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Abstract: In this paper, a spacetime meshless method utilizing Trefftz functions for modeling
subsurface flow problems with a transient moving boundary is proposed. The subsurface flow
problem with a transient moving boundary is governed by the two-dimensional diffusion equation,
where the position of the moving boundary is previously unknown. We solve the subsurface flow
problems based on the Trefftz method, in which the Trefftz basis functions are obtained from the
general solutions using the separation of variables. The solutions of the governing equation are then
approximated numerically by the superposition theorem using the basis functions, which match
the data at the spacetime boundary collocation points. Because the proposed basis functions fully
satisfy the diffusion equation, arbitrary nodes are collocated only on the spacetime boundaries for the
discretization of the domain. The iterative scheme has to be used for solving the moving boundaries
because the transient moving boundary problems exhibit nonlinear characteristics. Numerical
examples, including harmonic and non-harmonic boundary conditions, are carried out to validate
the method. Results illustrate that our method may acquire field solutions with high accuracy. It is
also found that the method is advantageous for solving inverse problems as well. Finally, comparing
with those obtained from the method of fundamental solutions, we may obtain the accurate location
of the nonlinear moving boundary for transient problems using the spacetime meshless method with
the iterative scheme.

Keywords: spacetime meshless method; Trefftz functions; transient; moving boundary; nonlinear

1. Introduction

The free surface flow in soils can be defined as moving boundary problems because the location of
one or more of the domain boundaries is unknown [1–4]. The phreatic line is located between the fluid
phase and the air phase of the soil. It is sometimes regarded as the phase change problem [5–7]. Phase
change problems are often encountered in engineering, industry, and problems such as the design of
roadways in cold regions [8–10]. These problems are usually non-stationary as well as nonlinear due
to the phase change depending on time and complicated material properties [11]. Therefore, great
challenges may be raised for solving the problems using analytical solutions.

Various numerical approaches [12], such as the boundary element method [13], the interpolation
finite difference method [14], the finite element method [15], the finite volume method [16], the local
radial basis function collocation method [17], the method of approximate particular solutions [18],
and the method of fundamental solutions (MFS) [19,20], have been utilized for dealing with moving
boundary problems. The collocation method can be categorized into one of the meshless methods [21,22].
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The discretization of the domain for the collocation approaches is relatively simple because the arbitrary
points are assigned only on the boundary if we find the basis functions, which must satisfy the
governing equation [23,24]. This idea was developed by Erich Trefftz and known as the Trefftz
method [25]. The Trefftz method is widely adopted for dealing with the boundary value problem
(BVP) [26–29]. This method is often found to solve the Laplace-type equations. The reason is that the
derivation of the Trefftz functions for other partial differential equations may be very challenging [30].
Previous studies have demonstrated that applications of the Trefftz method may be limited to linear
as well as stationary problems. Recently, a study on solving subsurface flow problems with free and
moving boundaries governed by the Laplace governing equation adopting the Trefftz method has been
developed [23]. However, the engineering applications of the Trefftz method with complete Trefftz
functions for dealing with transient problems are still hardly found, where solving transient moving
boundary problems adopting the Trefftz method rarely exist.

In this study, we propose the spacetime meshless approach using Trefftz functions for solving
subsurface flow problems with a transient moving boundary. The subsurface flow problem with a
transient moving boundary is governed by the two-dimensional diffusion equation, where the position
of the nonlinear moving boundary is previously unknown. We solve the subsurface flow problems
utilizing the Trefftz method, in which the Trefftz basis functions can be obtained from the general
solutions using the separation of variables. We propose the spacetime collocation scheme such that the
solutions of the governing equation are approximated numerically by the superposition theorem using
the proposed basis functions, which match the data at spacetime boundary collocation points. Because
the proposed basis functions fully satisfy the diffusion equation, arbitrary nodes are collocated only on
the spacetime boundaries for the discretization of the domain. Because the transient moving boundary
problems exhibit nonlinear characteristics, the iterative scheme has to be used for solving the moving
boundaries. Numerical examples, including harmonic and non-harmonic boundary conditions, were
carried out to validate the method. The derivation of the spacetime collocation scheme utilizing Trefftz
functions is depicted in the following section.

2. The Governing Equation

The transient moving boundary phenomenon is governed by the two-dimensional diffusion
governing equation in the dimensionless form in polar coordinates as follows,

∂2h(r,θ, t)
∂r2 +

1
r
∂h(r,θ, t)

∂r
+

1
r2

∂2h(r,θ, t)
∂θ2 =

∂h(r,θ, t)
∂t

in<t, (1)

where<t is the spacetime domain of the transient moving boundary problems, h is the total head,
θ denotes the polar angle, r is the dimensionless variable, which is expressed as r = r̂/R0, r̂ is the radius,
R0 is the maximum dimension of the problem, which is also named as the length of characteristic,
t is the dimensionless variable, which is expressed as t = t̂T/R2

0S, S is the storage coefficient, t̂ is the
time, and T is the transmissibility coefficient. While r̂ is in the range of 0 < r̂ < R0, r is in the range of
0 < r < 1. The initial condition for solving Equation (1) is as follows,

h(r,θ, t = 0) = h0(r,θ, t = 0), (2)

where h0 is the initial total head. To solve Equation (1), the boundary data are expressed as

h(r,θ, t) = D(r,θ, t) on Γt
D, (3)

hn(r,θ, t) =
∂h(r,θ, t)

∂n
= N(r,θ, t) on Γt

N, (4)

where Γt
D is the spacetime Dirichlet boundary condition, Γt

N is the spacetime Neumann boundary
condition, the subscript D is the Dirichlet boundary data, the subscript N denotes the Neumann
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boundary data, the subscript n is the outward normal direction, D(r,θ, t) and N(r,θ, t) are the Dirichlet
and Neumann boundary data of the transient moving boundary problems in the spacetime domain,
respectively.

