with air temperature and other meteorological 

factors prior to and after a storm, especially in the tropical and subtropical regions. The behavior and 

mechanisms of tropical and subtropical heavy storms are worthy of further investigations. 

The primary objectives of this study are (1) to analyze the characteristics of the different types 

of heavy storms in the metropolitan areas of Guangzhou, South China (subtropical, 23° N), and (2) to 

reveal the interactions of the heavy storms with air temperature and other meteorological factors, 

including relative humidity, surface pressure, and wind, using event process-based analysis.  

2. Study Area and Data 

2.1. Study Area 

The City of Guangzhou is located in the upper Pearl River Delta in Southern China (Figure 1a). 

It has a sub-tropic climate controlled by the Indian summer monsoon and the South China Sea 

monsoon later in the year, with an annual mean air temperature of 22 °C and precipitation of 1700 

mm [27,28]. The warm and wet rainy season starts from April through to September, and falls over 

80% of the annual precipitation [4,29]. The rainy season is usually divided into three periods [30]. 

From April to mid-May, rainfall is dominated by frontal systems, being affected by the large-scale 

cold air south down from the mid-latitudes and the southwest warm air along the west flank of the 

western North Pacific subtropical high [31]. From late May to June, after the summer monsoon onset 

over the South China Sea, the monsoonal rain band advances up to the Pearl River Delta areas 

(Guangzhou), and the rainfall mainly results from a southeasterly direction, which transports water 

vapor into Guangzhou [9,10,32]. From July to September, monsoon rainfall becomes relatively 

weakened, and convective thunderstorms and tropical cyclones contribute appreciably to the 

rainfall in Guangzhou [33,34]. The first two periods are also called the first rainy season, while the 

third period is called the second rainy season [11]. The warm season storms in Guangzhou can be 

classified into four classes, mostly based on the location of the subtropical high (i.e., the cold-front 

storms, monsoon storms, convective storms, and typhoon storms) [30]. 

At present, the administration area of Guangzhou is 7434 km2. It includes 11 districts—Yuexiu, 

Haizhu, Liwan, Tianhe, Baiyun, Huangpu, Huadu, Panyu, Nansha, Chonghua, and Zengcheng [5]. 

The metropolitan area has undergone fast urbanization during the past 30 years, and the built-up 

area ratio increased from 3% to 24% from 1990 to 2013, according to Landsat images [5]. There are 42 

standard automatic weather stations in Guangzhou. These stations are divided into two groups of 

urban and suburban, so as to examine the generic characteristic of the meteorological factors and 

their variations with storms in this study (Figure 1b). In addition, six stations in the Tianhe (Site 

2/rain gauge) and Panyu (Site 1, 3–6) Districts had a one-minute record of rainfall and water depth 

data, which were used to develop the rain hyetograph (Figure 1c).  

2.2. Rain Depth and Other Meteorological Data 

The 42 automatic weather stations contained data on the rainfall accumulation, air temperature, 

relative humidity, surface pressure, wind speed, and direction. All of the data were processed and 

archived in an hourly interval. Their precisions were 0.1 mm for precipitation, 0.1 °C for air 

temperature, 0.1% for relative humidity, 0.1 m/s for wind speed data, and 1° for wind direction. The 

data duration was 28 months, from July 2015 to October 2017. All of the climate data were validated 

by using quality control procedures [35–37]. 

Two sources of rainfall data from six automatic gauges were used to develop the storm 

hyetograph. The first one was from the national standard weather stations (Sites 1 and 2) of China, 

where the rainfall data were automatically recorded at one-minute intervals with a precision of 0.1 

mm (Figure 1c). Site 2 is in the downtown area of the Tianhe District, Site 1 is in the suburban Panyu 

District, and both sites are 25 km apart. In addition, the processed hourly-interval rainfall data from 

1990–2017 at Sites 1 and 2, and the hourly data at Sites 3–6 from 2014–2017, were used to analyze the 

storm features separately for the suburban and urban stations at the climatic time scale. Sites 3–6 

were set up in the summer of 2014 at the Panyu District by our own research team. The rainfall data 
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were recorded at one-minute intervals with a precision of 1 mm, which aimed to record the heavy 

storm rainfall. The five-year rainfall data (one-minute interval) from 2008 to 2012 at Sites 1 and 2, 

and the three-year rainfall data from 2014–2017 at Sites 3–6, were obtained in order to develop the 

rain hyetographs, respectively. 

 

Figure 1. Meteorological sites (urban: 23 triangles; suburban: 19 squares) in the administration areas 

of Guangzhou (b), South China. The urban areas include the four districts of Haizhu, Liwan, Tianhe, 

and Yuexiu, and the suburban areas comprise the seven districts of Baiyun (BY), Huadu (HD), 

Conghua (CH), Zengcheng (ZC), Huangpu (HP), Panyu (PY), and Nansha (NS). Map (c) shows the 

meteorological sites in the Panyu District, where Sites 3–6 are maintained by our research team, and 

Sites 1 and 2 are the national standard meteorological sites. 

2.3. CMPA 

The China Hourly Merged Precipitation Analysis (CMPA) data merged the hourly precipitation 

products with 0.1° × 0.1° spatial resolution [38](http://cdc.nmic.cn/home.do), and are available from 

2008 to present. They show a much better performance in quantifying the extreme rainfall than the 

other satellite and reanalysis precipitation data in China [11,38,39]. The CMPA data are used to 

illustrate the spatial distributions of five typical storms for the peak intensity and event total 

precipitation.  

3. Methodology 

3.1. Storm Events Classification  

This study does not analyze all of the rain events and only focuses on heavy storms, as they can 

produce a severe impact on meteorological factors and cause surface flooding. Storm events are 

identified at the individual stations based on the following criteria: (a) rain duration >20 minutes for 

one-minute data or one hour for hourly data [40], (b) rain depth in a one-hour moving window >20 
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mm, and (c) storm event separation with an hourly rain depth <1 mm for at least for three hours [41]. 

