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Abstract: The arid desert ecosystem is very fragile, and the change of its river discharge has a direct
impact on irrigation and natural environment. River discharge attenuation coefficients is a key index
to reveal the stability of desert river ecosystem. However, due to the harsh conditions in desert
areas, it is difficult to establish a hydrological station to obtain data and calculate the attenuation
coefficients, so it is urgent to develop new methods to master the attenuation coefficients of rivers.
In this study, Taklamakan desert river was selected as the research area, and the river discharge of the
desert river were estimated by combining low-altitude UAV and satellite remote sensing technology,
so as to calculate the attenuation status of the river in its natural state. Combined with satellite remote
sensing, the surface runoff in the desert reaches of the Hotan River from 1993 to 2017 were estimated.
The results showed that the base of runoff attenuation in the lower reaches of the Hotan River is 40%.
Coupled UAV and satellite remote sensing technology can provide technical support for the study of
surface runoff in desert rivers within ungauged basins. Using UAV and satellite remote sensing can
monitor surface runoff effectively providing important reference for river discharge monitoring in
ungauged catchments.

Keywords: desert river; attenuation coefficients; ungauged basin; unmanned aerial vehicle (UAV);
satellite remote sensing

1. Introduction

The flow of arid desert river affects the stability of regional ecosystem and plays a vital role in
maintaining the biodiversity and ecosystem integrity of the river [1–3]. Therefore, the availability of
river discharges in ungauged catchments of arid desert is of great concern [4,5]. In recent years, the
study of desert rivers has attracted the attention of many scholars [4,6], but in the past, there were more
attention to the quaternary geology, paleoenvironment and fluvial geomorphologic evolution [7,8],
and there is a lack of quantitative expression of river discharge [6]. There is a great obstacle to the
study of surface runoff in ungauged catchments of arid desert, and it is difficult to meet the demand of
hydrological monitoring data for current global change research.
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The attenuation coefficients of river discharge is the key index for maintaining fluvial ecosystems
and arises through evaporation and infiltration during transport, which is usually calculated from
the flow rate during the dry season [9,10]. The process of driving river attenuation depends on
a series of physicochemical and biological parameters such as river velocity, temperature, vertical
hydrological exchange of surface runoff and groundwater [11,12]. In the past 30 years, some relatively
mature computational methods have been developed [13–16], which can be mainly divided into
hydrological methods, hydraulic methods, habitat simulation methods and holistic analysis methods.
These methods require a lot of information and require a long time of investigation, which tends
to be carried out in areas with abundant hydrological data. However, large portions of total River
Basins across the globe are either poorly gauged or completely ungauged [17–19], and hydrological
observation networks are continuously deteriorating [20]. Therefore, there is a lack of research on
surface runoff in ungauged catchments of arid desert [21–23], and the study on river attenuation
is basically blank, resulting in high variability of attenuation rate in rivers, which complicates the
prediction of environmental flows [24,25].

Calculating the streamflow in ungauged catchments is surrounded by uncertainty, and is thus
a challenging, yet vital task for water management. New and easily accessible satellite data have
been increasingly steadily in recent years. Many studies have been conducted using satellite data to
estimate river discharge [26–28]. Traditional methods for estimating river discharge mainly adopt
the following methods: (1) Numerical simulation Equation [29,30], where most of the parameters
are obtained through laboratory experiments, and some parameters are difficult to be obtained, so
only field measurement can be used for inversion analysis. (2) Empirical Equation [31,32], which is
derived from Manning-Strickler Equation or Chezy Equation, and then summarized from experimental
observation; (3) Based on data statistics or machine learning method [33,34], this method needs a
large amount of data to predict by machine learning theory. In general, the application of traditional
estimation methods is limited by the large amount of field observation data. At present, satellite data,
as a new and easily accessible data source, has been growing steadily in recent years. Many scholars
combine satellite data with traditional estimation methods to study the river discharge [27,35,36].
Over the years, the use of satellite remote sensing data for research on runoff has mostly focused on
using the measured data to analyze hydrological characteristics, changes in annual runoff, current
hydrological conditions, and the availability of water resources [37,38]. Satellite remote sensing data
can only monitor large rivers with large volumes of water, and it is difficult to calculate fluvial runoff

for small volumes of water, which makes it difficult to verify the distributed hydrological models
developed based on remote sensing data. Therefore, new, high-resolution data sources are needed to
improve upon the existing methods.