3. The Spacetime Meshless Method Using Trefftz Functions

3.1. Trefftz Functions for Transient Moving Boundary Problems

The spacetime meshless method using Trefftz functions is rooted in the Trefftz method. Thus, it is
necessary for the nonlinear moving boundary problems to formulate the general solutions. To formulate
the transient Trefftz functions for the nonlinear moving boundary problems, the separation of variables
is adopted.

h(r,θ, t) = ϕ(r,θ)Ω(t), (5)

whereϕ(r,θ) and Ω(t) are functions. The total head h(r,θ, t) is a product of two functions. For simplicity,
the following notations are considered.

ϕr =
dϕ(r,θ)

dr
, ϕrr =

d2ϕ(r,θ)
dr2 , ϕθθ =

d2ϕ(r,θ)
dθ2 and Ω′ =

dΩ(t)
dt

, (6)

where the subscript r denotes the first derivative with respect to r, the subscript rr denotes the second
derivative with respect to r, the subscript θθ denotes the second derivative with respect to θ. Inserting
Equation (5) into Equation (1), by taking into account notation Equation (6), we have

(ϕrr +
1
r
ϕr +

1
r2ϕθθ)Ω = ϕΩ′. (7)

We further consider the following equation

ϕ(r,θ) = R(r)W(θ), (8)

where R(r) and W(θ) are functions. The function ϕ(r,θ) is a product of two functions, including R(r)
and W(θ). Each function depends only on one of the variables r or θ. Inserting Equation (8) into
Equation (7), we obtain

R′′WΩ +
1
r

R′WΩ +
1
r2 RW′′Ω = RWΩ′, (9)

where R′ = dR(r)
dr , R′′ = d2R(r)

dr2 , W′′ =
d2W(θ)

dθ2 , and Ω′ = dΩ(t)
dt .

Dividing by R(r)W(θ)Ω(t) on both sides in Equation (9), we can then obtain
Ω′
Ω = λ,

r2R′′+rR′−r2Rλ
R = χ

−
W′′
W = χ,

, (10)

where λ and χ are separation constants. We introduce p and q and assume that λ = p2 or λ = −p2 and
χ = q2 or χ = −q2 to ensure λ and χ to be positive or negative value, respectively. The formulation of
Trefftz functions for transient moving boundary problems are expressed in the following description.
Considering the combination of positive or negative values for λ and χ, there are six possible scenarios.
If we consider the first scenario, λ = 0 and χ = q2, we may obtain

Ω(t) = A1,
R(r) = A2rq + A3r−q,
W(θ) = A4 cos(qθ) + A5 sin(qθ),

(11)
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where A1, A2, A3, A4, and A5 are arbitrary constants that have to be evaluated. Inserting Equation (11)
into Equation (5) may yield

h(r,θ, t) = A1rq cos(qθ) + A2rq sin(qθ) + A3r−q cos(qθ) + A4r−q sin(qθ), (12)

where A1, A2, A3, and A4 are arbitrary constants that have to be evaluated. We may find solutions
for five other scenarios including λ = 0 and χ = 0, λ = p2 and χ = q2, λ = p2 and χ = 0, λ = −p2

and χ = q2, and λ = −p2 and χ = 0 using the same procedure, as listed in Appendix A. As a result,
we may obtain the complete Trefftz functions described as follows,

T =
{
T1, T2, T3, . . . , T18

}
, (13)

where T denotes the Trefftz basis functions, and T1, T2, T3, . . . , T18 denotes the functions, as listed in
Appendix A. The transient numerical solution for the two-dimensional subsurface flow problem with
a transient moving boundary is expressed by the series expansion as follows,

h( r,θ, t) =a + b ln r +
υ∑

q=1

 c1qrq cos(qθ) + c2qrq sin(qθ) + c3qep2tI0(qr) + c4qe−p2t J0(qr)

+c5qr−q cos(qθ) + c6qr−q sin(qθ) + c7qep2tK0(qr) + c8qe−p2tY0(qr)

+
υ∑

p=1



d1qpep2tIq(pr) cos(qθ) + d2qpep2tIq(pr) sin(qθ)

+d3qpe−p2t Jq(pr) cos(qθ) + d4qpe−p2t Jq(pr) sin(qθ)

+d5qpep2tKq(pr) cos(qθ) + d6qpep2tKq(pr) sin(qθ)

+d7qpe−p2tYq(pr) cos(qθ) + d8qpe−p2tYq(pr) sin(qθ)




,

(14)

where υ denotes the order of the Trefftz functions, and a, b, c1q . . . , d8qp denote unknown coefficients, I0

and Iq denote the modified Bessel functions of the first kind of zero order and of q order, respectively.
J0 and Jq denote the Bessel functions of the first kind of zero order and of q order, respectively. K0 and
Kq denote the modified Bessel functions of the second kind of zero order and of q order, respectively.
Y0 and Yq denote the Bessel functions of the second kind of zero order and of q order, respectively.

