
water

Article

Mapping Micro-Pollutants and Their Impacts on the
Size Structure of Streambed Communities

Ignacio Peralta-Maraver 1 , Malte Posselt 2, Daniel M. Perkins 1 and Anne L. Robertson 1,*
1 Life Sciences Department, University of Roehampton, London SW15 4JD, UK;

nacho.peralta@roehampton.ac.uk (I.P.-M.); daniel.perkins@roehampton.ac.uk (D.M.P.)
2 Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University,

11418 Stockholm, Sweden; malte.posselt@aces.su.se
* Correspondence: a.robertson@roehampton.ac.uk

Received: 22 November 2019; Accepted: 7 December 2019; Published: 11 December 2019 ����������
�������

Abstract: Recently there has been increasing concern over the vast array of emerging organic
contaminants (EOCs) detected in streams and rivers worldwide. Understanding of the ecological
implications of these compounds is limited to local scale case studies, partly as a result of technical
limitations and a lack of integrative analyses. Here, we apply state-of-the-art instrumentation to
analyze a complex suite of EOCs in the streambed of 30 UK streams and their effect on streambed
communities. We apply the abundance–body mass (N–M) relationship approach as an integrative
metric of the deviation of natural communities from reference status as a result of EOC pollution.
Our analysis includes information regarding the N and M for individual prokaryotes, unicellular
flagellates and ciliates, meiofauna, and macroinvertebrates. We detect a strong significant dependence
of the N–M relationship coefficients with the presence of EOCs in the system, to the point of shielding
the effect of other important environmental factors such as temperature, pH, and productivity.
However, contrary to other stressors, EOC pollution showed a positive effect on the N–M coefficient
in our work. This phenomenon can be largely explained by the increase in large-size tolerant taxa
under polluted conditions. We discuss the potential implications of these results in relation to
bioaccumulation and biomagnification processes. Our findings shed light on the impact of EOCs on
the organization and ecology of the whole streambed community for the first time.

Keywords: abundance-size scaling theory; benthos; hyporheos; freshwater communities;
pharmaceuticals; large scale survey

1. Introduction

Today, most of the world’s rivers transport contaminants derived from anthropogenic activities [1,2]
in a concomitant reduction of important ecosystem services such as clean drinking water [3],
leading to global public alarm [1,4]. This problem is predicted to become more acute in the coming
decades as a result of increasing concentrations of emerging organic compounds (EOCs), as well as
their transformation products, detected in surface and groundwater systems globally [5,6]. EOCs,
also known as trace organic compounds or micro-pollutants, are compounds of anthropogenic
origin that contaminate natural systems (by up to several micrograms per liter) and which may
lead to adverse effects in wildlife, including endocrine disruption, behavioral alterations, and
developmental inhibition [7–10]. EOCs comprise a vast set of synthetic chemicals, ranging from
daily-use pharmaceuticals and personal care products to pesticides and agricultural chemicals [6].
EOC pollution occurs when these chemicals enter natural systems in many different ways, including as
a part of wastewater treatment plant release and percolation from agricultural areas in floodplains [11],
resulting in a widespread and constant source of pollution (EOC pollution) with the potential to
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affect all levels of biological organization [9]. However, characterization and quantification of EOCs
in riverine systems is still limited, as is our understanding of their relationship with environmental
gradients, especially at large spatial scales [4]. This is largely because determining low concentrations
of these substances can be a challenge using existing analytical methodologies [12]. Consequently,
most EOCs have been determined to be low risk due to low environmental concentrations [13], and
their effect on natural systems is largely unknown.