According to these criteria, there were 2611 storms at Sites 1 to 6 during 1990–2017, which were used 

to analyze the storm features. Among them, there were 214 storms recorded at Sites 1–2 from 2008 to 

2012 and at Sites 3–6 from 2014 to 2017, using the one-minute interval. There were another 1454 

storms at the 42 weather stations from July 2015 to October 2017. The 1454 storms were not 

physically separate storm events defined in meteorology, and occurred in Guangzhou. Some of 

them were actually the same storm events that occurred at the same or at a slightly later time in the 

metropolitan areas of Guangzhou, but were recorded at different weather stations. Those storm 

events at the 42 weather stations were mainly used to analyze the variations of the meteorological 

factors along the process of storm development and evolution. 

In order to analyze the interactions between the storm (rainfall) and meteorological factors (air 

temperature, relative humidity, surface pressure, and wind speed), the 42 weather stations were first 

divided into urban and suburban groups using the K-means cluster analysis, while considering their 

location and neighboring land use/cover (Figure 1b). The K-means cluster algorithm set the initial 

center values of the meteorological variables for the two clusters of urban and suburban, and then 

calculated their minimum squared distance from the samples to their centers iteratively [11,42]. 

Finally, all of the stations were classified into the two clusters by the K-means cluster analysis using 

the time series of the hourly observations of the five meteorological factors for each storm event in 

this study. There were 23 urban stations (55%) and 19 suburban (Figure 1b) stations. All of the heavy 

storm events at both the urban and suburban clusters were generally classified into five types 

according to the season or the locations of the subtropical high, which determines the vapor source 

and forming mechanisms of heavy storms [9,10]. They are (a) warm-front storms (occurred in 

January), (b) cold-front storms (April to mid-May), (c) monsoon storms (late May to June), (d) 

convective storms (July to September), and (e) typhoon storms (July to September). The typhoon 

storms were precisely identified.  

The cold-front storms, monsoon storms, and convective storms were further divided into three 

groups by occurrence time (i.e., 8:00–12:00, 13:00–18:00, and 19:00–0:00–7:00), so as to assess the 

impact of the heavy storms on the meteorological factors during the storm process in different 

periods/solar radiation, and thus could better analyze their interaction with storms. Warm-front and 

typhoon storms had a limited storm count and did not have such an analysis carried out.  

3.2. Anomaly Curves 

After the storm events were classified, anomaly curves 36 hours prior to and post the storm 

peak hour were generated so as to analyze the impact on and the interaction of the storms with 

meteorological factors. The reference values are the diurnal mean of each factor during two weeks 

centered on the storm time, excluding their values during the 72-hour period affected by the storm. 

The anomalies are the residuals between the actual meteorological factors’ value and their reference 

value during the 72 hours centered at the storm peak intensity hour. 

3.3. Rain Hyetograph  

The rain hyetographs in this study are derived by the Improved Huff curve model reported by 

Pan et al. [5]. The Huff curve is a dimensionless hyetograph initially developed by Huff for 

characterizing rainfall temporal distributions in an area, and has been widely applied to describe the 

hyetograph and to predict the runoff in a catchment [43–46]. In traditional analysis, the storm events 

are first classified into four quartiles according to their normalized time of peak rain intensity. Next, 

a quartile curve is developed at a certain provability, normally varying from 10% to 90%, by a 10% 

increment. Then, a series of Huff curves are developed at different probabilities within each quartile 

[46]. The 50% probability (median) curve is the most representative in each quartile.  

The improved Huff curve method does not separate storms into the four quartiles as usual, but 

divides each storm into the rising and falling limbs, according to the occurrence time of the peak rain 

intensity [5]. Then, the dimensionless hyetographs are developed by the Huff curve method based 

on the normalized rain intensity and the time in the rising and falling limbs separately. Finally, both 
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of the hyetographs are combined to form an Improved Huff curve. The Improved Huff curves in this 

study were developed at the probability of 50% in both the rising and falling limbs, based on the 

one-minute rainfall data of Sites 1–6 from 2008 to 2017.  

3.4. Precipitation Extremes and Temperature Scaling 

The approach of Clausius–Clapeyron (CC) scaling is applied in order to assess the impact of air 

temperature on precipitation extremes in the subtropical Guangzhou, based on all of the available 

hourly precipitation and temperature data [12]. Only the hourly precipitation data are analyzed. The 

daily mean air temperature is computed from the hourly temperature data during the 24-hour 

period prior to the storm, as well as the natural daily mean temperature. The precipitation data were 

stratified based on the 24-hour and daily mean air temperature in bins of 2 °C widths, within which 

the precipitation extremes were computed from the 75th, 90th, 99th, and 99.9th percentiles. Only the 

75th and 99th percentiles have been presented for graph clarity [47,48]. 

4. Results and Discussions 

4.1. Characteristics of Meteorological Factors 

The administration area of Guangzhou is located in the upper Pearl River Delta (PRD), facing 

the low-lying delta plain in West and South China Sea in the southeast, and surrounded by hills in 

the North and East (Figure 1b and Figure 2a). At the 42 weather stations from July 2015 to October 

2017, the main wind direction during the storm duration was from the south (42%) and east (28%), 

followed by the west (19%) and a few (11%) from the north. The suburban districts of Baiyun, 

Huangpu, Zengcheng, and Conghua had much larger precipitation than the downtown area of 

Guangzhou (Figure 2b). Meanwhile, attention must be paid to the big orange area, which has less 

precipitation as a result of the statistical artifacts caused by lack of weather stations in the hills, and 

thus its actual annual precipitation could be larger. In the downtown areas of Guangzhou with more 

weather stations, the urban stations showed distinct patterns of meteorological factors from the 

suburban stations, that is, less precipitation (Figure 2b), higher air temperature (Figure 2c), lower 

relative humidity (Figure 2d), lower surface pressure (Figure 2e), and smaller wind speed (Figure 2f) 

at the urban stations compared with the suburban stations. Considering the short duration of the 

records, they were just the typical mean states for this area. The precipitation extremes were also 

found to be positively associated with the urban extent in the Pearl River Delta [39]. 
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Figure 2. The elevation and built-up areas of Guangzhou and the locations of the meteorological sites 

(a), annual total rainfall (b), annual mean air temperature (c), relative humidity (d), air pressure (e), 

and wind speed (f) for two complete years from July 2015 to June 2017. 