Over the past 5 years, remote sensing based on unmanned aerial vehicles (UAVs) has rapidly
expanded in the field of civil use [39]. UAVs is one technology able to fill the gap between spaceborne
and ground-based observations, ensuring (1) high spatial resolution; (2) tracking of the water bodies
better than any satellite technology; (3) operating an UAV is not limited to specific time, such as
satellite sensors that synchronize with the sun; (4) flexibility of the payload. Therefore, the use of UAV
to quickly obtain topographic data, combined with field measurement data, makes up for most of
the small and medium-sized River Basins that are not suitable for station construction but still need
discharge monitoring.

The research has shown that UAV-based image acquisition is suitable for environmental remote
sensing and monitoring [40–43]. UAV data has also been widely used in the field of river monitoring,
e.g., evaluating the ecological environment flow [44], monitoring river morphology and riparian
erosion [45,46], estimating river discharges in ungauged catchments [47], etc. These method have
strong practicability for obtaining river sections in poorly gauged area, and can be regarded as a new
method for obtaining and analyzing flow information in poorly gauged area [48–50].

In this study, the typical river runoff in the Taklamakan Desert were selected as the research
subject. Generally, due to geographical limitations, it is difficult to obtain in-depth data by conventional
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means, as the width-depth ratio of cross section is large for the wide-shallow rivers in arid scarcity
areas, which can reflect the change of discharge in different periods. Therefore, for such unmeasured
rivers, low-altitude UAV data was carefully combined with satellite remote sensing data to estimate
the river discharge, and to further estimate the attenuation coefficients of the river in its natural state.
The objectives of this study were to: (1) acquire the digital surface model (DSM) data of river sections
from UAV, with which the shapes of river sections were determined, (2) calculate the river discharge
by UAV and satellite remote sensing, and (3) obtain the attenuation coefficients of desert rivers. Finally,
the attenuation pattern of surface runoff in desert rivers in this extremely arid climate was revealed,
providing insights into the effects of global climate change in this region for hydrological monitoring.

2. Study Area

The Taklamakan Desert, located in the middle latitudes of Eurasia in the Northern Hemisphere, is
famous for its extremely dry climate and the second largest mobile desert in the world. It also serves
as an indicator of global climate change [3,51]. The Taklamakan Desert exhibits unique patterns in
its material energy and water circulation. Its material and energy transport are important influences
on the circulation of the atmosphere in Central Asia [52,53]. At present, the ecological environment,
fluvial resources, and hydrological characteristics of the Taklamakan Desert have attracted global
attention [54,55]. In the Taklamakan Desert, the main aquatic systems are the Hotan, Yerqiang, Weigan,
and Aksu river systems, as well as the Bosten lake system. Among them, Hotan River Basin is adjacent
to Yerqiang River Basin, as shown in Figure 1. The Hotan River spans from Mount Muztagh Ata at
an altitude of 6638 m in the northern Tibetan Plateau to the Tarim Basin, crossing the Taklamakan
Desert into the Tarim Basin after ~500 km; it is currently the only river that ranges throughout the
renowned desert [56]. The Yerqiang river is located in the west of Taklamakan Desert and has similar
geographical environment and climatic conditions with Hotan river.
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Along the banks of the river are Populus euphratica forests, Tamarix sp., licorice, Alhagi sp.,
and a few reeds. The variation of desert river discharge is very important to the diversity of coastal
ecosystem and the utilization of downstream water resources. However, due to the lack of hydrological
observation data along the way, runoff and the patterns thereof remain poorly controlled. Therefore,
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Yerqiang River Basin and Hotan River Basin are selected as research areas to estimate the river discharge
of desert rivers and discuss the attenuation coefficients of desert rivers, so as to provide reference for
the utilization of desert rivers.