For the infinite domain or domain with cavities, the Trefftz basis functions are described as

h(r,θ, t) = b ln r +
υ∑

q=1

{
c5qr−q cos(qθ) + c6qr−q sin(qθ) + c7qep2tK0(pr) + c8qe−p2tY0(pr)

+
υ∑

p=1

 d5qpep2tKq(pr) cos(qθ) + d6qpep2tKq(pr) sin(qθ)

+d7qpe−p2tYq(pr) cos(qθ) + d8qpe−p2tYq(pr) sin(qθ)


}

.

(15)

When the domain is simply connected, we may consider only positive basis functions.
Consequently, the above equation is simplified as the following equation.

h(r,θ, t) = a +
υ∑

q=1

{
c1qrq cos(qθ) + c2qrq sin(qθ) + c3qep2tI0(qr) + c4qe−p2t J0(qr)

+
υ∑

p=1

 d1qpep2tIq(pr) cos(qθ) + d2qpep2tIq(pr) sin(qθ)

+d3qpe−p2t Jq(pr) cos(qθ) + d4qpe−p2t Jq(pr) sin(qθ)


}

.

(16)

To evaluate the unknown coefficients of a, c1q, . . . , d4qp in Equation (16), the spacetime collocation
scheme must be utilized. Using the spacetime collocation scheme and applying the Dirichlet boundary
data in Equation (16), a system of equations may then be yielded.
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1 r1

q cos(qθ1) r1
q sin(qθ1) · · · e−p2t1 Jq(pr1) sin(qθ1)

1 r2
q cos(qθ2) r2

q sin(qθ2) · · · e−p2t2 Jq(pr2) sin(qθ2)
...

...
...

. . .
...

1 rs
q cos(qθs) rs

q sin(qθs) · · · e−p2ts Jq(prs) sin(qθs)




a
c1q
...

d4qp

 =


h1

h2
...

hs

, (17)

where t1, t2, · · · , ts are time in dimensionless form, r1, r2, · · · , rs are radiuses in dimensionless form,
θ1, θ2, · · · ,θs are polar angles in dimensionless form, h1, h2, · · · , hs are Dirichlet boundary data,
the subscript s denotes the number of boundary points, and a, c1q, · · · , d4qp denote the unknown
coefficients. Equation (17) is expressed as

Hy = Z, (18)

where H denotes a matrix of the Trefftz basis functions with the size of s ×w, y denotes a vector of
the unknown coefficients with the size of w× 1, Z denotes a vector of accessible boundary value at
boundary collocation points with the size of s× 1, s denotes the number of boundary points, w denotes
the term related to the order of the Trefftz basis function. Solving Equation (18), we may acquire
the coefficients that are unknown for the spacetime domain. In addition, the Neumann boundary
conditions are also considered in this study.

hn(r,θ, t) =
∂h(r,θ, t)

∂n
= ∇h(r,θ, t) ·

⇀
n , (19)

where
⇀
n = (nx, ny) denotes the outward normal vector, nx and ny are the outward normal direction of

the x and y axis, respectively. Adopting the chain rule, we may yield the formulations of hn, hx, and hy,
as listed in Appendix B.

3.2. The Spacetime Collocation Scheme

Instead of utilizing the original Euclidean space, we adopt a spacetime collocation scheme based
on the Minkowski spacetime to perform the transient modeling of this problem. A two-dimensional
transient nonlinear moving boundary problem is two-dimensional in space as well as one-dimensional
in time, as displayed in Figure 1a. The spacetime region then becomes a domain in three dimensions,
as shown in Figure 1b. To calculate the polar angle as well as the radius, we placed the source point
as a reference point within the domain, as shown in Figure 1b. As a result, both the initial and
boundary condition can be provided on the boundary of spacetime. Since the final time boundary data
are unknown, the spacetime collocation scheme transforms a transient nonlinear moving boundary
problem into an inverse BVP.

3.3. The Iterative Scheme for Modeling Transient Moving Boundary

For each collocation point on the moving surface, the total head is expressed as

hϕ(r j,θ j, t j) = Y j +
p j

γ
, (20)

where Y j is the height above the sea level, γ denotes the unit weight of water, p j denotes the pore
water pressure, hϕ(r j,θ j, t j) is the total head, and the subscript j denotes the index of the points on the
transient moving boundary to be renewed. The over-specified moving boundary conditions, including
the no-flux and the zero pressure head, are described as

∂hϕ(r j,θ j, t j)

∂n
= 0, hϕ(r j,θ j, t j) = Y j. (21)
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For each collocation point on the seepage face, the total head is expressed as

hϕ(r j,θ j, t j) = Y j. (22)

As demonstrated in Equations (16) and (A11), the complete mathematical expressions of the
Dirichlet and Neumann boundary conditions have been derived. Applying the Dirichlet and Neumann
boundary values for boundary points on the moving surface may acquire

hϕ(r j,θ j, t j) ≈
υ∑

q=1

υ∑
p=1

yqpHqp(r j,θ j, t j), (23)

∂hϕ(r j,θ j, t j)

∂n
≈

υ∑
q=1

υ∑
p=1

yqp
∂Hqp(r j,θ j, t j)

∂n
. (24)

From the above equations, the given boundary data are over-specified on the moving boundary.
On the moving boundary, the location of the moving boundary is unknown. It can be referred to as the
inverse geometric problem. For example, considering the no-flux and the zero pressure head boundary
conditions, the unknowns are the coordinates of collocation points. From Equations (23) and (24), it is
found that we may solve a nonlinear system of equations to obtain the coordinates of collocation points
for the given time. The moving boundary problem may, therefore, exhibit the nonlinear characteristic.
The inverse geometric problems are usually difficult to deal with because of the nonlinearity. For
solving the inverse geometric problem, such as the moving surface flow problem, the iterative scheme
is required. Previous studies have found it difficult to calculate the Jacobian matrix using Newton’s
method. Thus, the Picard iterative method is used in this study [5]. The Picard iteration first begins
from the initial guess of the location for the moving boundary. The iteration may be achieved by
applying Equations (23) and (24).

