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Abstract: The goal of this research is identifying major sources of uncertainty of an
environmentally-sustainable urban drainage infrastructure design, based on hydrologic analysis
and life cycle assessment (LCA). The uncertainty analysis intends to characterize and compare
relative roles of unreliability, incompleteness, technological difference, and spatial and temporal
variation in life cycle impact assessment (LCIA) data, as well as natural variability in hydrologic data.
Uncertainties are analyzed using a robust Monte Carlo simulation approach, performed by High
Throughput Computing (HTC) and interpreted by Morse-Scale regression models. The uncertainty
analysis platform is applied to a watershed-scale LCA of rainwater harvesting systems (RWH) to
control combined sewer overflows (CSOs). To consider the watershed-scale implications, RWH is
simulated to serve for both the water supply and CSO control in an urban watershed in Toledo,
Ohio, USA. Results suggest that, among the studied parameters, rainfall depth (as a hydrologic
parameter) caused more than 86% of the uncertainty, while only 7% of the uncertainty was caused
by LCIA parameters. Such an emphasis on the necessity of robust hydrologic data and associated
analyses increase the reliability of LCA-based urban water infrastructure design. In addition, results
suggest that such a topology-inspired model is capable of rendering an optimal RWH system capacity
as a function of annual rainfall depth. Specifically, if the system could capture 1/40th of annual
rainfall depth in each event from rooftops, the RWH system would be optimal and, thus, lead to
minimized life cycle impacts in terms of global warming potential (GWP) and aquatic eco-toxicity
(ETW). This capture depth would be around 2.1 cm for Toledo (given an 85 cm/year rainfall and
200 m2 typical roof area), which could be achieved through an RWH system with 4.25 m3 capacity
per household, assuming a uniform plan for the entire studied watershed. Capacities smaller than
this suggested optimal value would likely result in loss of RWH potable water treatment savings
and CSO control benefits, while capacities larger than the optimal would likely incur an excessive
wastewater treatment burden and construction phase impacts of RWH systems.

Keywords: combined sewer overflow; high throughput computing; life cycle assessment; rainwater
harvesting; topology-inspired regression; uncertainty analysis
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1. Introduction

Designing and retrofitting urban drainage infrastructure to meet water quality standards is a
challenge for more than 700 combined sewer communities in the U.S. [1]. These communities discharge
diluted sewage directly into adjacent water bodies when the drainage system is overwhelmed [1].
These point sources of discharge are referred to as combined sewer overflows (CSOs). There are
two types of urban drainage infrastructures that are centralized and distributed. The centralized
system collects sewage from all households of an area, and transport them at long distances to one
or several central treatment plants. In this system, stormwater can be collected in either combined
sewers or in a separate stormwater drain. While, in distributed systems, the treatment and disposal
or reuse of the effluent are close to the source of generation. Traditional drainage infrastructure
design relies on hydrologic considerations [2–4], which typically lead to centralized, energy-intensive
infrastructure solutions. Recently, however, the application of life cycle assessments that contributes to
environmentally-sensitive designs is gaining popularity [5–9]. The life cycle assessment determines the
cradle-to-grave environmental impacts of products, processes or services, through production, usage,
and disposal associated with the life cycle of a product or infrastructure [10]. Hence, incorporating
the Life Cycle Assessment (LCA) into the design, analysis, and planning helps identify and quantify
the relative environmental benefits of distributed infrastructure compared to centralized solutions for
urban drainage [11], including CSO control [12–14].

Hydrologic analysis in traditional urban drainage design focuses on the operation phase. Therefore,
it may represent watershed-scale outcomes of different climatic, anthropogenic, and other scenario
conditions [15–17] LCA can provide a complement to hydrologic analysis to enable more holistic
decision-making by modeling all life cycle phases of the infrastructure (e.g., manufacturing of the
materials and operation of the infrastructure) and by considering a broader set of sustainability criteria.
However, most studies are limited to building-scale infrastructure without including hydrologic
assessment at the watershed scale [6,8,18–22]. Given the recent movement toward the watershed-scale
LCA of urban drainage practices [12,23], making a transition to a more cohesive hydrologic-LCA
analysis is appropriate. Improving the comprehension of uncertainty and how it may influence system
specifications and design can guide this transition.