Besides the annual scale, meteorological factors also demonstrated different patterns for urban 

and suburban stations at the seasonal and diurnal scales (Figure 3). The urban stations had less 

rainfall in the first rainy season, from April to June, than the suburban stations, while they had larger 

rainfalls in the second rainy season of July, September, and October (Figure 3a). At the diurnal cycle, 

all of the stations showed two peaks of storm events in the morning and afternoon. The urban 

stations had a shorter duration in the morning peak and a longer duration in the afternoon peak than 

the suburban stations (Figure 3b). The surface air temperature and pressure showed an inverse 

temporal pattern at the seasonal scale (Figure 3c,g), while the temperature and relative humidity had 

an inverse temporal pattern at the diurnal scale (Figure 3d,f). The air pressure also showed a 

semidiurnal pattern (Figure 3h). Similar to the annual scale, the urban stations generally had a 

higher temperature, lower humidity and pressure, and much smaller wind speed than the suburban 

stations (Figure 3).  

4.2. Characteristics of Storms  

The storm features displayed little differences between the urban and suburban stations at an 

event scale, with a similar storm duration, event total, and intensity (Table 1). Half of the storms had 

an event duration of less than three hours, nearly a quarter of them were three to five hours, and 



Water 2019, 11, 185 8 of 26 

 

over another quarter were longer than five hours, based on all of the hourly storm rainfall data from 

1990 to 2017 (Table 1).  

Table 1. Statistics of storm events at Sites 1–6 for the hourly rainfall data from 1990 to 2017. 

Stations Storm Count 
Duration (h) Mean (h) 

Duration 

Mean (mm) 

Event Total 

Mean (mm/h) 

Rain Intensity 1 1–3 3–5 >5 

Urban 1327 
165 505 297 360 

4.4 46 10.5 
12% 38% 23% 27% 

Suburb 1284 
144 493 292 355 

4.6 47 10.3 
11% 38% 23% 28% 
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Figure 3. The seasonal (monthly) and diurnal (hourly) distributions of (a, b) rainfall, (c, d) surface 

temperature, (e, f) relative humidity, (g, h) air pressure, and (i, j) wind speed at the urban and 

suburban sites in Guangzhou from July 2015 to October 2017. 

The occurrence time of the peak rainfall plays a crucial role in determining the temporal 

distribution of the storm rainfall, that is, the rain hyetograph, which further impacts on the design 

storm, local drainage planning/design, and flooding risk. Figure 4 illustrates the rain hyetographs 

for the four types of summer storms at urban and suburban stations using the improved Huff curve 

established by Pan et al. [5]. Table 2 summarizes the statistics of these storms used in Figure 4. The 

urban stations had similar hyetographs, for example, having a similar peak rainfall occurrence time 

(29%–32% of event duration) and peak rainfall percentage (52%–57% of total rainfall) during a 
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0.5-hour peak rainfall time. In contrast, the suburban stations had a wider range and later peak 

rainfall occurrence time (30%–41%) and a larger range (45%–61%) of peak rainfall percentage. The 

difference in the storm hyetograph will generate a different peak runoff, requiring a different 

drainage capability even for a same scale storm event. This indicates that different rain hyetographs 

are required in the storms for the design of drainage planning and flooding infrastructure in urban 

and suburban areas, even in the same administration area of Guangzhou [5]. 

 

Figure 4. Storm hyetographs derived from the Improved Huff curve model at a probability of 50% 

from the one minute-interval rainfall data at Sites 1–2 during 2008–2012, and Sites 3–6 from 2014–

2017 for the cold-front storms, monsoon storms, convective storms, and typhoon storms in (a) urban 

and (b) suburban areas. 

Table 2. Statistics of storm events for the one minute-interval data during 2008–2012 (Sites 1–2) and 

2014–2017 (Sites 3–6). The peak rainfall time is determined using the maximum five-minute rainfall 

accumulation. The rainfall time is normalized using the total rainfall duration. 

Stations Storm Types 
Event Mean 

Rainfall (mm) 

Percent of Max 

0.5h Rainfall  

Peak Rainfall 

Time  

Rainfall Depth Intensity (mm/min) 

Rising Falling Rising Falling 

Urban 

Cold-front 45 52% 29% 40% 60% 0.64 0.31 

Monsoon 39 56% 32% 46% 54% 0.64 0.27 

Convective 41 57% 28% 41% 59% 0.77 0.39 

Typhoon 29 57% 32% 31% 69% 0.17 0.20 

Mean 41 55% 29% 42% 58% 0.68 0.33 

Suburban 

Cold-front 55 52% 34% 40% 60% 0.76 0.54 

Monsoon 52 49% 30% 37% 63% 0.64 0.40 

Convective 36 61% 33% 42% 58% 0.67 0.44 

Typhoon 34 45% 41% 50% 50% 0.32 0.21 

Mean 46 54% 32% 40% 60% 0.69 0.45 

Table 3. Statistics of the storms at the 42 weather stations from July 2015 to October 2017. 