Most anthropogenic effluents are discharged to surface streams and rivers where water is
exchanged between the open channel and the saturated permeable streambed sediments [14].
Consequently, dissolved EOCs penetrate the sediments, and organisms located here may be exposed
to the effects of EOCs for longer periods of time because of the extended residence times of water
in the pore-spaces [15,16]. Streambed sediments harbor diverse and productive biological consortia,
whose components range from prokaryotes and microscopic single cell eukaryotes (e.g., flagellates and
ciliates) through to meio- and macrofauna (rotifers, copepods, and insect larvae). This translates into a
great diversity of life strategies and adaptation capabilities, and, consequently, understanding the effect
of EOCs on the whole streambed assemblage is challenging. For example, it might be expected that the
rapid population growth and adaptation capacity of prokaryotes might result in a less detrimental
effect of chronic low levels of pollution compared to larger size fractions with longer life cycles and
lower recruitment rates. However, current insights on the effect of EOCs in streambed communities
are limited and target single groups such as prokaryotes [17,18], protists [18], and invertebrates [19,20].
Previous studies have focused on reach or local scales with low replication power. However, the
functions and services provided by the streambed are mediated by all the different groups of organisms
and the complex interactions between them and the environment [21]. Thus, a more integrative analysis
ensuring the representation of the whole streambed assemblage, as well as large-scale approaches,
must be undertaken to fully understand how riverine ecosystems will respond to the input of EOCs.

Body size scaling represents a synthetic analytical framework [22] which can be used to integrate
the whole streambed assemblage. In particular, the allometric relationship between abundance (N) and
body mass (M) is a widely studied pattern in ecological research [23,24]. When individual organisms
are grouped into body mass classes, regardless of their taxonomy, the slope of the N–M relationship,
or ‘size spectra’, provides an integrated measure of the community structure and the energy flow
across trophic levels [25]. This is especially true in freshwater ecosystems, where communities are
strongly size-structured [26,27] and gape-limited predation predominates [25]. The intercept of the
N–M relationship provides a proxy for the community carrying capacity while the slope represents the
energy flow and trophic transference efficiency in the system. Thus, N–M coefficients can be used as
a quantitative measure of deviation of a natural community in relation to a reference status due to
anthropic stressors [28]. Typically, intercepts decrease and size spectra become steeper under stress
conditions [29]. To date, we do not know how EOCs affect the N–M relationship despite the insights
that this approach could afford with regard to understanding how EOCs compromise the natural
functioning of riverine systems.

Here, we report for the first time the effect of EOC pollution on community composition and
N–M relationship coefficients in streambed communities following a regional scale approach. For
this purpose, we make use of a large dataset from an existing survey study characterizing streambed
communities and environmental features across 30 UK streams [21]. We complement that dataset with
unpublished concentrations of 24 model EOCs measured in the pore-space of the streambeds collected
at the same temporal and spatial resolution as the community samples. Our study delivers valuable
information regarding the presence and concentration of EOCs in natural freshwater systems and
their relationship with environmental gradients at a regional scale. Additionally, and exceptionally,
these datasets include information of the N and M for individual prokaryotes, unicellular flagellates
and ciliates, meiofauna (with body lengths between 0.45 and 500 µm), and macroinvertebrates (body
length > 500 µm). Thus, the data comprise more than 10 orders of magnitude in terms of M, ensuring
very good representation of the streambed assemblages. We hypothesize that EOC pollution results
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in detrimental effects to streambed communities, especially for the large-size fractions with lower
adaptation capacity to constant exposure to EOCs. Hence, we predict N–M coefficients (intercept and
slope) to decrease compared with reference systems. Our findings help understand how EOCs shape
the structure, metabolic capacity, and energy flow through components of the streambed assemblage.

2. Methods

2.1. Data Acquisition

Here, we complemented open-access available data from a large survey project (Peralta-Maraver
et al. 2019a) with data of EOC concentration, and calculation of N–M relationship coefficients. This
dataset comprises 30 streams covering 10 different catchments across England and Wales (UK, Figure 1).
Streams varied from small upland, acidic headwaters to large lowland, base-rich chalk streams,
covering a large productivity and pollution gradient. Original datasets included information on a
large set of environmental variables by study site: canopy cover, sediment morphology (cobbles,
gravel, sand, and silt), leaf litter, depth and width of channel, submerged plants and submerged wood,
temperature, pH, altitude, latitude, longitude, dissolved organic carbon, ammonium, nitrate, and
phosphate [21].
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Figure 1. (a) Locations of the study systems in the United Kingdom, including number of emerging
organic contaminants (EOCrichness). (b) Non-metric multidimensional scaling (NMDS) ordination
model based on Canberra index comparing the dissimilarities in profile and concentration (µg L−1)
of dissolved compounds (macronutrients and EOCs) across the 30 studied rivers. Environmental
gradients that were significantly correlated (p < 0.05) with the ordination are overlapped with the
ordination. The arrows depict the relationship of fitted variables with the ordination.