Life cycle impact assessment (LCIA) data are subject to uncertainties from several sources,
depending on the quality of the data [24]. These sources of uncertainty are highlighted by
Weidema et al. [25]: unreliability, incompleteness, technological difference, spatial variation, and
temporal variation. Unreliability refers to data that are partly or completely estimated rather than
measured. Incompleteness is the condition that representative data are not obtained from all relevant
sites. Technological, spatial, and temporal variations exist in datasets obtained from different
technologies, locations, and time periods. Use of hydrologic data amplifies these uncertainties because
these data introduce natural variability and, thus, additional uncertainty that cannot be reduced by
more measurements. Apart from uncertainties caused by data, an incomplete or biased model structure
also propagates uncertainties into outputs [26]. Reported LCA results may be misleading if potential
sources of uncertainty are not addressed, especially in the case of comparing design alternatives for
decision-making [27,28]. Identifying major sources of uncertainties with relative impacts on the final
LCA results is indispensable [26,29–31] for effective application of hydrologic analysis and LCA for a
sustainable, watershed-scale design of urban drainage systems.

Uncertainty quantification aims find ways to increase the reliability of LCA-based
conclusions [32], and it helps support interpretation of LCA results, according to the ISO 14040 [10].
Such statistically-based analysis determines the density of plausible outputs around an expected value
based on uncertainty propagated from different sources, instead of inflexible outputs of deterministic
(non-statistical) methods. Despite numerous uncertainty studies of LCA applications in different
fields, including energy systems [33–35], electronic devices [36], farming [37,38], transportation
systems [39], and building materials [40]. The uncertainty analysis of LCA in the water infrastructure
evaluation has been studied by only a few researchers recently [24,41,42]. While not suited to all
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studies, Monte Carlo simulation is most commonly recommended for assessment of the parameter
uncertainty in LCA [24,25,27,39,41–45]. However, two recently published LCA studies on CSO control
infrastructure [12,13] only investigated the possible range of LCA results using sensitivity analysis,
without identifying the sources and relative effects of the different specific uncertainty components.

Therefore, the present research intends to identify and quantify the sources and effects of
uncertainties in a sustainability-based urban drainage infrastructure design. This research augments
the body of urban drainage sustainability literature, considering the explained gap in the literature
regarding the uncertainty characterization of the urban drainage infrastructure design. Decentralized
(or distributed) water infrastructure, specifically rainwater harvesting (RWH), is a primary focus of this
paper because of widespread interest of RWH for both drainage and water supply purposes. Given
the recent need to consider environmental sustainability in addition to cost and traditional stormwater
control criteria, RWH may be found an attractive solution if robust analyses support this [46–52].
The primary objective of this paper is to develop a framework for such analyses.

An integrated hydrologic and LCA modeling framework is presented. Then, using Monte Carlo
simulation, a comprehensive uncertainty analysis is conducted to investigate and quantify the major
sources of uncertainties and their relative impacts. To perform the uncertainty analysis and interpret
the results, two computational techniques are employed: high throughput computing (HTC) and
partition-based, topology-inspired maps based on Morse-Smale regression [53,54]. The former provides
the computational resource for iterative time-consuming simulations and the latter assists in detecting
the main drivers within local regions of the results to identify different system responses.

2. Methodology

This section presents (1) the goal and scope of the uncertainty analysis, (2) an integrated hydrologic
analysis and LCA framework for the application of the uncertainty analysis, (3) uncertainty analysis
procedure to quantify the relative impacts of uncertainty components, and (4) details of the case
study application.