Items Stations All 
Warm-Front 

Storm 

Cold-Front 

Storm 

Monsoon 

Storm  

Convective 

Storm 

Typhoon 

Storm 

Storm Count 
Urban (23) 752 *3% 13% 26% 50% 8% 

Suburb (19) 702 *4% 23% 29% 39% 7% 

Storm Urban 3.2  7.8 3.3 3 2.6 5.9 

duration (h) Suburb 3.6  11.9 3.2 3.3 2.9 6 

Mean rainfall  Urban 41.3  82.1 37.9 37.4 41 43.8 

(mm/event) Suburb 44.0  83.1 37.2 37.9 43.3 76.7 

Mean rain rate 

(mm/h) 

Urban 12.8  10.5  11.5  12.5  15.8  7.4  

Suburb 12.2  7.0  11.6  11.5  14.9  12.8  
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Storm count 

8:00–12:00 

Urban #25% 52% 19% 26% 24% 19% 

Suburb #19% 40% 16% 17% 20% 15% 

Storm count 

13:00–18:00 

Urban #40% 0% 38% 30% 51% 28% 

Suburb #41% 12% 42% 43% 42% 34% 

Storm count 

19:00–7:00 

Urban #35% 48% 43% 44% 25% 52% 

Suburb #40% 48% 41% 40% 37% 51% 

**Mean storm 

rainfall (mm) 

Urban 926 88 235 161 414 28 

Suburb 1056 117 374 217 312 36 

##Mean total 

rainfall (mm) 

Urban 2708 296 530 734 1095 53 

Suburb 2822 289 609 860 1014 50 

Note: * = count percentage of each storm type against all of the storm events. # = count percentage of 

the morning, afternoon, and night for each storm type, against those that occurred all day. ** = mean 

storm rainfall at each site. ## = mean total rainfall, including storms and no storm, at each site. 

Table 3 summarizes the storm information recorded at the 42 weather stations from July 2015 to 

October 2017. The coastal zone had more rainfall than the inner land for the warm-front events 

(Figure 5b). There were only two actual warm-front events that occurred during 27–29 January 2016. 

For example, one, which occurred on 28 January 2016, was a wide spread and long-duration storm 

(Figure 5a,b), and most of the stations reported this storm. Another storm on 27 January 2016 had a 

smaller intensity, and only a few stations reported it as a storm event. This explained why there were 

50 storm events at the 42 weather stations for the actual two events.  

 The cold-front storms were fast moving and wide spreading (Figure 5c,d). The suburban 

stations (158) had more storms than the urban stations (94) (Table 3). The afternoon had more storms 

than the morning and night on average, for example, a quarter of a day (6 h) in the afternoon had 

38% and 42% of all of the storms in the urban and suburban stations, respectively.  

 Monsoon storms were the second most recorded storms next to convective storms, 26% in 

urban and 29% in suburban (Table 3). They had a similar rain duration and rain depth, but a smaller 

rainfall range than the cold-front storms (Figure 5e,f). The urban stations had more storms in the 

morning and less storms in the afternoon than the suburban stations, plus an overall shorter 

duration.  

 Most of the convective storms were localized and small-range events (Figure 5g,h), while 

they had the shortest duration and the largest mean intensity, resulting in most of the urban 

waterlogging incidents (Table 3). They were dominant in both the urban (50%) and suburban (39%) 

stations. The afternoon had the most events, especially in the urban areas (51%), due to strong solar 

radiation and the urban heat island effect.  

 The typhoon-brought storms were the most-wide spreading (Figure 5i,j), and had the 

second longest rain duration following the warm-front storms (Table 3). They were near evenly 

distributed through the day. The suburban stations had much more rainfall and a stronger rain rate 

than the urban stations.  
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Figure 5. The spatial distribution of the peak rainfall and event-total rainfall plotted from the China 

Hourly Merged Precipitation Analysis (CMPA) product for five typical storm events (types) that 

occurred in the metropolitan areas of Guangzhou, China, that is, a warm-front storm (a, b), a 

cold-front storm (c, d), a monsoon storm (e, f), a convective storm (g, h), and the typhoon Nida storm 

(i, j). 

4.3. Variations of Meteorological Factors with Storms 

The interactions between the storm and meteorological factors were investigated from two 

aspects. Firstly, five storm events that occurred at a typical station were used to illustrate their 

specific interactions (Figure 6). Then, the mean conditions of all events were divided into three storm 

occurrence periods of morning, afternoon, and night time, so as to show the impact of solar radiation 

on their interactions with cold-front storms, monsoon storms, and convective storms (Figures 7–9). 

Warm-front and typhoon storms were not separated into these three periods because of their limited 

storm count. 

4.3.1. Warm-Front Storms (in January) 

The development of warm-front storms was mainly caused by the El Nino effect, a special case 

in Guangzhou and Southern China in January 2016. They were controlled by the cold air in the 

winter time, and then encountered the warm moist air that moved up from the Bengal Bay and the 

South China Sea. During the two weeks centered on 27–29 January 2016, the mean diurnal air 

temperature varied between 10 °C and 13 °C one week prior to and post storm, while it decreased to 

5 °C prior to the storm and increased to 18 °C after the storm, resulting in a mean storm total of 90 

mm (Figure 6a). The warming effect lasted over three days after the storm. As the warm and moist 

air moved up and the temperature increased, the relative humidity dramatically increased from 25% 

to above 80% (Figure 6b), the surface pressure was lower than the normal mean prior to and during 

the storm, and was higher than the normal after the storm (Figure 6c). The wind speed had a much 

larger variation than the normal mean (Figure 6d). 

4.3.2. Cold-Front Storms (April to Mid-May) 

The cold-front storms are controlled by the southwesterly wind (northeasterly) in South China, 

before the South China Sea summer monsoon is formed [9,10]. It generates a heavy storm center in 

Qingyuan and Shaoguan, the northern Guangzhou, mainly because of the uplifting effect of the 

topography (Figure 1b, Figure 5d). The suburban stations (158 events) in Northern Guangzhou had 

much more cold-front storms than the urban stations (94 events) (Table 3).  