υ∑
q=1

υ∑
p=1

y
i

qpHqp(r
i
j,θ

i
j, ti

j) = hi(r j,θ j, t j), (25)

υ∑
q=1

υ∑
p=1

y
i

qp

∂Hqp(ri
j,θ

i
j, ti

j)

∂n
=
∂hi(r j,θ j, t j)

∂n
, (26)

where hi(r j,θ j, t j) = Yi
j and the superscripts i is the number of iteration steps. The iterative equation is

depicted as
hi(r j,θ j, t j) = hi−1(r j,θ j, t j) + ε(hi(r j,θ j, t j) − hi−1(r j,θ j, t j)), (27)

where hi(r j,θ j, t j) is the total head to be renewed, and ε is the parameter of under-relaxation. The ε
value is in the range of zero to one. The numerical procedure of the iteration starts by giving an initial
value for the nonlinear moving boundary and ends while the stopping condition is achieved.√

J∑
j=1

[
hi(r j,θ j, t j) − hi−1(r j,θ j, t j)

]2

√
J∑

j=1

[
hi−1(r j,θ j, t j)

]2
≤ ω, (28)

where ω is the stopping criteria, and J is the collocation point number on the moving boundary. In this
study, we consider the stopping criteria to be ω = 10−4.
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4. Numerical Examples

4.1. Numerical Example 1

An example of the shape of a Cassini oval, as demonstrated in Figure 1a, is expressed as

< ∈

{
(x, y)

∣∣∣x = r̂ cos θ, y = r̂ sin θ
}
, (29)

where r̂(θ) =
3

√
cos(3θ) +

√
2− sin (3θ)2 , 0 ≤ θ ≤ 2π. The governing equation can be expressed as

given in Equation (1). The harmonic data at the initial time is assumed as

h(x, y, t̂ = 0) = x2 + y2. (30)

The Neumann data are applied on the domain boundary Γ, as displayed in Figure 1b. The Neumann
boundary condition is considered as

∂h(x, y, t̂)
∂n

= 2x · nx + 2y · ny on Γ. (31)

The following exact solution is adopted to validate the proposed method.

h(x, y, t̂) = x2 + y2 +
1
4

T
S

t̂ (32)

In this example, the storage coefficient S is 10−4, the transmissibility coefficient T is 10−5 m2/s,
and final elapsed time t̂ f is 3 s. This example demonstrates space collocation points in two dimensions
and time collocation points in one dimension. The spacetime collocation points can be regarded as
a spacetime domain in three dimensions, as shown in Figure 1b. Due to the inaccessible final time
boundary data, the two-dimensional initial value problem is transformed into a three-dimensional
inverse BVP. The initial, as well as boundary data, are assigned on the circumferential and bottom
sides of the spacetime domain in three dimensions, respectively. In this example, the source point
is collocated on the origin as a reference point for calculating the polar angle and radius, as shown
in Figure 1b.
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The accuracy of the solution of our approach may be affected by the boundary collocation points
number as well as the order of the Trefftz basis functions. A sensitivity analysis of the boundary
collocation points number, and the order of the Trefftz basis functions is then carried out. To verify the
stability of the proposed method, the accuracy of the numerical solution is measured by the following
maximum absolute error (MAE).

MAE = max|uE − uN |, (33)

where uE is the exact solution, and uN is the numerical solution.
Figure 2a demonstrates the relationship between the MAE and the order of the basis functions.

It seems that accurate solutions are yielded when the order of the basis functions is greater than 10.
Figure 2b depicts the number of boundary collocation points versus the MAE. It seems that accurate
solutions may be achieved when the boundary collocation points number is greater than 700. Hence,
the order of the basis functions and the boundary collocation points number are considered to be 11
and 918, respectively.
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Figure 2. The sensitivity analysis: (a) accuracy for the order of the basis functions versus the
maximum absolute error; (b) accuracy for the boundary collocation points number versus the maximum
absolute error.

An example of a two-dimensional transient subsurface flow problem with harmonic initial and
boundary conditions is then carried out to verify the computed result. To yield the computed total
head and examine the accuracy of the proposed method, 3158 inner collocation points are uniformly
collocated within the domain. The profiles of the computed total head are then chosen to compare with
the analytical solution. Figure 3 depicts the exact solution as well as the field solution of the total head
from the proposed method. It seems that by utilizing our method, the computed results are entirely
consistent with the analytical solution. Figure 4 depicts the MAE of our method at different times. The
MAE of our method is in the order of 10−13, as displayed in Figure 4. It is clear that our method may
yield accurate results.



Water 2019, 11, 2595 9 of 24

Water 2019, 11, x FOR PEER REVIEW 9 of 26 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Comparison of the solutions with the exact solution: (a) s 6.0ˆ t ; (b) s 8.1ˆ t ; (c) s 3ˆ t . 

 
(a) 

 
(b) 

Figure 3. Comparison of the solutions with the exact solution: (a) t̂ = 0.6 s; (b) t̂ = 1.8 s; (c) t̂ = 3 s.