2.1. The Goal and Scope of Uncertainty Analysis

This sub-section describes the sources of uncertainties in an integrated hydrologic-LCA design,
and then delineates the specific sources studied in this research. Both in LCA and in hydrologic
literature, the sources of uncertainty can be categorized as data uncertainty, model structural uncertainty,
and decision uncertainty [25,27,30,55–58]. Of these three sources, data uncertainty often receives
higher priority and is the most commonly analyzed one. We focused on data uncertainty since it is
the first step toward understanding integrated frameworks similar to one developed in this study.
Specifically, we compared the effects of uncertainty associated with hydrologic data versus the effects
of uncertainty in LCIA data in an LCA-based urban water infrastructure design. The hydrologic data
uncertainty arises from inaccurate measurements and natural variability related to the operation of the
water infrastructure. The uncertainty in LCIA arises from unreliability, incompleteness, technological
difference, spatial variability, and temporal variability of data, per Weidema et al. [25]. It is worth
noting that assessing the LCIA characterization factor uncertainty as discussed by Rosenbaum et al. [59]
and Wender et al. [60] is beyond the scope of this study.

2.2. Integrated Hydrologic Analysis and LCA Framework

We selected the uWISE (urban Water Infrastructure Sustainability Evaluation) approach of
Tavakol-Davani et al. [61], an integrated hydrologic analysis, and LCA framework, for the uncertainty
analysis application. The uWISE framework uses a dynamic urban hydrologic model to simulate
the effects of the water infrastructure on the hydrology of the watershed in terms of supplied water
and stormwater (Figure 1). The model inputs include the characteristics of the water infrastructure
components as well as hydrologic inputs, e.g., rainfall and dry weather flow. The hydrologic module
computes the hydrologic response of sub watersheds and the hydraulic response of conveyance
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networks, explained in Section 2.2.1. Then, uWISE takes the outputs of the hydrologic model to a
process-based LCA model (Section 2.2.2). This LCA model translates the energy consumption and
pollution caused by the water supply and treatment processes (water and wastewater) into life cycle
environmental impacts. To perform the LCA model calculations, uWISE combines hydrologic model
outputs from the operation phase with the materials and energy from the construction and maintenance
phases. In sum, uWISE forecasts the life cycle impacts for selected impact categories.

Figure 1. The uWISE framework. The upper row shows the Hydrologic and Hydraulic (H&H) model
components and the lower row shows the LCA model components. The LCA model inputs consist
of materials and energy requirement of the water infrastructure as well as outputs of the hydrologic
model. The LCA system boundary indicates that the operation phases of both the Water Treatment
Plant (WTP) and the Wastewater Treatment Plant (WWTP) would be affected by a watershed-scale
RWH implementation that is included. Construction and maintenance phases of all RWH components
are considered. For pumps, the operation phase impacts in terms of electricity consumption are
also considered. The system boundary also includes environmental impacts of CSO pollutants to
freshwater bodies.
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2.2.1. Hydrologic Model

Hydrologic and Hydraulic (H&H) model simulate rainfall-runoff flow to predict the extent of
creek and river water levels as well as flooding and to test ways to reduce the flooding without
actually constructing the project. These models inform decisions about selecting and implementing
flood reduction and restoration projects. In this study, the U.S. EPA Storm Water Management Model
version 5 (SWMM) [62] was employed as the H&H model for continuous hourly simulation of the
representative year. The SWMM simulates the land surface as delineated sub watersheds, governed by
the nonlinear reservoir equation as well as Manning’s equation for overland flow. Water transport in
conduits is addressed with the Dynamic Wave method, and SWMM solves the one-dimensional Saint
Venant flow equation at each time step. The capture of rainfall from rooftops by RWH is simulated
using the Rain Barrel Low Impact Development module in SWMM [51,61]. To mimic the release from
RWH units, underdrain flows from rain barrels (governed by the orifice equation) are matched to
supply indoor demands. Among the numerous hydrologic model outputs, the following were selected
for the uWISE framework: CSO volume, CSD (combined sewage delivered to treatment plant) volume,
and rainfall use (volume of supplied demand by RWH) volume.