Taking the storm on 9–11 May 2016 as an example, the air temperature rose by 2 °C above the 

two-week diurnal mean before the cold front arrived, and it dramatically decreased from 32 °C to 23 

°C within 20 hours as the cold front was approaching and the storm was formed (Figure 6e). It 

returned to the normal diurnal variations about 24 hours after the storm ended. Relative humidity 

always accompanied the air temperature changes in an inverse pattern, that is, a lower and higher 

relative humidity than the diurnal mean immediately before and after the storm (Figure 6f). The 

surface pressure was lower than the diurnal mean 24 hours before the storm, and the difference was 

reduced after the storm. It returned to the normal variation 12 hours after the storm (Figure 6g). 

There was a larger wind speed about 20 hours prior to the storm, and it fell back to the normal 

variations during and after the storm (Figure 6h). 
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Figure 6. The fluctuations of air temperature, relative humidity, surface pressure, and wind speed at 

an urban station for a warm-front storm on 27–29 January 2016 (a–d), a cold-front storm on 9–11 May 

2016 (e–h), a monsoon storm on 9–15 June 2016 (i–l), a convective storm on 14–20 July 2016 (m–p), 

and the typhoon Nida storm on 1–4 August 2016 (q–t). The green lines are the diurnal average 

during a two-week period centered at but excluded from the storm-affecting duration. This urban 

station (G3221) is located in the Tianhe District downtown of Guangzhou. 

The impact of the storms on the meteorological factors were investigated by dividing the 

occurrence time into morning 8:00–12:00 (Figure 7a–d), afternoon 13:00–18:00 (Figure 7e–h), and 

night time 19:00–7:00 (Figure 7i–l). Prior to and after the storm, there were overcast clouds, which 

blocked the shortwave solar radiation and retained the Earth’s surface long wave radiation. The 

storms disturbed the normal diurnal variation of the meteorological factors, among which the air 

temperature was most impacted. When the storm occurred in the morning, the air temperature was 

+6 °C higher than the diurnal mean about 24 hours prior to the storm, lasted about 8 hours at that 

anomaly high status, and then dramatically decreased to −4 °C after the storm (Figure 7a). It 

decreased at a larger magnitude and longer duration at the urban stations than at the suburban 

stations.  

When the storm occurred in the afternoon, the air temperature was +2 °C higher than the 

diurnal mean about 18 hours prior to the storm, lasted about 6 hours at that positive status, and then 

dramatically decreased to −4 °C immediately before the storm (Figure 7e). The cooling effect was 

reduced quickly after the storm, and the urban stations had a much larger cooling magnitude than 

the suburban stations.  

When the storm occurred in night, the air temperature was +2 °C higher than the diurnal mean 

about 12 hours prior to the storm, lasted about 12 hours at that positive status and then immediately 

decreased to −2 °C during the storm (Figure 7i). The cooling impact lasted 12 hours after the storm. 
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The mean wind speed was higher than the diurnal mean 12 hours prior to, and after the storm at the 

urban stations (Figure 7l).  

 

Figure 7. Anomalies of air temperature, relative humidity, surface pressure, and wind speed 36 

hours prior to, and after the cold-front storms that occurred in the morning (8:00–12:00; a–d), 

afternoon (13:00–18:00; e–h), and night (19:00–7:00; i–l). The references are the diurnal mean during a 

two-week period centered at but excluded from the 72 hours of storm period from July 2015 to 

October 2017. The precipitation in the right-hand axis is the mean event-total rainfall. 

4.3.3. Monsoon Storms (Late May to June)  

When the southwesterly (northeasterly) wind weakened in the mid-May, the southeasterly 

strengthened and then dominated the monsoon rains in late May and June in South China [9]. One 

important feature of the South China Sea summer monsoon onset is that the upper tropospheric (100 

hPa) zonal wind shifts from westerly to easterly, corresponding to the northward move of the South 

Asia High [10]. Thus, the storms occurring in late May and June are caused mainly by the warm and 

moist South China Sea summer monsoon. Both the cold frontal and monsoonal rain are the 

dominant rain sources in the first rainy season, from April to June. They normally form a storm 

center in the southeast coast during the monsoon rain period (Figure 5f). The monsoon rain 

decreased from the southeastern coast to the northwestern inland [9]. The monsoon storms had 

similar storm durations, event total rainfall, and mean rain rates to the cold-front storms (Table 3). 

There were more monsoon storms that occurred in the afternoon, especially at the suburban stations. 

The monsoon storms did not form an evident front, such as the storm event that occurred on 12 

June 2016 (Figure 5e,f). The air temperature did not show obviously changes before the storm, but 

immediately decreased during the storm (Figure 6i). Both the relative humidity and surface pressure 

were higher than the two-week diurnal mean for a few days after the storm (Figure 6j,k). The wind 

speed was larger and smaller than the diurnal mean several hours prior to and after the storm, 

respectively (Figure 6l).  

When storms occurred in the morning, the air temperature was +3 °C higher than the diurnal 

mean about 20 hours prior to the storm, lasted about 6 hours at that positive status, and then 

decreased to −3 °C two hours prior to the storm. This negative value reduced slowly, and it returned 

to the normal variations 10 hours after the storm at the urban stations (Figure 8a). The cooling 

impact lasted about eight hours longer at the suburban stations than at the urban stations.  

When the storm occurred in the afternoon, the air temperature was +2 °C higher than the 

diurnal mean, about six hours prior to the storm, lasted about three hours at that positive status, and 
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then dramatically decreased to −4 °C (anomaly) during the storm (Figure 8e). The cooling impact 

quickly reduced after the storm and lasted about 10 hours.  

When the storms occurred at night, the impact of the storms on the air temperature and other 

meteorological factors were reduced compared with the morning and afternoon storms (Figure 8i–l). 