3. Methodology

3.1. Estimated River Discharge

Flow velocity Equations from local-scale models can be parameterized with specific catchment
values. However, flow velocities have to be modelled enough to derive the required parameters from
data available for the study region and sophisticated enough to deliver realistic flow velocity values for
a large variety of environmental conditions. The Manning Equation was proposed in accordance with
200 experimental data [57], reflecting the relationship between water flow and a river bed, as well as
internal factors of a river bed [58,59]. Current research mainly focuses on the hydrologic characteristics
of uniform flow and the Manning coefficient, which simplifies non-uniform flow to a uniform flow
state [32]. The approximate flow state is considered uniform in a traditional open channel with no
vegetation on a large scale. In this case, the Manning Equation can be used to directly quantify the
relationship between the Manning coefficient, velocity and water depth. In a few global scale models,
the Manning-Strickler Equation has been applied to simulate variable river flow velocities [31,60],
which led to enhanced representations of flow velocities [31] and discharge [60]. The Manning-Strickler
Equation for calculating river discharge is:

Q =
1
n

A(
A
P
)

2
3
S

1
2 (1)

where n is the field roughness value. A is the area of the cross-section, m2. and P is the wet perimeter.
S is the hydraulic slop. In general, the relationship between river width and discharge varies between
different cross sections, which prompts the question of how the relationship between width and flow
changes with narrow rivers and wide and shallow rivers in arid data-poor areas. According to the
field investigation, the Taklamakan Desert river can be mainly categorized into trapezoidal section
(Figure 2).
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D the depth of the water; α and θ are the angles of the river bank.

According to Huang [61], the river discharge of trapezoidal section can be estimated by using
altimetry satellite and optical image. However, in a data-poor area, it is difficult to obtain effective water
depth data from medium-sized and small, wide and shallow rivers because the depth extraction error is
large from a lack of verification points and poor data quality from satellite altimetry. Therefore, satellite
altimetry is not suitable for wide and shallow rivers in the arid and data-poor areas in northwestern
China. According to Huang [61], the roughness coefficient (n) and slope (S) are considered as constants
to avoid using them as dynamic variables. Based on this hypothesis and the characteristics of rivers in
arid areas, this study determined coefficient c and water depth index (f) to describe the relationship
between water depth and river discharge using the method proposed by Huang [61] combined with
energy Equations (2)–(4) [62]. On this basis, the water depth D [61] was replaced by the water depth (d)
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in Equation (3), i.e., Equation (5). Finally, for different river sections, river parameters were obtained
based on low-altitude UAV images, which were then converted into Equations dependent on different
satellite source variables as input data to obtain the river discharge estimation method of this study
Equation (6).

w = aQb (2)

d = cQ f (3)

v = kQm (4)

Q = aw(cQ f )
5
3 (5)

Q =
3

√
(

1
acW

)
5 f−3

(6)

where, Q is flow rate, a, c, f is coefficient, and W is river width. According to the field measured
flow, the unknown parameter a is optimized. The specific calculation method of parameter can be
referred to Huang [61]. Given that discharge is related to river width, cross-section, and water depth,
understanding these basic hydraulic variables is a priority for discharge estimation.

3.2. Validating the River Section Shape by UAV

Small consumer UAV has the advantages of being easy to use, low cost, high efficiency and
flexible flight [63,64]. At present, research showed that the precision of terrain measurement based
on UAV can reach centimeters [65]. In this study, an UAV was employed to acquire high-resolution
stereoscopic images, which were used to obtain high-resolution topographic data. The measurement
setup consisted of an UAV DJI Phantom 4 Professional including a Cardan suspension and an
action-camera FC300X_3.6_4000x3000 edition. Stereoscopic images were processed by the rapid and
automatic professional processing software Pix4Dmapper (https://pix4d.com/). Pix4Dmapper not
only supports UAV data, but also supports aerial photography, oblique photography, and close-range
photogrammetry. In this study, we conducted flight missions using the DJI Phantom 4 Professional
UAV. The flight was controlled by the intelligent flight control software Pix4D capture, with a flying
hnine of 150 m. The photo overlap is set to be 70% to ensure the subsequent generation of stereoscopic
image pairs, and obtain 1054 high-resolution photos of UAV. Generally, image treatment includes
data importing, initial processing, three-dimensional triangulation processing, digital orthophoto map
(DOM) generation, and DSM generation [66,67]. Preparation of the aerial flights and image processing
corresponded to the scheme in Figure 3.