Water 2019, 11, x FOR PEER REVIEW 9 of 26 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Comparison of the solutions with the exact solution: (a) s 6.0ˆ t ; (b) s 8.1ˆ t ; (c) s 3ˆ t . 

 
(a) 

 
(b) 

Figure 4. Cont.



Water 2019, 11, 2595 10 of 24

Water 2019, 11, x FOR PEER REVIEW 10 of 26 

 

 
(c) 

Figure 4. The absolute error at different times: (a) s 6.0ˆ t ; (b) s 8.1ˆ t ; (c) s 3ˆ t . 

4.2. Numerical Example 2 

This example is the forward and backward analyses of a two-dimensional transient problem. 

The governing equation is expressed in Equation (1). The non-harmonic initial and boundary data 

are considered. In this example, we assume the final elapsed time to be 1 min, the storage coefficient 

to be 
-410 , the transmissibility coefficient to be 

-610  m2/s, the length to be 10 m, and the width to 

be 6 m. We apply the non-harmonic initial and boundary data as 

yxtyxh sin0sin10)0ˆ,,(  , (34) 

yxetyxh
t

S

T

sinsin010)ˆ,,(
ˆ3



 .
 

(35) 

Because numerical example 2 may not exist an analytical solution to examine the accuracy, we 

conduct the forward modeling of the two-dimensional transient problem to compute the final time 

field solution of total head. The non-harmonic boundary data can be provided on vertical sides of the 

spacetime domain, as displayed in Figure 5a. A backward analysis using the final time results from 

the forward analysis, as displayed in Figure 5b, is then carried out to compute the field solution of 

initial head at the bottom of the spacetime domain. To verify the correctness of the field solution, the 

assigned non-harmonic initial data is compared with the computed initial head from the backward 

analysis of this problem. 

In this example, there exists one source point collocated on the origin and 600 boundary points 

uniformly collocated on the boundary. The order of the Trefftz function is 21. To yield the computed 

total head and examine the accuracy of the proposed method, 1000 inner collocation points are 

uniformly collocated within the domain. Figure 6 shows the computed initial head with the assigned 

non-harmonic initial data at different times. It is found that the computed initial data from the 

backward analysis are consistent with the assigned non-harmonic data at time zero. Moreover, the 

absolute difference is in the order of 
-710 , as given in Figure 7. 

Figure 4. The absolute error at different times: (a) t̂ = 0.6 s; (b) t̂ = 1.8 s; (c) t̂ = 3 s.

4.2. Numerical Example 2

This example is the forward and backward analyses of a two-dimensional transient problem.
The governing equation is expressed in Equation (1). The non-harmonic initial and boundary data are
considered. In this example, we assume the final elapsed time to be 1 min, the storage coefficient to be
10−4, the transmissibility coefficient to be 10−6 m2/s, the length to be 10 m, and the width to be 6 m.
We apply the non-harmonic initial and boundary data as

h(x, y, t̂ = 0) = 100 sin x sin y, (34)

h(x, y, t̂) = 100e−
3T
S t̂ sin x sin y. (35)

Because numerical example 2 may not exist an analytical solution to examine the accuracy, we
conduct the forward modeling of the two-dimensional transient problem to compute the final time
field solution of total head. The non-harmonic boundary data can be provided on vertical sides of the
spacetime domain, as displayed in Figure 5a. A backward analysis using the final time results from
the forward analysis, as displayed in Figure 5b, is then carried out to compute the field solution of
initial head at the bottom of the spacetime domain. To verify the correctness of the field solution, the
assigned non-harmonic initial data is compared with the computed initial head from the backward
analysis of this problem.

In this example, there exists one source point collocated on the origin and 600 boundary points
uniformly collocated on the boundary. The order of the Trefftz function is 21. To yield the computed
total head and examine the accuracy of the proposed method, 1000 inner collocation points are
uniformly collocated within the domain. Figure 6 shows the computed initial head with the assigned
non-harmonic initial data at different times. It is found that the computed initial data from the backward
analysis are consistent with the assigned non-harmonic data at time zero. Moreover, the absolute
difference is in the order of 10−7, as given in Figure 7.
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4.3. Numerical Example 3

The modeling of a two-dimensional transient moving boundary problem through a rectangular
dam is considered, as depicted in Figure 8. The objective of this two-dimensional problem is to
evaluate the time-dependent location of the phreatic surface. The governing equation is expressed
in Equation (1). The rectangular dam, as shown in Figure 8, is constituted of five boundary lines,
including Γ1, Γ2, Γ3, Γ4, and Γ5. We assume the downstream head, upstream head, and the width to be
4, 24, and 16 m, respectively. The initial condition is expressed as

h(x, y, t̂ = 0) = 24 m. (36)

The Dirichlet data are applied on the domain boundary, including Γ2, Γ3, Γ4, and Γ5, as depicted
in Figure 8. The boundary conditions are expressed as

h(x, y, t̂) = 4 m on Γ2, (37)

h(x, y, t̂) = 24 m on Γ5, (38)

h(x, y, t̂) = y m on Γ3 and Γ4. (39)