The air temperature was +2 °C higher than the diurnal mean about 12 hours prior to the storm, lasted 

about three hours at that positive status and then decreased to −2 °C (anomaly) during the storm 

(Figure 8i). The cooling impact lasted 10 hours after the storm. The mean wind speed was higher 

than the diurnal mean after the storm at the urban stations, while it was lower than the diurnal mean 

at the suburban stations (Figure 8l).  

 

Figure 8. Anomalies of air temperature, relative humidity, surface pressure, and wind speed during 

36 hours prior to and post the monsoon storms that occurred in the morning (8:00–12:00; a–d), 

afternoon (13:00–18:00; e–h), and night (19:00–7:00; i–l). The references are the diurnal mean during a 

two-week period centered at but excluding the 72 hours of storm period from July 2015 to October 

2017. The precipitation in the right-hand axis is the mean event-total rainfall. 

4.3.4. Convective Storms (July to September) 

There is strong solar radiation and intense surface heating in Guangzhou (~N23°) from 22 June 

to 23 September each year, when the sun can vertically shed light on the Tropic of Cancer, and then 

moves southward back to the equator. Such a surface heating causes intense convection, resulting in 

localized convective storms or thunderstorms at local (micro) scales, especially in urban areas. These 

storms have unique dynamical structures largely controlled by the three-dimensional air 

temperature, humidity, pressure, and wind in the environment of the convection developing. One 

example was the convective thunderstorm that occurred in Guangzhou on the morning of 16 July 

2016 (Figure 5g,h). The air temperature was +3 °C above the diurnal mean 18 hours prior to the 

storm, and then decreased to −3 °C below the mean during the storm (Figure 6m). The relative 

humidity was much higher than the diurnal mean prior to and after the storms (Figure 6n).  

The convective storms had a dominant occurrence frequency in all of the storm types at both 

the urban (50%) and suburban (39%) stations (Table 3). The afternoon had the largest share on 

average, while night had the least possibility, especially at the urban stations, with 51% count in the 

afternoon (13:00–18:00) and only 25% in the night. When storms occurred in the morning, the air 

temperature was +5 °C higher than the diurnal mean about 20 hours prior to the storm, lasted about 
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four hours at that anomaly high status, and then dramatically decreased to −4 °C (anomaly) six 

hours prior to the storm. That negative value reduced slowly and returned to the normal variations 

12 hours after the storm (Figure 9a). The wind speed was 0.6m/s higher than the mean 18–24 hours 

prior to the storm, then reduced to −0.4 m/s lower than the mean 10 hours prior to the storm, and 

returned to the normal variation after the storm (Figure 9d).  

When the convective storms occurred in the afternoon, the air temperature did not show an 

obvious change until several hours prior to the storm, and then dramatically decreased to −4 °C 

(anomaly) during the storm (Figure 9e). The cooling impact quickly reduced, and it returned to the 

normal variations 12 hours after the storm. Wind speed was +0.4m/s larger than the mean 6–12 hours 

prior to the storm, and −0.4m/s smaller 0–6 hours after the storm (Figure 9h).  

When convective storms occurred at night, the impact of the storms on the air temperature and 

other meteorological factors were reduced compared to the morning and afternoon-occurring 

storms (Figure 9i–l). The air temperature was +2 °C higher than the diurnal mean about 10 hours 

prior to the storm, and then decreased to −2 °C (anomaly) during the storm (Figure 9i). The cooling 

impact lasted 12 hours after the storm. 
 

 

Figure 9. Anomalies of air temperature, relative humidity, surface pressure, and wind speed 36 

hours prior to, and after the convective storms that occurred in the morning (8:00–12:00; a–d), 

afternoon (13:00–18:00; e–h), and night (19:00–7:00; i–l). The references are the diurnal mean during a 

two-week period centered at but excluding the 72 hours of the storm period from July 2015 to 

October 2017. The precipitation in the right-hand axis is the mean event-total rainfall. 

4.3.5. Typhoon Storms (July to September) 

Tropical cyclones are rapidly rotating storm systems featuring a low-pressure center, a closed 

low-level atmospheric circulation, strong winds, spiraling storms, and heavy rain. They are called 

typhoons in the northwestern Pacific Ocean and hurricanes in the Atlantic Ocean and northeastern 

Pacific Ocean. Most tropical cyclones that made landfall in South China were formed in the South 

China Sea and Philippine Sea in the northwestern Pacific Ocean, and the winds blew 

counterclockwise. There were 2.8 landfall typhoons on average in South China during 1957–1996, 

contributing 20%–30% to the annual rainfall [49]. 

Typhoon storms are mesoscale weather systems (Figure 5i,j). They were accurately identified 

and consisted 8% of all storms in the three years examined (Table 3). They occurred evenly within 
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the three periods, with no obvious difference between the urban and suburban stations. 

Meteorological factor variations were illustrated as an example during the Typhoon Nida, which 

made landfall in the east of Shenzhen at 04:00 on 2 August 2016 (Figure 6q–t). The surface pressure 

declined to 98 kPa, and the hourly mean wind speed rose to 3 m/s during landfall at Tianhe in 

Guangzhou. The air temperature was more than 6 °C lower than the diurnal mean 12 hours prior to 

landfall, and the cooling impact lasted three days after the landfall. It brought 100–200 mm rainfall in 

Guangzhou, and the peak rain intensity was 90 mm/h 24 hours after the landfall. 