2.2.2. LCA Model

Life Cycle Assessment is a standard approach to estimate the consumption of resources and
emissions associated with the life cycle of a product, process, or infrastructure [10]. The LCA has four
steps: outlining the goal and scope of the analysis (described in Section 2.1), gathering the data needed
for all life cycle stages to create a life cycle inventory (LCI), quantifying the impacts via life cycle impact
assessment (LCIA) methods, and interpreting the results. In LCA studies of water and wastewater
treatment plants, 1 m3 of treated water [63–66] or wastewater [28,67] is often used as the Functional
Unit (FU). The drainage area has been used as the functional unit in prior watershed scale LCAs [12,13].
In this study, since the goal of the analyzed infrastructure is to reduce CSOs, the functional unit was
defined as 1 m3 reduction of CSO volume over the life cycle of facilities. The selected functional unit
sets the system boundaries of the LCA as depicted in a conceptual schematic (Figure 1). This boundary
includes the operational phases of the WTP and WWTP because both would be affected by RWH.
The SWMM does not include a water distribution module. Therefore, to capture the effects on WTP,
supplied demand by RWH was considered as an avoided burden from the WTP. Assuming when
the harvested rainfall from RWH systems is used to meet indoor demands, there will be a direct
reduction on the target supply volume for WTP. A 75-year analysis period was considered since it is
recommended as the average building life cycle and is used in other RWH studies [18]. Replacement of
RWH components during this analysis period was considered as listed in Table 1. The LCI and LCIA
methods were considered as follows.

Life Cycle Inventory. The data for the environmental impacts of processes in this study
were adapted from the Ecoinvent database (Ecoinvent, 2.2) using GaBi 6 [68]. The components
of construction and maintenance phases are summarized in Table 1 (additional data are provided in the
Supplementary Materials). The operation phase components varied through the uncertainty analysis
process. To determine the role of CSOs in degrading the water quality, we utilized the historical
concentration records of the following pollutants for LCA modeling: cadmium, chromium, copper,
lead, nickel, zinc, mercury, arsenic, manganese, selenium, cyanide, phenols, ammonia, organic nitrogen,
nitrate, nitrite, and total phosphorus. These pollutants impact the environment once released to surface
water bodies. To inventory these flows, the concentrations of pollutants in CSOs were obtained from
the City of Toledo engineering personnel. The available data came from different discharge points
along the study area. Therefore, an average value was used for this study.

Life Cycle Impact Assessment. The TRACI (Tool for the Reduction and Assessment of Chemical
and other environmental Impact) method was used in this study since it is based on U.S. impact
data [69]. Among the TRACI impact categories, we selected the Global Warming Potential (GWP) and
aquatic Eco-toxicity (ETW) for this study to focus on the environmental and water quality effects of the
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studied urban water infrastructure. These two impact categories were reported as the ones that would
be highly affected by RWH implementation in a combined sewer network, compared to Eutrophication
Potential and Ozone Depletion Potential [61].

Table 1. Components and impacts of the RWH system for one building using the TRACI method.
Impacts of construction and maintenance phases are provided in this table, and the values of operation
phase components are provided by the hydrologic model varying in each Mont Carlo run. A sample
value for impact in the operation phase for implementing RWH have a 2.65 m3 cistern to supply toilet
flushing demand.

Phase Component Input
Quantity

Input Energy GWP ETW
Unit (kwh) (k CO2 e) (CTU eco) (5)

Construction

Concrete (pad) 0.23 m3 190.6 60.3 64.6
Cistern (galvanized steel) 100.5 kg 799.5 272.5 −243.4 (2)

Pump 13.9 kg 39.9 12.5 −14.8 (2)

PVC pipes 14.8 kg 304.1 42.0 3.0
Materials transportation (1) 66,926.1 kg-km 19.7 4.9 2.9

Operation (3)

Pump energy 864 MJ 864 599.6 22.4
Potable water treatment (4) −3799.21 m3 −13,221.3 −1534.9 −11,017.7