On Γ1 and Γ4, no-flow Neumann boundary data can be given as

∂h(x, y, t̂)
∂n

= 0 on Γ1 and Γ4. (40)
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In this example, we assume that the final elapsed time is 700 days, storage coefficient is 10−3

and transmissibility coefficient is 10−6 m2/s. There exists one source point, where the location of the
source point is (0,12). The order of the Treffttz basis functions and boundary collocation points number
on a nonlinear moving boundary are 7 and 25,600, respectively. Since the numerical procedure for
evaluating the location of the phreatic surface is considered as an inverse problem, the location of
the separation point has to be investigated. To obtain the results, the number of iterations is 43 using
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the proposed method. Figure 9 shows the numerical solutions of the nonlinear moving boundary at
different times. It seems that the transient nonlinear moving boundary can be obtained by utilizing
our method.
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Since several numerical approaches have been applied to solve this problem, we further compare
the final time solutions of our method with those of Aitchison (1972) [31], Chen et al. (2007) [9], and
Ku et al. (2019) [23], as depicted in Figure 10. It is found that the location of the nonlinear moving
boundary using the proposed method agrees very well with the results from the previous studies at
the final steady-state time.
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4.4. Numerical Example 4

The final example is the modeling of a two-dimensional transient moving boundary problem
through a trapezoidal dam, as displayed in Figure 11. The objective of this example is to evaluate
the position of the transient moving boundary. The governing equation is expressed in Equation (1).
The initial data is given as

h(x, y, t̂ = 0) = 4 m. (41)

The Dirichlet data are applied on the domain boundary, including Γ2, Γ3, Γ4, and Γ5, as depicted
in Figure 11. The boundary conditions are described as

h(x, y, t̂) = 3 m on Γ2, (42)

h(x, y, t̂) = 4 m on Γ5, (43)

h(x, y, t̂) = y m on Γ3 and Γ4. (44)

On Γ1 and Γ4, the no-flow Neumann boundary data are given as

∂h(x, y, t̂)
∂n

= 0 on Γ1 and Γ4. (45)

In numerical example 4, the final elapsed time is 30 min, storage coefficient is 10−4, and
transmissibility coefficient is 10−6 m2/s. The order of the Treffttz basis functions and number of
boundary collocation points on the transient moving boundary are set to be 10 and 9663, respectively.
There exists one source point, where the location of the source point is (1.2,2). Figure 12 shows the
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proposed spacetime collocation scheme of the two-dimensional transient moving boundary flow
through a trapezoidal dam.
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The profiles of the field solutions at different simulation times are chosen to clearly view the
computed transient moving boundary. Figure 13 shows the numerical solutions of the transient moving
boundary. The location of the moving surface at the final time from the proposed method is further
compared with the steady-state solution by adopting the MFS to examine the accuracy of the proposed
approach, as depicted in Figure 13. It is found that the location of the nonlinear moving surface using
the proposed method agrees well with the steady-state solution by using the MFS.
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5. Conclusions

This study is rooted in the Trefftz method and gives a promising numerical solution for the
transient nonlinear moving boundary problems. To verify the proposed spacetime collocation scheme
using Trefftz functions, we carried out several numerical problems. The key contributions of this study
are as follows.

Previous studies have demonstrated that the engineering application of the Trefftz method with
complete Trefftz functions for dealing with transient problems is still hardly found, where solving
transient moving boundary problems using the Trefftz method rarely even exists. In this study,
a pioneering attempt reveals that the transient nonlinear moving boundary problems governed by the
two-dimensional diffusion equation are solved using the spacetime collocation scheme with complete
Trefftz basis functions.

The significance of the proposed method rooted in the conventional Trefftz method is that the
collocation points in our method are placed in the Minkowski spacetime rather than the Euclidean
space. As a result, we may construct a spacetime domain in three dimensions, where both the boundary
and initial data are given on the boundary of spacetime, which can be regarded as a BVP. Accordingly,
the transient nonlinear moving boundary problems can be easily solved.



Water 2019, 11, 2595 19 of 24

Because our method is a boundary-type meshless approach, the domain boundary has to be
discretized by the boundary points. It depicts the simplicity of using the proposed method for dealing
with problems of the transient moving boundary during the iterative process for searching the location
of the free surface.
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Appendix A

The formulation of Trefftz functions for transient moving boundary problems are expressed in the
following description.

(I) λ = 0 and χ = 0

Assuming λ = 0 and χ = 0, we obtain
Ω(t) = A6,
R(r) = A7 ln r + A8,
W(θ) = A9θ+ A10,

(A1)

where A6, A7, A8, A9, and A10 are constants. Applying the boundary conditions of W(r, 0, t) =

W(r, 2π, t), we obtain that A9 = 0. Inserting Equation (A1) into Equation (5), we find

h(r,θ, t) = A5 ln r + A6, (A2)

where A5 and A6 are constant.

(II) λ = p2 and χ = q2

Assuming λ = p2 and χ = q2, we obtain
Ω(t) = A11ep2t,
R(r) = A12Iq(pr) + A13Kq(pr),
W(θ) = A14 cos(qθ) + A15 sin(qθ),

(A3)

where A11, A12, A13, A14, and A15 are constants, Iq denotes the modified Bessel function of the first kind
of q order, and Kq denotes the modified Bessel function of the second kind of q order. Substituting
Equation (A3) into Equation (5), we have

h(r,θ, t) = A7ep2tIq(pr) cos(qθ) + A8ep2tIq(pr) sin(qθ)
+A9ep2tKq(pr) cos(qθ) + A10ep2tKq(pr) sin(qθ),

(A4)

where A7, A8, A9, and A10 are constant.