Generally, heavy storms are developed by different weather systems each season, and have 

unique and dynamically environment structures largely controlled by the three-dimensional air 

temperature, humidity, pressure, and wind (Figures 5 and 6). Prior to and after a storm, there is 

usually overcast clouds, which scatters back the shortwave solar radiation and blocks in the Earth’s 

surface long wave radiation. It disturbs the normal diurnal variation of the meteorological factors, 

thus heavy storms had different impact on meteorological factors when they occurred in the 

morning, afternoon, and night (Figures 8–10). Meanwhile, in the formation of clouds and storms, the 

condensation of water vapor releases a large latent energy into atmosphere, resulting in an abnormal 

rise of air temperature. Subsequently, the rainfall brings down cool water, and the evaporation of the 

surface rain water absorbs the heat, resulting in a cooling effect on both the Earth’s surface and on 

the lower atmosphere [23]. Thus, the air temperature could rise several degrees above the normal 

range during the 24 hours prior to the storms, and immediately dropped several degrees below the 

normal range during and after the storm, resulting in an approximately 6–10 °C air temperature 

difference before and during the storms (Figures 6–9, Table 4). The 24-hour mean air temperature 

prior to the storms could be a better indicator for computing the scaling rates of the precipitation 

extremes with the surface air temperature.  

4.4. Scaling Rates  

When all of the storms were considered except for the warm-front and typhoon storms, it 

showed a peak-like scaling with a break temperature of 28 °C and a peak precipitation intensity of 67 

mm/hour in the 99th percentile (Figure 10a). The hourly precipitation extremes in the 75th and 99th 

percentiles increased at a close-CC rate (~7% °C−1), with air temperature below 28 °C, while a 

negative scaling existed when it was above 28 °C (Figure 10a). The break temperature was 26 °C in 

the 75th percentile for the cold-front and monsoon storms. The scaling rate of the cold-front storms 

was overall similar to that of all of the storms, but with a smaller peak intensity of 57 mm/hour in the 

99th percentile (Figure 10b). It displayed a super CC rate for monsoon and convective storms when 

the 24-hour mean air temperature was below 28 °C and a negative scaling rate when it was above 28 

°C (Figure 10c and Figure 10d). Their 24-hour mean air temperature varied from 24 °C to 34 °C prior 

to the storm. The hourly peak precipitation intensities in the 99th were 57, 71, and 69 mm/hour for 

the cold-front, monsoon, and convective storms, respectively. Meanwhile, the scaling rates were 

generally similar for the precipitation extremes at the urban and suburban stations (Figure 10e and 

Figure 10f).  

In contrast, when using the natural daily mean air temperature as in literature, the peak-like 

scaling structure almost disappeared and only the negative scaling existed, especially in the 75th 

percentile for the monsoon storms (Figure 11c). The break air temperature dropped to 24 °C and 26 

°C for the cold-front and convective storms, resulting in a break air temperature of 26 °C for all three 

types of storms. A negative scaling rate existed for most of the convective storms (Figure 11d). When 

the urban and suburban stations were separated, a negative CC scaling rate appeared for the 

cold-front storms at the suburban stations (Figure 11e) and for convective storms at the urban 

stations (Figure 11f). Meanwhile, the peak-like scaling structure still existed and was similar at the 

urban and suburban stations for both the monsoon and convective storms when the 24-hour mean 

air temperature prior to the storms was used in computing the scaling rates (Figure 10e,f). On the 

one hand, although the air temperature affects extreme precipitation, the atmospheric conditions 

and precipitation affect the surface air temperature as well. The cooling effect of the storms on the 

air temperature disturbs the scaling rate between the precipitation extremes and the air temperature. 



Water 2019, 11, 185 19 of 26 

 

A lower temperature during the storms is widely related to the local saturated downdraughts, rain 

evaporative cooling, and the synoptic atmospheric properties of colder air in low-pressure systems 

[23]. This indicates that the 24-hour mean air temperature could produce more reliable scaling rates 

than the naturally daily mean air temperature used in literature.  

 

Figure 10. The scaling rates between the 24-hour mean air temperature prior to the storms and the 

hourly precipitation extremes at the 75th and 99th percentile for (a) all of the storms from April to 

September, (b) cold-front storms from April to mid-May, (c) monsoon storms from mid-May to June, 

(d) the convective storms from July to September, (e) monsoon storms at the suburb stations, and (f) 

convective storms at the urban stations. The marked values on each plot are the break temperature 
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and precipitation extremes. The gray dashed lines are the standard Clausius–Clapeyron (CC) scaling 

rate. The Y-axis scale is in logarithm. 

 

Figure 11. The same as Figure 10, but using the natural daily mean air temperature. 

The peak-like structure of the scaling rates between the precipitation extremes and air 

temperature revealed in this study are similar to those reported in the literature [13,14,16,17], but are 

slightly different from those who found negative scaling rates in the tropic and subtropical regions 

when daily mean air temperature was above 25 °C, such as in Brazil [15], Northern Australia [19], 

Southern China [20], and Hong Kong [24]. Such negative scaling rates were also identified by using 
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the daily mean temperature for the cold-front and convective storms (Figure 11e,f). Using the 

24-hour mean air temperature prior to the storms, this study presents a break temperature of 28 °C, 

above which there was a negative scaling rate for the warm season storms. Figures 6–9 demonstrate 

that the air temperature normally increased by several degrees 4–24 hours prior to the storm, while it 

decreased by several degrees immediately during the storm. The transient cooling effect of the 

tropical storms could be up to 4 °C in Northern Australia [23]. Table 4 shows that the 24-hour mean 

air temperature prior to the storms was about 7–8 °C higher than that during the rain hours. This 

suggests that the 24-hour mean air temperature prior to the storms could be a better indicator than 

the natural daily mean air temperature in the scaling rate computation, especially for the sub-tropic 

and tropic storms [15,23,24].  