Streambed communities were originally sampled using colonization traps (mesh = 0.5 cm, volume
= 38–45 mL) containing three different organic substrates [21]. At each study site, six colonization
traps were installed in pairs in the streambed at 0–2 and 15 cm depth for between 29–61 days. After
incubation, colonization traps were collected and streambed communities were processed in the
laboratory. Sampled organisms were identified and counted (N) and their body dimensions measured.
Then, body dimensions (length and width in µm) of all collected individuals were converted into dry
carbon content (M) using allometric relationships (further details on sampling design and sample
processing are available in Peralta-Maraver et al. [21]).



Water 2019, 11, 2610 4 of 12

2.2. Sampling and Processing of EOCs

Streambed pore-water samples were collected from the studied sites using a dive point piezometer
during removal of colonization traps. One sampler per stream (n = 30) was pushed vertically into
the streambed sediments to a depth of ~7.5 cm and 50 mL of water was pumped manually. Samples
were stored in a coolbox at 4 ◦C and transported to the laboratory within 24 h, where they were frozen
until analysis.

EOCs were analyzed using a previously developed direct-injection ultra-high-performance liquid
chromatography–tandem mass spectrometry (UHPLC-MS/MS) method (Posselt et al. 2018). A total
of 37 polar organic substances (mostly pharmaceuticals and their transformation products) were
selected based on their concentration ranges, detection frequency, degradation behavior, and potential
persistence, as well as their occurrence on priority lists [12,30–32]. Water samples were defrosted
and vortexed and a sample volume of 800 µL was combined with 195 µL methanol and 5 µL of an
internal standard mix. Afterwards, samples were vortexed again, filtered (Filtropur S 0.45 µm, PES
membrane, Sarstedt AG&Co, Nuembrecht, Germany) into LC vials (2 mL, Thermo Scientific, Dreieich,
Germany) and analyzed within 12 h. The sample injection volume was 20 µL. Liquid chromatography
was performed using a Thermo Scientific Ultimate 3000 UHPLC system equipped with a Waters
(Manchester, UK) Acquity UPLC HSS T3 column (1.8 µm, 2.1 mm × 100 mm). The mobile phase
consisted of 10 mM acetic acid in deionized water (A) and 10 mM acetic acid in methanol (B). The
flow rate was 500 µL min−1 for the gradient and 1000 µL min−1 for column equilibration. Instrumental
analysis was carried out using a Thermo Scientific Quantiva triple-quadrupole mass spectrometer
equipped with a heated electrospray ionization source. Detailed information on the LC gradient and
MS instrument settings can be found in Posselt et al. (2018). A series of calibration standards (in
80% LC/MS grade water/20% MeOH) containing the 37 target compounds and isotopically labelled
internal standards was measured three times. Data were processed using the Thermo Scientific
Xcalibur 3.1.66.10 instrument software and quantification was performed using the internal standard
method. Precision was determined by injecting a quality control standard every 15 samples. The
relative standard deviation was <1–12% for all detected compounds except for valsartan acid (21%)
and 4-hydroxydiclofenac (20%).

Concentrations in both analyzed blank samples were always below the method limit of
quantification for all targets. Method limits of quantification for the 37 targeted compounds are
provided in Table S1 and further information regarding materials, chemicals, and standards, as well as
additional quality control data can be found elsewhere [12].