(III) λ = p2 and χ = 0
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Assuming λ = p2 and χ = 0, we obtain
Ω(t) = A16ep2t,
R(r) = A17I0(pr) + A18K0(pr) + A19,
W(θ) = A20θ+ A21,

(A5)

where A16, A17, A18, A19, A20, and A21 are constants, I0 denotes the modified Bessel function of the
first kind of zero order, and K0 denotes the modified Bessel function of the second kind of zero order.
Applying the boundary conditions of W(r, 0, t) = W(r, 2π, t) may obtain A20 = 0. Inserting Equation
(A5) into Equation (5) yields

h(r,θ, t) = A11ep2tI0(pr) + A12ep2tK0(pr) + A13, (A6)

where A11, A12, and A13 are constant.

(IV) λ = −p2 and χ = q2

Assuming λ = −p2 and χ = q2, we obtain
T(t) = A22e−p2t,
R(r) = A23 Jq(pr) + A24Yq(pr),
W(θ) = A25 cos(qθ) + A26 sin(qθ),

(A7)

where A22, A23, A24, A25, and A26 are constants, Jq denotes the Bessel function of the first kind of q
order, Yq denotes the Bessel function of the second kind of q order. Substituting Equation (A7) into
Equation (5), we may have

h(r,θ, t) = A14e−p2t Jq(pr) cos(qθ) + A15e−p2t Jq(pr) sin(qθ)

+A16e−p2tYq(pr) cos(qθ) + A17e−p2tYq(pr) sin(qθ),
(A8)

where A14, A15, A16, and A17 are constant.

(V) λ = −p2 and χ = 0

Assuming λ = −p2 and χ = 0, we obtain
Ω(t) = A27e−p2t,
R(r) = A28 J0(pr) + A29Y0(pr) + A30,
W(θ) = A31θ+ A32,

(A9)

where A27, A28, A29, A30, A31, and A32 are constants, J0 denotes the Bessel function of the first
kind of zero order, and Y0 denotes the Bessel function of the second kind of zero order. Using the
boundary conditions of W(r, 0, t) = W(r, 2π, t), we obtain that A31 = 0. Substituting Equation (A9)
into Equation (5), we find

h(r,θ, t) = A18e−p2t J0(pr) + A19e−p2tY0(pr) + A20, (A10)

where A18, A19, and A20 are constant.
The transient solutions are described by the principle of linear superposition utilizing the Trefftz

functions. The Trefftz basis for transient moving boundary problems consists of a series of linearly
independent vectors, including 18 functions, as listed in the following table.

In Table A1, I0 and Iq denote the modified Bessel functions of the first kind of zero order and of q
order, respectively. J0 and Jq denote the Bessel functions of the first kind of zero order and of q order,
respectively. K0 and Kq denote the modified Bessel functions of the second kind of zero order and of q
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order, respectively. Y0 and Yq denote the Bessel functions of the second kind of zero order and of q
order, respectively.

Table A1. The Trefftz basis for transient moving boundary problems.

T1 1 T2 rq cos(qθ)

T3 rq sin(qθ) T4 r−q cos(qθ)

T5 r−q sin(qθ) T6 ln r

T7 ep2tIq(pr) cos(qθ) T8 ep2tIq(pr) sin(qθ)

T9 ep2tKq(pr) cos(qθ) T10 ep2tKq(pr) sin(qθ)

T11 ep2tI0(pr) T12 ep2tK0(pr)

T13 e−p2t Jq(pr) cos(qθ) T14 e−p2t Jq(pr) sin(qθ)

T15 e−p2tYq(pr) cos(qθ) T16 e−p2tYq(pr) sin(qθ)

T17 e−p2t J0(pr) T18 e−p2tY0(pr)

Appendix B

To formulate the complete expressions of hn, hx, and hy, the chain rule is utilized. The Neumann
boundary data of hn, hx, and hy are expressed as follows,

∂h
∂n

=
∂h
∂x

nx +
∂h
∂y

ny, (A11)

∂h
∂x

=
∂h
∂r
∂r
∂x

+
∂h
∂θ
∂θ
∂x

, (A12)

∂h
∂y

=
∂h
∂r
∂r
∂y

+
∂h
∂θ
∂θ
∂y

. (A13)

The formulations of hn, hx, and hy in the polar coordinates may be derived by using a series of
mathematical formulations as follows.

∂h
∂r

=
υ∑

p=1

υ∑
q=1



C1qrq−1 cos(qθ) + C2qrq−1sin(qθ) − qC3r−q−1 cos(qθ)

−qC4r−q−1 sin(qθ) + C5
1
r

+C7
p
2 ep2t(Iq+1(pr) − Iq−1(pr)) cos(qθ)

+C8
p
2 ep2t(Iq+1(pr) − Iq−1(pr)) sin(qθ)

+C9
p
2 ep2t(Kq+1(pr) −Kq−1(pr)) cos(qθ)

+C10
p
2 ep2t(Kq+1(pr) −Kq−1(pr)) sin(qθ)

+C11ep2tI1(pr) + C12eαp2tK1(pr)

+C13
p
2 e−p2t(Jq−1(pr) − Jq+1(pr)) cos(qθ)

+C14
p
2 e−p2t(Jq−1(pr) − Jq+1(pr)) sin(qθ)

+C15
p
2 e−p2t(Yq−1(pr) −Yq+1(pr)) cos(qθ)

+C16
p
2 e−p2t(Yq−1(pr) −Yq+1(pr)) sin(qθ)

+C17e−p2t J1(pr) −C18e−p2tY1(pr)



, (A14)
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∂h
∂θ =

υ∑
p=1

υ∑
q=1



C1rq(− sin(qθ)) + C2rq cos(qθ)
+C3r−q(− sin(qθ)) + C4r−q cos(qθ)

+C7ep2tIq(pr)(− sin(qθ)) + C8ep2tIq(pr) cos(qθ)