The break air temperature acts like an atmospheric threshold of water vapor availability in the 

subtropical Guangzhou. The values of the mean temperature 24 hours prior to the storms were 31.4, 

31.9, and 32.7 °C for the cold-front, monsoon, and convective storms, respectively, and their mean 

temperatures during the rain hours were 22.9, 25.3, and 25.8 °C (Table 4). Although both the 24-hour 

and rain-hour mean air temperature were different for the cold-front, monsoon, and convective 

storms, they all showed a similar break temperature of 28 °C in the 99th percentile (Figure 10). This 

was 4 °C lower than the 24-hour mean air temperature prior to the storms and 2–5 °C higher than 

those during the rain hours. When the 24-hour mean air temperature was lower than 28 °C, the 

relative humidity was 80%–100%, and showed positive scaling rates (Figures.6–10). In contrast, 

when it was higher than 28 °C, the relative humidity and precipitation extremes had a negative 

relationship with the air temperature (Figure 12). This further confirms a previous explanation that 

the negative scaling rates were mainly caused by a lack of moisture [15,20].  

Table 4. Mean air temperature (T. = °C) 24 hours prior to the storms and during the storms, and the 

break air temperature of the scaling rates using the 24-hour mean and natural daily mean 

temperature at the 42 automatic weather stations from July 2015 to October 2017. *All storms only 

include the three types of storms. 

Storms 
24 h Mean T. 

prior to rain  

Mean T. in 

rain hours  
T. difference 

Break T. 

24 h Mean 

Break T. 

Daily Mean 

*All Three 32.5 23.9 8.6 28 26 

Cold-front 31.4 22.9 8.5 28 24 

Monsoon 31.9 25.3 6.7 28 28 

Convective 32.7 25.8 7.0 28 26 
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Figure 12. The scatter plots between the relative humidity (%) and hourly mean air temperature 

during the periods prior to the storms for (a) all of the storms from April to September, (b) cold-front 

storms from April to mid-May, (c) monsoon storms from late May to June, and (d) the convective 

storms from July to September. 

The primary mechanism of moisture lack for the high temperature range is likely caused by the 

delay of evapotranspiration following the rapid increase of air temperature, rather than by the 

absolute lack of water resource, especially in the humid subtropical area of Guangzhou. As the air 

temperature rises above 28 °C, the atmosphere is more dynamic. A further rising temperature is 

potentially associated with different synoptic systems, atmospheric circulation, and moisture 

advection, thus resulting in different meteorological or precipitation regimes [19,50]. Meanwhile, the 

spatial variability of the mean air temperature is much smaller than the precipitation extreme, and it 

might contribute to the negative scaling rates when the scaling rates were computed using all of the 

precipitation extremes at each of the weather stations [14–17]. In other words, such negative scaling 

rates might be partially related to the analytical method [51], such as those showed in Figure 10 and 

Figure 11. They showed some positive scaling rates in the tropical regions of Australia, by 

conditioning the precipitation intensity and storm duration. Nevertheless, given enough time and 

moisture sources, the scaling rate is still appropriate to project the future rainfall extremes in the 

context of climate change and global warming [17,23].  

5. Summary and Remark 

There is an ongoing debate on the negative scaling rates between precipitation extremes and 

surface air temperature in tropic and subtropic regions. A lack of moisture resource was mainly 

applied to explain the negative scaling rates. However, heavy storms are developed by different 
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weather systems each season in the Southern China. They have complicated interactions with 

meteorological factors and are the driving force of urban pluvial flooding. This study analyzes the 

characteristics of heavy storms in the administration areas of Guangzhou, South China, and 

investigates the variations of meteorological factors with different types of storms, and quantifies 

the scaling rates between the hourly precipitation extremes with the surface air temperature (i.e., the 

naturally daily mean temperature and the 24-hour mean values prior to the storms).  

Except for the warm-front and typhoon storms, the warm season storms have a short duration 

and intense rates in Guangzhou. Half of the storms had rain duration shorter than three hours, a 

quarter were in the range of three to five hours, and another quarter were longer than five hours, 

respectively. The convective storms were dominant by 50% in urban, followed by monsoon storms 

and cold-front storms. Urban and suburban areas had different storm hyetographs. 

The air temperature showed a different magnitude of fluctuations prior to and after the 

different types of storms, while the storm types had little influence on the scaling rates between the 

precipitation extremes and the temperature. Air temperature is one of the leading meteorological 

factors that interacts with heavy storms. It could rise by 6 °C and drop by 4 °C prior to and after 

summer storms. The precipitation extremes showed peak-like scaling rates with the 24-hour mean 

air temperature prior to the storms. For the cold-front, monsoon, and convective storms, they all 

showed the same break temperature of 28 °C in the 99th percentile, which was 4 °C lower than the 

24-hour mean air temperature prior to the storms and 2–5 °C higher than those during the storms. 

Below 28 °C, the relative humidity was 80%–100%, and it showed a positive scaling. In contrast, 

above 28 °C, the relative humidity decreased with the air temperature increase, which suggests that 

the negative scaling rates were likely caused by lack of moisture in the atmosphere, instead of by the 

atmospheric water vapor-holding capacity. Meanwhile, when using the natural daily mean air 

temperature as in the literature, a lower break temperature appeared for all of the summer storms, 

partially due to the transient cooling effect, and even purely negative scaling rates appeared for the 

monsoon storms at the suburban stations and the convective storms at the urban stations. This 

suggests that the 24-hour mean air temperature could be a better variable to use for compute scaling 

rates rather than the naturally daily mean air temperature.  

The storm process-based analysis reveals detailed variations of the meteorological factors prior 

to, during, and after the storms, especially for the cold-front, monsoon, and convective storms. For 

large scale storms, such as the winter warm-front storms and typhoon storms, it is limited to 

analyzing the interactions between the storms and the meteorological factors by using the local 

weather observations. Fine atmospheric models are needed in order to investigate their full 

interactions and feedbacks. The accurate forecasting of localized heavy storms is still a sever 

challenge in present-day climate and weather forecasting models. This study paves a path towards a 

greater storm-process understanding of the scaling relation between precipitation extreme and air 

temperature, and offers some suggestions to the forecast of local heavy storms and the urban 

drainage management in the Southern China. 
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