CSOs (4) −2840.18 m3 - - −73,560.8
Combined sewage treatment (4) 3284.22 m3 10,443.8 1913.9 20,567.4

Maintenance Cistern and pump replacement
‡ Mixed - 1887.2 634.5 −589.2 (2)

‡ Cistern replacement in 30 years and pump replacement in 10 years were assumed [70]. (1) Estimated based on the
weight of materials and an assumed 100 km average distance from the plant to the installation point [71]. (2) ETW is
negative for cisterns and pumps based on a GaBi database due to considering the effects of landfilling at the end of
their life cycle. (3) The values for the operation phase are the sampled calculation for the RWH with a 2.65 m3 cistern
to supply toilet flushing demand. These values differ in each MC run. (4) Values are differences from the existing
condition. (5) Aquatic eco-toxicity is expressed in terms of Comparative Toxic Units (CTU eco)

2.3. Uncertainty Analysis Procedure

In this section, a comprehensive uncertainty analysis using Monte Carlo simulation is conducted
to investigate and quantify the major sources of uncertainties and their relative impacts. To perform
the uncertainty analysis and interpret the results, the parameters of interest are selected according
to Section 2.3.1 in the first step. Then, two computational techniques are employed including high
throughput computing (HTC) (Section 2.3.2) and partition-based, topology-inspired maps based on a
Morse-Small regression [53,54] (Section 2.3.3). The former provides the computational resource for
iterative time-consuming simulations and the latter assists in detecting the main drivers within local
regions of the results to identify different system responses.

2.3.1. Selected Parameters

Major sources of uncertainty in the parameters of uWISE are detailed in Table 2. Selected
parameters for uncertainty analysis are highlighted in gray (Table 2). Two hydrologic input parameters
and two LCIA parameters were selected based on pre-analysis tests, as discussed below. Hydrologic
input parameters were selected based on a local sensitivity analysis, i.e., identify the model response
to one parameter variation while other parameters are held constant [72]. Parameters whose
variation (over the respective possible range) resulted in more than a 30% change in the annual
CSO volume were picked for the uncertainty analysis, which leads to the selection of rainfall (R)
and RWH capacity (C). The importance of R and C as significant sources of uncertainty was also
confirmed in previous hydrologic studies that focused on rainfall-runoff modeling [57,73] and RWH
design [74–78], respectively.
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Table 2. Major uncertainty sources of the uWISE. Selected components for uncertainty analysis in this
paper are marked with a gray background.

Sub-Model Component Uncertainty Type Data Source

Hydrologic

Rainfall (R). Illustrated as a part of
water fluxes in Figure 1 Input parameter

Sampled from a normal
distribution for annual rainfall

depth (Figure S1)
Combined network water fluxes

(e.g., Dry Weather Flow,
groundwater flow)

Input parameter Measured data

Capacity (C) of RWH (referred to as
water infrastructure in Figure 1) Input parameter Sampled from a gamma

distribution (Figure S1).

RWH release rate Model parameter
Toilet flushing demand data

for a typical residential
building [51]

Sub watershed characteristics (e.g.,
slope, imperviousness, roughness,

infiltration capacity)
Model parameters Measured data

Conveyance network characteristics
(e.g., details of pipes, regulators,

pumps, outfalls)
Model parameters Measured data

LCA

Materials and energy requirement
for construction and maintenance

phase of RWH
Input parameter Table 1

Materials and energy requirements
for performance phase of RWH Input parameter Hydrologic model output

GWP impacts for per unit of CSD
(GWPCSD)—referred to LCA output

in Figure 1
Model parameter Sampled from a lognormal

distribution (Figure S1)

ETW impacts for per unit CSO
(ETWCSO)—referred to LCA output

in Figure 1
Model parameter Sampled from a lognormal

distribution (Figure S1)

LCIA parameters were selected based on an LCA study of RWH scenarios at a watershed scale by
Tavakol-Davani et al. [61]. In that study, global warming potential (GWP) and eco-toxicity water (ETW)
were reported as the impact categories that would be highly affected by RWH implementation in a
combined sewer network when compared to Eutrophication Potential and Ozone Depletion Potential.
Furthermore, the main drivers for increasing GWP and decreasing ETW were, respectively, found to be
CSD and CSO in which each were responsible for more than 40% of added/avoided impacts [61]. Thus,
in this study, GWP per unit of CSD was selected as one of the LCIA model parameters for uncertainty
analysis (denoted by GWPCSD for simplicity). The second parameter selected was the ETW per unit of
CSOs (ETWCSO). Information on probability distribution for the four selected parameters is presented
in Supplementary Materials (Figure S1).