Due to the lack of data in the desert area of Hotan River Basin, the Kaqun hydrologic station
of Yerqiang river in similar basins was selected as the experimental area to discuss the applicability
of Equation (6) in estimating the river discharge of medium and small wide shallow rivers in the
desert area without data. UAV was used to obtain the above-ground terrain information in order
to verify the shape of river section. In this research, the measured data of Total Station were used
to verify the results, which included 22 ground control points. The verification method used the
relative root-mean-square error (RMSE) to evaluate the accuracy of UAV data [68]. Among them, the
underwater terrain was difficult to obtain through the UAV, so the underwater terrain of this section
was measured manually with a water gauge, as shown in Figure 4.

https://pix4d.com/
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The elevation of the same point as Ground Control Points (GCPs) were obtained by UAV, and
the RMSE was calculated. The results showed that the RMSE error between the UAV data and the
topographic measurement data above the river section measured on site was 5.65 cm. It can be seen
that the accuracy of river section data obtained by UAV has reached the centimeter level, so we think it
is completely feasible to obtain the river section shape by UAV and estimate the river discharge in
ungauged catchments area.
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3.3. Validating Water Surface Areas by UAV

We used the modified normalized difference water index (MNDWI, see Equation (7)) to extract
the width of water surface using Sentnel-2 data (https://scihub.copernicus.eu/). Then the UAV images
were used to verify river width (Figure 5) [69].

MNDWI = (Green−MIR)/(Green + MIR) (7)

where Green and MIR are the surface reflectance of the green band and middle-infrared band,
respectively. Then, we used the maximum between-class variance method [70] to determine the
thresholds of binarization for MNDWI.
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3.4. Performance Metrics

In this study, we selected the root-mean-square error (RMSE) and the Nash-Sutcliffe efficiency
coefficient (NSE) [68] to evaluate the discharge estimation performance. The RMSE is used to quantify
the deviations of the estimates from the observations. The NSE varies from to 1, and 1 indicates the
optimal status where the simulated discharge equals the in situ measurements.

In Kaqun station, the shape of the river sections was obtained by UAV and underwater topography
measurement, as shown in Figure 4.

Firstly, the measured average water depth, average velocity and average width data of this
hydrologic station from 1998 to 2018 were used to determine the regression coefficient c and water
depth index f based on Equations (2)–(4). DSM data were used to obtain the difference between
upstream and downstream water levels in river sections. The difference was then divided by the
distance between the two points and the ratio, i.e., hydraulic slop, was 0.0019. The coefficient
n is empirically derived, which is dependent on many factors, including surface roughness and
sinuosity [71]. According to the long-term observation of local hydrographic bureau, the roughness
coefficient n is determined to be 0.048. Combined with the field measurement of the side slope of
the river section, the obtained data are finally put into Equation (6) as input data. As the Yerqiang

https://scihub.copernicus.eu/


Water 2019, 11, 2633 8 of 19

river is a seasonal river, we selected hydrographic station data during the summer abundant water
period of 2008–2018 (May to September) as the verification data. On this basis, the river discharge was
calculated through water surface width of the river section in different periods (Table 1), and verified
by comparing with monthly average discharge data of the hydrographic station (Figure 6).

Table 1. Remote-sensing image analysis data for the Yerqiang river reach.

Date Average Reach Width (m)

10 September 2010 51.5
17 August 2011 158.3
6 August 2013 285.6

6 September 2013 87.1
14 July 2015 127.7

21 August 2015 520.8
18 May 2016 29.2
17 July 2016 383.4
23 May 2017 39.0

25 September 2017 156.8
23 May 2018 155.5
19 June 2018 83.8
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Figure 6. River discharge estimation using Equation (8) in combination with satellite-derived
river widths.

Finally, error analysis was conducted on the calculated results, and the RMSE and NSE evaluation
results were shown in Table 2. It can be seen that Equation (6) can be used to better estimate the
discharge of wide and shallow rivers, indicating that this method is applicable to the estimation of
medium and small wide shallow rivers rivers.

Table 2. Equation (6) in river discharge estimation at the Kaqun stations using water widths retrieved
from Google.

No. of Samples RMSE (m3/s) NSE

15 2.91 0.996

3.5. Estimated Environmental Flow

On the basis of verifying the applicability of Equation (6), this method is adopted to estimate the
river discharge of P1 and P2 monitored sections of the desert reach during dry season in similar basins
of Hotan river, where there is a no data area. P1 and P2 sections are 100 km apart, accounting for about
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1/5 of the total length of the desert river section. The attenuation coefficient within 100 km of the desert
river was discussed to provide a basis for the ecological environment protection of the desert river.
Combined with the methods outlined in Sections 3.1 and 3.2, the shapes of the monitored sections
were first established, and then the river discharge at P1 and P2 was estimated. Finally, the difference
in the river discharge between the two monitored sections was calculated, as shown in Equation (8).
The minimum attenuation coefficients of the Hotan River within 100 km was obtained during the
dry season.