2.3. Statistical Analysis

First, a non-metric multidimensional scaling (NMDS) ordination model was applied to compare
quantitatively the similarities in profile and concentration (µg L−1) of dissolved compounds
(macronutrients and EOCs) across the 30 studied rivers. Excessively large differences between
the smallest nonzero and largest concentration values were reduced using the Wisconsin double
standardization of variables [33]. This approach improves the detection ability of the similarity index
used in NMDS ordination [34]. The Canberra index was used to produce the ordination model and
it was run iteratively to find the ordination with the best fit (lower stress value). Subsequently, we
evaluated the degree to which the number and concentration of EOCs and dissolved compounds
such as nutrients were associated with the ordination axis. For this, we fitted all environmental
variables collected originally (Table S1) and new data on profiles and concentrations of EOCs onto the
resulting two-dimensional ordination following Peralta-Maraver et al. [35]. Degree correlation and
significance of the association between fitted variables and the ordination axis was then assessed after
a 1000 randomized permutation test.

Secondly, we applied multiple regression and backward model selection approaches to build the
N–M relationship models comparing reference systems (no EOCs detected) with polluted sites (EOCs
detected). We pooled data from all colonization traps by study site to provide an integrated sample of
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the streambed community (n = 30 streambed communities). We constructed the N–M relationship for
each site by applying the logarithmic size-binning method [36]. Size bins were determined from the
(log10) body mass range for each sampled community and the abundances of organisms were then
summed within each size bin [23]. We used a total of six bins to maximize the number of size bins while
minimizing the number of empty size bins in the analysis [23,26]. Next, we built a saturated model
comparing reference systems with EOC-polluted (two-level factor), and all environmental gradients
significantly related with the NMDS ordination. Also, and independently of their relationship with the
NMDS ordination, we included pH in the saturated model as a classical driver of the N–M relationship
in freshwater systems [37,38]. Covariates were dropped sequentially, and the model re-fitted. Then,
the Akaike information criterion (AIC) was applied to select the model with the best fit, and Akaike
weights (wi) were used to quantify the relative support of each model in comparison to all alternative
models (and therefore Σ wi = 1). In addition, we studied the potential collinear relationship between
all covariates included in the candidate models. Model selection and collinearity testing allowed
us to inspect potential confounding effects of EOCs with underlying gradients, such as productivity.
Model validation was finally applied to verify the underlying assumptions following Zuur et al. [39].
This encompassed testing normality and homoscedasticity of model residuals and their potential
dependence with those variables included and not included in the model (e.g., study site).

All statistical analyses were performed using R software (R Core Team, 2019). NMDS ordinations
and subsequent variable fitting were carried out using the functions metaMDS and envfit of the
R-package Vegan [40].

3. Results

From the 37 targeted compounds, a diverse set of 24 EOCs, including pharmaceuticals and other
organic contaminants, were collected from the streambed of two thirds of the study sites (Figure 1,
Table 1). The most EOC-polluted sites were mainly distributed in the east and southeast regions of
England. The 10 streams unpolluted by EOCs, hereafter called reference sites, were mainly located in
the west regions of Wales but were also represented in the southeast of England. The NMDS model
based on the 24 EOCs and macronutrients [nitrate, phosphate, and dissolved organic carbon (DOC)]
produced a two-dimensional ordination with a very high goodness of fit between the distances in the
ordination against the original data (linear fit R2 = 0.995, non-metric fit R2 = 0.990). The resulting
ordination (Figure 1b) showed a strong increasing gradient of number of EOCs and concentration
positively related with axis 1 (R2 = 0.94, p < 0.01), while dispersion along axis 2 was better explained
by the presence and concentration of dissolved nitrate (R2 = 0.94, p < 0.01) and phosphate (R2 = 0.21,
p = 0.04), but not DOC (R2 = 0.03, p = 0.62). Environmental fitting onto the ordination showed that
number and concentration of EOCs and macronutrients increased significantly along environmental
gradients of longitude (R2 = 0.56, p < 0.04) and temperature (R2 = 0.26, p = 0.02), and in the lowland
regions of the UK (R2 = 0.58, p < 0.001; Figure 1b).
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Table 1. Concentration (µg L−1) of the target EOCs analyzed across the 30 studied streams: 1H-benzotriazole (1.H.B.), 2/4-chlorobenzoic acid (C.Acid),
4-hydroxydiclofenac (4.H.D.), acesulfame (Acesu), acetaminophen (Aceta), carbamazepine (Carba), clofibric acid (C.Acid2), diclofenac (Diclo), 11-dihydroxy
carbamazepine (11.D.C), furosemide (Furo), gemfibrozil (Gem), guanylurea (Guan), ibuprofen (Ibu), metformin (Metf), metoprolol acid (M.Acid), metoprolol (Meto),
naproxen (Napro), O-desmethylvenlafaxine (O.Des), oxazepam (Oxa), propranolol (Prop), sitagliptin (Sita), sotalol (Sota), tramadol (Trama), and venlafaxine (Venl).
Table shows latitude (Lat) and longitude (Lon) and total amount of EOCs of studied streams.