2.3.2. Uncertainty Analysis Technique

Following recommendations in the literature [24,27,39,41–45,79], a Monte Carlo method (MC)
was employed in this study for comparing the effects of input parameter uncertainty (hydrologic data)
versus model parameter uncertainty (LCIA data). Since the initiation of MC (e.g., Metropolis and
Ulam [80]), it has been globally utilized to obtain a statistical description of the system performance
uncertainty [58]. An interesting aspect of the MC application for this study is its non-dependency on
calculus-based characteristics in contrast to analytical methods, such as the first-order second-moment
(FOSM) method (e.g., Elishakoff et al. [81]). The MC simply evaluates the uWISE function with different
sets of parameters in an iterative manner. This is of importance for the present study due to the
mathematical complexities of the uWISE, specifically in the hydrologic module. This module consists
of several implicit, non-linear functions (e.g., the Saint Venant flow equation) for transporting rainfall
through conveyance network elements.
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Some extensions to the MC have been proposed specifically to enhance its mathematical efficiency,
such as Markov Chain Monte Carlo (MCMC) with the Metropolis-Hastings algorithm [82,83]. Although
these algorithms are widely used in hydrologic modeling to facilitate the analysis of complex spaces
(e.g., Vrugt et al. [84], and Zahmatkesh et al. [71]), some researchers disagree about convergence
requirements [85,86]. The present study followed a fundamental MC instead for simplicity and to
avoid these requirements because a High Throughput Computing (HTC) resource was able to provide
the sufficient iterations for simulations. A freely-available HTC resource, namely HTCondor [87],
was chosen in lieu of other available distributed computing resources, such as High-Performance
Computing (HPC) and Graphics Processing Unit (GPU). Similar to Tavakol-Davani et al. [88,89],
our selection was due to significantly lower setup costs, a platform-independent structure (cloud-based
computing), and the high unit processing speed of HTCondor.

The steps of the MC simulation for this study are diagrammed in Figure 2. Specifically, random
sampling of individual parameter space from prior probability distributions is employed to extract
a set of parameter values. Then, the parameters are utilized to run the uWISE framework on an
HTCondor v.7.8.8 cluster. Next, the changes in outputs are tracked and compared with a convergence
threshold, which is explained in the Supplementary Materials. When the convergence criterion is
satisfied, probability density of outputs is presented.

Figure 2. The steps of Monte Carlo simulation to analyze the uncertainties in the results of the uWISE
framework using HTCondor.

2.3.3. Interpreting the Results

After performing the MC simulation, the portion of uncertainty propagated by each parameter
was calculated using the First-Order Sensitivity Analysis method for the MC results [58].

Var(O) =
n∑

i=1

(
δF
δXi

)2

×Var(Xi) (1)

where F is the uWISE model, X denotes the parameters, O represents the model output, and n is the
number of considered parameters (4 in this study). This equation is applicable only when all the

parameters are independent of each other. In such a case, the term
(
δF
δXi

)2
×Var(Xi) presents the portion

of uncertainty propagated by variable X. The method to verify the independency of parameters with
details on calculating the components of Equation (1) are explained in the Supplementary Materials
(Figure S1).