+C9ep2tKq(pr)(− sin(qθ)) + C10ep2tKq(pr) cos(qθ)

+C13e−p2t Jq(pr)(− sin(qθ)) + C14e−p2t Jq(pr) cos(qθ)

+C15e−p2tYq(pr)(− sin(qθ)) + C16e−p2tYq(pr) cos(qθ)


(A15)

∂r
∂x

=
x√

x2 + y2
=

x
r
= cosθ, (A16)

∂r
∂y

=
y√

x2 + y2
=

y
r
= sinθ, (A17)

∂θ
∂x

=
−y/x2

1 + y2/x2 =
−y
r2 = −

sinθ
r

, (A18)

∂θ
∂y

=
1/x

1 + y2/x2 =
x
r2 =

cosθ
r

. (A19)

Substituting the above equations into Equations (A12) and (A13), we may obtain the
following equations.

∂h
∂x

=
υ∑

p=1

υ∑
q=1



C1(qrq−1 cos(qθ) cos(θ) + rq(− sin(qθ))(− sinθ
r ))

+C2(qrq−1sin(qθ) cos(θ) + rq cos(qθ)(− sinθ
r ))

−C3(qr−q−1 cos(qθ)cos(θ) + r−q(− sin(qθ))(− sinθ
r ))

−C4(qr−q−1 sin(qθ)cos(θ) + r−q cos(qθ)(− sinθ
r ))

+C5
1
r cos(θ) + C7

p
2 ep2t((Iq+1(pr) − Iq−1(pr)) cos(qθ) cos(θ)

+Iq(pr)(− sin(qθ))(− sinθ
r ))

+C8ep2t(
p
2 (Iq+1(pr) − Iq−1(pr)) sin(qθ) cos(θ)

+Iq(pr) cos(qθ)(− sinθ
r ))

+C9ep2t(
p
2 (Kq+1(pr) −Kq−1(pr)) cos(qθ) cos(θ)

+Kq(pr)(− sin(qθ))(− sinθ
r ))

+C10ep2t(
p
2 (Kq+1(pr) −Kq−1(pr)) sin(qθ) cos(θ)

+Kq(pr) cos(qθ)(− sinθ
r ))

+C11ep2t(I1(pr)cos(θ))

+C12ep2t(K1(pr)cos(θ))

+C13e−p2t(
p
2 (Jq−1(pr) − Jq+1(pr)) cos(qθ) cos(θ)

+Jq(pr)(− sin(qθ))(− sinθ
r ))

+C14e−p2t(
p
2 (Jq−1(pr) − Jq+1(pr)) sin(qθ) cos(θ)

+Jq(pr) cos(qθ)(− sinθ
r ))

+C15e−p2t(
p
2 (Yq−1(pr) −Yq+1(pr)) cos(qθ) cos(θ)

+Yq(pr)(− sin(qθ)(− sinθ
r ))

+C16e−p2t(
p
2 (Yq−1(pr) −Yq+1(pr)) sin(qθ) cos(θ)

+e−p2tYq(pr) cos(qθ)(− sinθ
r ))

+C17e−p2t J1(pr)cos(θ)

−C18e−αp2tY1(pr)cos(θ)



nx, (A20)
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∂h
∂y

=
υ∑

p=1

υ∑
q=1



C1(qrq−1 cos(qθ) sin(θ) + rq(− sin(qθ))( cosθ
r ))

+C2qrq−1sin(qθ) sin(θ) + rq cos(qθ)( cosθ
r ))

−C3qr−q−1 cos(qθ)sin(θ) + r−q(− sin(qθ))( cosθ
r ))

−C4qr−q−1 sin(qθ)sin(θ) + r−q cos(qθ)( cosθ
r ))

+C5
1
r sin(θ) + C7eαp2t(

p
2 (Iq+1(pr) − Iq−1(pr)) cos(qθ) sin(θ)

+Iq(pr)(− sin(qθ))( cosθ
r ))

+C8eαp2t(
p
2 (Iq+1(pr) − Iq−1(pr)) sin(qθ) sin(θ)

+Iq(pr) cos(qθ)( cosθ
r ))

+C9eαp2t(
p
2 (Kq+1(pr) −Kq−1(pr)) cos(qθ) sin(θ)

+Kq(pr)(− sin(qθ))( cosθ
r ))

+C10eαp2t(
p
2 (Kq+1(pr) −Kq−1(pr)) sin(qθ) sin(θ)

+Kq(pr) cos(qθ)( cosθ
r ))

+C11eαp2t(I1(pr)sin(θ))

+C12eαp2t(K1(pr)sin(θ))

+C13e−αp2t(
p
2 (Jq−1(pr) − Jq+1(pr)) cos(qθ) sin(θ)

+Jq(pr)(− sin(qθ))( cosθ
r ))

+C14e−αp2t(
p
2 (Jq−1(pr) − Jq+1(pr)) sin(qθ) sin(θ)

+Jq(pr) cos(qθ)( cosθ
r ))

+C15e−αp2t(
p
2 (Yq−1(pr) −Yq+1(pr)) cos(qθ) sin(θ)

+Yq(pr)(− sin(qθ))( cosθ
r ))

+C16e−αp2t(
p
2 (Yq−1(pr) −Yq+1(pr)) sin(qθ) sin(θ)

+Yq(pr) sin(qθ)( cosθ
r ))

+C17e−αp2t J1(pr)sin(θ)

−C18e−αp2tY1(pr)cos(θ)



ny. (A21)
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