AC =
Qp1 −Qp2

Qp1
× 100% (8)

where AC is the attenuation coefficients, QP1 is the river discharge at point P1, and QP2 is the river
discharge at point P2.

On the bases of the relationships described in Equations (6), combined with high-resolution
satellite remote sensing images, the river discharge of Hotan Rivers sections in different periods were
estimated, and the changes in the attenuation coefficients during the dry season were then analyzed.
In this study, the attenuation coefficients were calculated by using the minimum river discharge during
the dry season. The lowest attenuation coefficients within 100 km of the Hotan River under the
condition of extreme drought during the dry season was analyzed.

4. Data

4.1. UAV Data

Nine flight missions in Hotan River in the Taklamakan Desert were conducted using the DJI
Phantom 4 Professional UAV during the period from 1 December to 2 December of 2017. The flight
was controlled by the intelligent flight control software Pix4Dcapture, and the photo overlap was set
to 70% to ensure the subsequent generation of stereoscopic image pairs. There were 7 flights in P1
sample area and 2 flights in the P2 sample area, in which the flight height was 160 m and each flight
number was 5. A total of 795 photos were obtained from the P1 sample area, and 505 photos were
taken from the P2 sample area. The Pix4Dmapper software was then used to extract the modern point
cloud and DSM of P1 and P2 (Figure 7). The obtained DOM and DSM data spaces are referred to as
WGS1993/UTM zone 48N.
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4.2. Remote Sensing Data

In this study, Landsat images data were used for detecting changes in water surface area of the
Hotan River in the study area. The details are shown in Table 3.

Table 3. Distribution of Hotan River cross sections.

Site Location Time River

P1 38◦37′11.72”,
80◦57′32.34”

30 November 1993
Hotan river7 November 1999

20 October 2010

P2 38◦11′36.37”,
80◦35′55.89”

30 November 1993
Hotan river7 November 1999

20 October 2010

4.3. Ground-Based Data

At the monitoring stations (P1 and P2), water depth was concurrently measured by using a
measuring tape. At the same time, the edge slope (horizontal Angle α, θ) of the river section was
measured using a level. In addition to field measured data, monthly average runoff data were collected
from the Hotan River from 1964 to 2008. According to the research of Wang [72], monthly average
runoff was divided into annual groups. Among them, the upstream river inflow, which was greater
than 5 billion m3, was in the group of abundant water, the upstream river inflow, which ranged
between 4 billion m3 and 5 billion m3, was in the group of horizontal water, and the upstream river
inflow, which was less than 4 billion m3, was in the group of dry water.

5. Results

5.1. Acquired Features of River Cross Sections Via UAV Imagery

From the high-resolution UAV images, it can be seen that the river runs through the desert, and
that the river is winding and branching, as shown in Figure 8. Combined with such images, it can be
seen from the monitoring sections P1 and P2 that the river runs through the desert with relatively small
fluctuations in surface area, but the river meanders and is more bifurcated. The river, in these sections,
has a large amplitude in the desert, and the direction of the local area changes greatly. However, the
position of the river bed has changed slightly over the years, and the river bed and the rocks on both
banks are composed of silty sand.

Since the Hotan River is a seasonal river, no water flows through it during the dry season, and the
river bed is exposed to the surface. The data obtained during this period can then be regarded as a
water-free section. However, in the study area, the internal part of the channel is not completely free of
water. Therefore, to determine a more accurate shape of the section, water depth measurements were
acquired for large sections that had water. Finally, DSM data were combined with the water depth
data to determine the river section morphology during the dry season. The shapes of these sections of
the river are shown in Figure 9.
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5.2. Calculated Attenuation Coefficient in the Desert Reaches of the Hotan River

River section DSM data were obtained using high-precision images of a low-altitude UAV. Then,
the hydraulic slope of each river section was calculated. Based on Equations (2)–(4), the section data of
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the upper reaches of Hotan river were used to determine coefficient c and water depth index f. Finally,
the average water depth index f was 0.36, and the value of coefficient c was 1.07. The value of river
roughness coefficient n is provided by experts of hydrology bureau, and the value is 0.035. Combined
with the field measurement of the river section of the edge slope, the obtained data as input data.
On this basis, the river discharge of each river section was estimated through Equation (6), as shown in
Table 4. Among them, the river width in 2017 were extracted from the UAV images.