Furthermore, a partition-based, topology-inspired model based on the Morse-Smale regression
(MSR) technique [53] was adopted to assist in visual interpretation of the MC results. The MSR
performs a domain partitioning induced by an approximated version of the topological structure
known as the Morse-Smale complex (MSC). The MSC decomposes a space based on gradient flow.
Each partition in the MSC represents data whose integral line begins at a specific local minimum
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and terminates at a specific local maximum. This minimum-maximum pair uniquely identifies the
partitions of the MSC. Thus, the MSC can be approximated on the MC results by imposing a graph
structure and approximating gradient flow as occurring on the edges of the graph. An important
property of the decomposed results is that, within each partition, the data is assumed to be monotonic.
As such, a linear model can be satisfactorily fitted within each partition. Additional information about
this method and its application for the present research are presented in Supplementary Materials
(Figure S2).

2.4. Details of the Case Study Application

A combined sewer watershed in the City of Toledo, Ohio was used to conduct the uncertainty
analysis. The annual average precipitation in Toledo is 85 cm [90]. The year 1998 is identified as the
representative year for Toledo’s rainfall. This identification is based on the analysis of rainfall depth
and intensity for 1972 to 2001 records by the City of Toledo [91]. The studied watershed known as
Eastside consists of 41 sub watersheds with a total area of 9.54 km2. A location map of the tributary sub
watersheds, major pipes, and the interceptor of the study area is provided in Supplementary Materials
(Figure S3). Tavakol-Davani [92] explained comprehensive details of the watershed. There are 9892
buildings, predominantly residential, in this watershed [93]. Financial and engineering aspects of
RWH plans in this watershed are summarized by Tavakol-Davani et al. [51]. In that study, RWH was
reported as a cost-effective solution to supply toilet flushing demand and control CSOs (48% cheaper
than centralized solutions). Therefore, the present study considered toilet flushing as the end use of
interest (Table 2).

The Eastside generates, on average, 1.3 MCM of CSOs annually, which is approximately 60% of
the total annual CSO volume in Toledo. An interceptor in the Eastside watershed with the capacity of
0.25 MCM/day collects combined sewage and delivers it to the Bay View wastewater treatment plant
(WWTP). On average, the interceptor conveys 0.16 MCM/day of combined sewage [94].

3. Results

3.1. Hydrologic Analysis Results

Figure 3 presents the scatter plots of MC simulation for the hydrologic outputs based on
10,000 iterations, which was sufficient to satisfy the convergence criteria. Figure 3a reveals the nonlinear
response of rainfall use to a change in RWH system capacity (C). This finding challenges the efficacy of
linear approximation of decentralized infrastructure performance for different capacities, e.g., methods
that are based on the linear summation of capture depth. In fact, an increase in C will not cause
a proportional increase in rainfall use because, as C increases, the chance of a system becoming
partially filled (by non-extreme rainfall events) also increases. Eventually, rainfall use will converge to
a horizontal asymptote when C reaches the maximum possible capture of rooftop rainwater for each
value of annual rainfall (R).

Figure 3a also illustrates that increasing values of C increase the range of possible rainfall use
values. Therefore, for larger systems, variability in R brings a higher uncertainty for rainfall use. This is
because small systems would likely react similarly with various rainfall events (become completely
full regardless of the rainwater level), while large systems would be filled to different levels in various
rainfall events.

Figure 3b shows that C has a comparatively small effect on CSO, despite a slight nonlinear
response of CSO to a change in C is observed (specifically for high values of R, illustrated with light
green to red). This result is attributed to the limited capability of RWH to control CSOs given the
existence of other CSO-causing components, e.g., dry weather flow, groundwater flow, rainfall derived
infiltration inflows, and the runoff from other impervious areas in sub watersheds. For low values of R,
relative contribution of rainfall in generating CSOs is low. Therefore, RWH is ineffective at controlling
CSOs (although it may be useful for reducing stormwater pollution loading to waterways caused by
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frequent rainfall events). This finding also provides insight regarding higher efficiency of decentralized
drainage facilities when implemented as hybrid systems based on a combination of different types.
The horizontal asymptotes represent the maximum capability of RWH to control CSOs for a specific R.