River Lat Lon Acesu Aceta Sita O.Des 11.D.C. Napro Guan Metf Venl M.Acid Carba Oxa Prop Sota 4.H.D. Trama Diclo 1.H.B. Ibu 11.D.C. C.Acid2 Furo Meto Gem Tot EOCs

Beverly Brooks 51.44 0.25 13.8 0.1 0.4 1.1 44.8 1.5 0.6 0.6 0.2 0.6 0.1 0.2 2.9 0.6 14
Loddon 51.42 1.72 0.8 0.1 0.4 0.8 9.7 0.2 0.2 0.1 0.2 0.7 0.1 0.4 0.1 13

Wey 51.19 0.68 0.8 0.5 0.1 0.1 0.7 5.2 0.4 0.1 0.8 0.3 0.2 0.6 12
Waveney 52.42 1.36 0.5 0.1 0.6 0.2 1.7 0.4 0.2 0.3 0.1 9
Wensum 52.42 1.36 0.2 0.4 0.3 0.4 0.4 0.8 0.2 0.3 8

Deadwater 51.17 0.85 1.9 0.2 0.7 0.1 0.7 0.1 6
Stiffkey 52.92 0.89 0.3 0.2 0.2 0.2 0.1 5

Tat 52.82 0.75 0.5 0.9 0.2 0.9 4
River Leith 54.61 −2.62 0.5 0.4 0.4 3

Nadder 51.12 0.90 1.7 0.4 0.1 3
Test 51.14 1.47 1.0 0.2 0.4 3

Glaven 52.93 1.63 0.2 0.7 0.4 3
Lamports 51.15 1.72 0.1 0.3 0.1 3

Lyde 51.29 1.72 0.2 0.8 0.2 3
GI1 52.14 −3.84 0.4 0.1 2

Howe Beck 54.68 −2.59 0.1 0.7 2
Bure 52.82 1.21 0.1 0.1 2

River Crowdundle 51.15 1.72 0.1 0.1 2
Kennet 51.42 1.72 0.2 0.7 2

River Lyvennet 54.68 −2.61 0.1 0.5 2
LI7 52.13 −3.75 0
LI8 52.16 −3.75 0
LI3 52.14 −3.73 0

Old Lodge 54.65 −2.64 0
Lone Oak 51.77 0.13 0

LI6 51.44 0.25 0
Broadstone Stream 51.89 0.57 0

Oakhanger 51.45 0.79 0
Anton 51.15 1.46 0

Morland Beck 51.23 1.72 0
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After model selection routines, all studied variables were excluded from the N–M relationship
except EOC pollution in the system (Table 2). The AIC model selection approach suggested a certain
improvement of model fitting when adding pH and temperature. However, those variables were also
excluded in favor of a model simply comparing reference and polluted sites. AIC and Akaike weight
indicate a very strong support of the model including the interaction between M and the EOC pollution
(presence/absence of EOCs). This specifies that presence of EOCs in the system strongly determines
the intercept and slope of the N–M relationship model. The fitted N–M relationship model including
information of the comparison between polluted or reference streams also had a high explanatory
capacity (R = 0.67).