Table 4. Estimated river discharge based on historical images.

River-Course Cross-Sections Hydraulic Slope (%) Q (m3/s)

P1

1993 2.31 1.15
1997 2.31 10.86
2010 2.31 14.40
2017 2.31 2.306

P2

1993 1.32 0.67
1997 1.32 6.05
2010 1.32 8.71
2017 1.32 1.317

In order to further analyze the water consumption situation after 100 km in the area of the desert
reaches of the Hotan River for which there are no data, the river discharge of monitoring points P1 and
P2 were counted from 1993 to 2017, and the results are shown in Table 5.

Table 5. Attenuation in the desert reaches of the Hotan River.

River-Course Cross-Sections Attenuation (m3/s) Attenuation Coefficient (%)

1993 0.51 44.34
1997 4.55 41.74
2010 5.69 39.51
2017 0.989 42.89

According to the comparative analyses shown in Table 4, a loss of 0.48 m3/s occurred within
100 km of the desert reaches of the Hotan River in 1993, and the loss percentage was 41.74%. In 1997,
a loss of 4.81 m3/s occurred within 100 km of the desert reaches of the Hotan River, and the loss
percentage was 44.29%. In 2010, 5.69 m3/s was lost within 100 km of the desert reaches of the Hotan
River, and the loss percentage was 39.51%. In 2017, 0.989 m3/s was lost within 100 km of the desert
reaches of the Hotan River; the loss percentage was 42.89%. In general, the attenuation rate of the
desert reaches of the Hotan River was <45%, and the attenuation coefficient tended to be consistent at
approximately 40%.

6. Discussion

6.1. Parametric Sensitivity Analysis

According to Equation (6), the river discharge of hydrologic section in Kaqun were estimated.
Coefficients a, c and f were key parameters in the flow estimation process. The relation between
coefficient c and depth index f were obtained by calibration of the measured data of the hydrological
station. Therefore, we only discussed the influence of coefficient a on the estimation results. Sichangi [73]
research shows that for the trapezoidal section, coefficient a is shown in Equation (9). When river
width >> depth, coefficient a can be approximately equal to S1/2/n, as shown in Equation (10).

a1 =
S

1
2

n(W + 2D 1−cosθ
sinθ )

2
3

(9)
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a2 =
S

1
2

n
(10)

where, S is hydraulic slope, n is roughness coefficient, W is water surface width, θ is edge slope,
and D is average water depth. The width and depth of the channel were obtained every 0.5 m so
as to establish the width-depth relationship of the channel. Finally, the coefficient D of this study
was obtained by measuring the width of the river. The section of Kaqun hydrographic station was
used as the experimental area to conduct a comparative study on the influence of the above two
calculation methods of coefficient a on the estimation results, and the results were verified with the
monthly average discharge data. The results were shown in Figure 10. On this basis, error analysis
was conducted on the value results of different coefficients a, and the results were shown in Table 6.
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Table 6. Error analysis under different values of coefficient a.

River-Course Cross-Sections RMSE (±m3/s) NSE (±)

Equation (9) 2.91 0.00
Equation (10) 12.77 0.01

The results showed that the coefficient a was approximately S1/2/n in Equation (10) for the section
of Kaqun hydrologic station, and the estimated flow error were large. It is better to estimate the
precision measured section of hydraulic slope obtained by combining low-altitude UAV with measured
edge slope. Therefore, it is necessary to determine the calculation method of coefficient a according to
the width-depth ratio of the river. When river width >> water depth, Equation (10) can be used to
calculate a, while Equation (9) should be used for general wide and shallow rivers.

6.2. Uncertainty Evaluation

The river width of P1 and P2 sections of Hotan river in 1993, 1999 and 2010 were extracted by
remote sensing images and compared with the river section width extracted by UAV images for
verification. Errors caused by river width extracted from remote sensing images are evaluated by using
RMSE. The uncertain results of discharge estimates associated with river width were shown in Table 7.
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Table 7. Error in discharge estimation caused by measurements in river width (W) at gauging stations.

River-Course Cross-Sections
RMSE (±m3/s)

P1 P2

1993 7.38 8.54
1999 6.89 7.96
2010 5.36 7.33

According to the river discharge estimation results of P1 and P2 sections of Hotan river in
Section 5.2, the flow in dry season 2010 > 1999 > 1993. Combined with the error evaluation results, the
measurement error of width in the years with low river discharge was larger, that was, the estimation
error in 1993 was larger than that in other years. Moreover, the estimation error of upstream P1 section
was smaller than that of downstream P2 section, which further indicated that with the decrease of
river discharge, the error of width extraction increases, affecting the estimation accuracy.

6.3. The Attenuation Coefficients Are Compared with the Theoretical Results During the Dry Season

Generally, dry water flow is the type of runoff that can exist year-round in the course of a river,
and it is the minimum water flow that can be maintained during the dry season [74]. In this study,
the wetted perimeter method in hydraulics was used to further analyze and calculate the attenuation
coefficients of Hotan River surface runoff, which has commonly been used in the estimation of dry
water flow [75]. The wetted perimeter method is generally applicable to wide, shallow channels and
paraboloid channels. Therefore, it is suitable for wide shallow river in the desert reaches of the Hotan
River. It is relevant to note that Leopold and Maddock’s analysis of the at-a-station hydraulic geometry
found that the general relationship between channel width (closely related to the wetted perimeter)
and discharge was a power function in the form of Equation (11) [62]:

Pw = Qb (11)

where Pw is the wetted perimeter in meters and Q is the river discharge (m3/s). In general, the inflection
point of the wetted perimeter change curve is found in the curve of wetted perimeter and river
discharge. The river discharge value of this inflection point is regarded as the critical flow value of the
flow in the river channel during the dry season [76].

In this study, sample points were selected at intervals of 0.5 m between the monitoring sections
P1 and P2 in the desert reaches of the Hotan River using high-resolution images obtained from
1 December 2017 to 2 December 2017, where P1 included 50 sample points and P2 included 48 sample
points. The river discharge and wetted perimeter of sample points P1 and P2 in the same period were
calculated. Finally, the relationship between surface runoff and the wetted perimeter were calculated
according to Equation (11). The results are shown in Figure 11.
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The results showed that the critical flow rate of sections P1 and P2 in the same period of dry water
were 1.21 m3/s and 0.73 m3/s, respectively. On this basis, a critical flow difference of 0.48 m3/s between
sections P1 and P2 was calculated. At this point, the critical flow between the two sections decreases to
39.67%, and the results also tended to be 40%. The surface runoff satisfies the critical flow, and the
attenuation coefficients of Hotan River natural channel is about 40%.

At the same time, these results were generally consistent with the calculated results of Huang [77].
They used 3 hydrological stations, 2 drainage channels, and connected the two tributaries as nodes to
divide the river into 5 sub-sections, and then used a water-balance model to simulate Hotan River
runoff. The results showed that the loss of surface runoff in the desert reaches of the Hotan River was
45.44%. These results were further supports the reliability of the calculated results of the attenuation
coefficients in this study.

7. Conclusions

As an important source of water in the arid inland areas of northwest China, rivers play an
important role in maintaining the integrity of river ecosystems. This study coupled UAV high-resolution
images and remote sensing images, combined with the ground-based experimental data, to analyze
the lowest attenuation coefficients of the Hotan River within 100 km in the case of an extreme drought
season. The results revealed that:

1. Through Equation (6), the combination of low-altitude UAV remote sensing and high-altitude
remote sensing can well realize the estimation of medium and small wide shallow rivers flow in
arid areas.

2. Combined with satellite remote sensing images, the river discharge of the lower reaches of the
Hotan River from 1993 to 2017 was estimated. Attenuation losses of surface runoff during this
time were 0.51 m3/s, 4.55 m3/s, 5.69 m3/s, and 0.99 m3/s, respectively.

3. By calculating the attenuation coefficients from 1993 to 2017, the results showed that the attenuation
coefficients of each year were 44.34%, 41.74%, 39.51%, and 42.89%, respectively. Therefore, the
attenuation coefficients of the Hotan River appears to be stable at 40%.

Overall, the usage of UAVs to acquire channel parameters in this study provided a novel prospect
for rapid river discharge assessments. With low-altitude UAV technologies, changes in the water
conditions of monitoring sections and the lack of stations can be obtained according to the inversion
flow results of a multi-phase UAV. Based on low-altitude remote sensing and satellite remote sensing,
the attenuation coefficients of the Hotan River was deduced, and this provided abundant hydrological
data for the desert in which there are few stations. Furthermore, the methods employed in this study
can effectively promote research progress into basin river discharge and provide an important reference
for global river discharge monitoring.
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