Table 2. Comparison of the regression models testing EOC pollution, pH, temperature (Temp),
longitude (Lon), altitude (alt), nitrate (Nit), and phosphate (Phos) on the abundance–body mass (N–M)
relationship (all models include an intercept, which has not been shown for simplicity). Legend: AIC,
Akaike information criterion; LogLik, maximum likelihood estimator; wi, Akaike weight. Candidate
model with the best fit is highlighted in bold.

Response Predictors N AIC ∆AIC LogLik wi

Log 10 (N)

log10(M) × EOCs + pH + Temp + Lon + Lat + Alt + Nit + Phos 12 403.82 9.23 0.01 0.00
log10(M) × EOCs + pH + Temp + Lon + Lat + Alt + Nit 11 402.30 7.70 0.02 0.01
log10(M) × EOCs + pH + Temp + Lon + Lat + Alt 10 402.35 7.75 0.02 0.01
log10(M) × EOCs + pH + Temp + Lon + Lat 9 401.17 6.57 0.04 0.02
log10(M) × EOCs + pH + Temp + Lon 8 399.18 4.59 0.10 0.05
log10(M) × EOCs + pH + Temp 7 397.32 2.72 0.26 0.12
log10(M) × EOCs + pH 6 396.15 1.55 0.46 0.22
log10(M) × EOCs 5 394.60 0.00 1.00 0.47
log10(M) + EOCs 4 397.88 3.28 0.19 0.09
log10(M) 3 401.22 6.62 0.04 0.02

When over more than 10 orders of magnitude in body mass, from flagellates to macroinvertebrates,
abundance declined linearly with body mass with an average N–M slope of −0.37 (95% CI = −0.42,
−0.31). However, N–M relationship coefficients varied significantly between reference and polluted
streams (Table 3). We found that N–M intercepts (as a proxy for community carrying capacity) were
higher and size spectra slopes shallower in polluted compared to reference streams. The difference
in the 95% CI between fitted regression in the reference and polluted streams became visible in the
large size fraction of the N–M relationship, and we attribute this variation to the increase in abundance
of the large-size fractions of organisms in polluted sites (Figure 2) which was chiefly associated with
increases in pollutant-tolerant groups such as Asellidae and Oligochaeta (Figure 2b).

Table 3. Summary table of the fitted abundance–body mass regression (fixed coefficients). Fixed
coefficients (Coef ), standard errors (SE), degrees of freedom (DF), t values, and p values (p) are given.
Significance codes (Sig): 0 (***), 0.01 (*).

Fixed Equation Terms Coef SE t Value p Value Sig

Intercept 2.95 0.12 25.20 > 0.001 ***
Log10 body mass −0.37 0.03 −13.87 > 0.001 ***

Presence/absence of EOCs −0.77 0.24 −3.22 0.001 ***
Log10 body mass * EOC pollution −0.12 0.05 0.05 0.02 *
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relationship) comparing EOC-polluted and reference streams. Each data point denotes the abundance
of a given size class for each sampling unit. The fitted lines represent the average N–M slope for
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4. Discussion

In this work, we identified a diverse set of EOCs in streambed sediments across a large regional
scale and examined their effect on the size structure of streambed assemblages. We found complex
mixtures of EOCs in two thirds of all studied streams, yet we screened our water samples for only
37 target compounds as a small subset of the possible compounds found in natural systems. More than
70,000 daily-use chemicals are registered in the European Union with the potential to enter surface
and subsurface water systems [5]. Nevertheless, technical limitations on the detection of EOCs make
quantifying and regulating such a variety of chemicals in natural systems unrealistic. Therefore,
centering efforts on analyzing carefully selected target chemicals as markers seems to be a suitable
strategy to assess the degree of EOC pollution at large spatial scales.

Our findings evidence the strong effect that the presence of EOCs has over the organization of
streambed communities, to the point of shielding the effect of other important environmental factors.
Temperature, pH, and productivity are considered major drivers in freshwater ecology and determining
factors of the size structure and metabolic capacity of streambed communities [26,37,38,41,42]. Even so,
both the intercept and size spectra slope of the N–M relationship exhibited higher sensitivity in this
work to EOC pollution than to those environmental variables. Hence, the N–M relationship approach
seems to be an appropriate analytical and integrative statistical tool for testing deviation of natural
communities from a reference status as a consequence of EOC pollution. However, and contrary to our
predictions, N–M relationship coefficients increased under polluted conditions. That is, the intercept
(i.e., the carrying capacity of the community) increased and the size spectrum slope became shallower.
As predicted, the smallest size fractions showed low variation in their abundance when comparing
polluted and reference streams. Thus, this pattern is mainly due to the notably higher abundance of
certain groups of macroinvertebrates that push up the N–M relationship from the extreme of the mean
and largest size fraction. A closer look at the taxa that most influence variation in the N–M relationship
(Figure 2) reveals that they mainly belong to tolerant groups of organisms with medium to very low
biological monitoring working party scores (BMWP) [43].

The size spectra slope of the M–N relationship describes the rate of biomass depletion through
different levels of the food web in freshwater systems, typically becoming shallower as this rate
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increases [25,26]. Consequently, the existence of more abundant tolerant invertebrates in our study
might imply a better transference of biomass and energy between trophic levels and potentially
longer food chains. Considering these predictions, we are particularly concerned that several EOCs
bioaccumulate untransformed in the cells and tissues of aquatic organisms and even biomagnify
through different trophic levels [44–46]. Several of the measured EOCs in our survey study, such as
diclofenac, ibuprofen, carbamazepine, metoprolol, gemfibrozil, oxazepam, tramadol, and venlafaxine
are already known to bioaccumulate in biofilms, invertebrates, and fish in the food webs of stream
ecosystems [45,47,48]. In addition, some of these EOCs in larval tissues can be conserved through
metamorphosis and adults play the role of a biological vector transporting pharmaceuticals to terrestrial
predators [46]. Under our theoretical framework, bioaccumulation is expected to be more acute under
a scenario of EOC pollution and the concomitant population increase of tolerant macroinvertebrates.
In either case, future experimental approaches are needed to test our prediction. Hence, controlled
mesocosm experiments analyzing uptake of EOCs by model organisms and the transference of these
EOCs through trophic levels represent a fruitful strategy to assessing these ecological mechanisms.
Our metrics involve a broad range of body sizes; however, species-specific responses from different
size groups are expected. Therefore, controlled experiments will also shed light on how different
populations of taxa will respond to the presence and concentration of different EOCs.

In addition, from the total set of targeted compounds selected as model EOCs, the artificial
low-calorie sweetener acesulfame was the most widespread chemical and was detected almost
constantly in all polluted streams in our study. This pattern is consistent with previous studies in which
acesulfame has been reported as the most ubiquitous EOC in streambed sediments and groundwater
across Europe [12,30–32,49–51]. Thus, our findings strongly support the use of acesulfame as a marker
of EOC pollution for application in management and regulation of surface and subsurface waters [49].
Acesulfame is an anthropic source-specific compound released to the environment in high quantities
(in quantities of up to 13.8 µg L−1 in this study) and is amenable to rapid and sensitive analysis.
It is sufficiently persistent and hydrophilic enough to penetrate into streambed and groundwater
systems [49]. In fact, combining analysis of acesulfame with that of acetaminophen (an analgesic
pharmaceutical) and sitagliptin (an antihyperglycemic pharmaceutical) allowed us to distinguish
between polluted and reference streams in our study.

In summary, in this work we detected strong variation from reference status when comparing
N–M relationship coefficients between polluted and reference streams. Even though the ecological
mechanisms remain unclear, EOC pollution was associated with an increase in abundance of large-size
tolerant macroinvertebrates. This resulted in less size-structured assemblages under polluted conditions
with direct implications for the structure of the streambed community and potential biomagnification
processes along food webs. With this in mind, future research which characterizes food web
structures (feeding links) and quantifies concentrations of EOCs at different trophic levels would be
particularly instructive.
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