Figure 3. Scatter plots of the MC simulation results for (a) rainfall use; and (b) CSO. Different values
for annual rainfall depth are depicted with a blue to red color range. Since CSD has a similar behavior
to CSO (but just with an inverse trend), it is not shown as a separate subfigure.

Figure 4 exhibits the probability density of the MC simulation for the hydrologic outputs.
According to this figure, the highest probability (mode) of rainfall use and CSO are associated with
0.7–0.8 and 1.1–1.2 MCM/year, respectively. According to Figure 4 and the CSO volume of 1.3 MCM/year
without RWH implementation (as presented in Methodology section), a low CSO reduction from the
RWH system is expected. On the other hand, noticeable rainfall use is expected for supplying indoor
demands (compared to a null rainfall use without RWH implementation). Figure 4 also indicates a
higher variance (as a measure for uncertainty) in rainfall use than CSO (variance is 0.16 MCM/year
for rainfall use and 0.12 MCM/year for CSO). This higher variance in rainfall use reflects the entire
variance in R and C, while these two parameters have limited effects on CSO due to the existence of
other factors, such as dry weather flow, groundwater flow, and rainfall derived infiltration inflows.

Figure 4. Probability density of the 10,000 MC simulation results for rainfall use and CSO.
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3.2. uWISE Analysis Results

The topology-inspired model detected two partitions for the GWP response based on 10,000 outputs,
which was sufficient to satisfy the convergence criteria. Figure 5 was assembled to explore the
implication of GWP results concerning the two partitions. Analysis of these results suggested that
the left partition in Figure 5a is driven by the water supply benefits of RWH, which contributes to the
avoidance (reduction) of the potable water treatment burden in WTP, and, thus, has a descending
trend. The right partition in Figure 5a is driven by increased wastewater treatment burden in WWTP
as a result of detention effects of RWH, which exhibits an ascending trend. The detention effect of
RWH leads to collecting stormwater and transmitting it to WWTP (instead of discharging it as a CSO
to water bodies). Therefore, it increases the wastewater treatment burden.

Figure 5. Scatter plots of the MC simulation results for GWP impact corresponding to (a) RWH capacity;
and (b) GWPCSD. The dash-dot line shows a linear line fitted to the partitions boundary.

A linear line was fitted to the points located at the boundary of partitions (shown by a dash-dot
line in Figure 5a). This line represents an equilibrium between the added and avoided GWP impacts by
RWH. This line connects the local minima for different rainfall depths, and, thus, may be interpreted as
the optimal system design as a function of R. An interesting point about this line concerns its suggested
linear relationship between C and R. The optimal system capacity proportionally increases with the
increase in annual rainfall depth. When the dash-dot line was analyzed in a two-dimensional space
made by C and R, it was found that C (in m3) approximately equals five times R (in meters). In other
words, the optimal RWH system capacity (in m3) for each rainfall annual depth could be calculated
by multiplying the annual rainfall depth (in m) by 5 (according to the dash-dot line in Figure 5a) per
household. This capacity is sufficient to capture 1/40th of annual depth in each rainfall event assuming
a typical rooftop of 200 m2 area (e.g., 2 cm capture in each rainfall event for a year with 80 cm total
depth). Figure 5b suggests that high impacts per volume of CSD amplifies the final LCA outputs.
However, this effect appears to be trivial when compared to the observed correlation between GWP
and R.

Performance of ETW is presented in Figure 6. Figure 6a indicates a slight nonlinear response of
ETW to changes in C for high values of R (illustrated in light green to red) based on 10,000 iterations,
which was sufficient to satisfy the convergence criteria. For other values of R, no significant response
was observed. These correspond to the observations plotted in Figure 3b, which suggests that ETW
is primarily driven by CSO. The minimal GWP line is also demonstrated in Figure 6a. This line
presents no noticeable reduction in ETW for capacities larger than the dash-dot line plotted (Figure 6a).
This observation affirms the optimal behavior of the dash-dot line in terms of ETW in addition to
GWP. Figure 6b shows the amplifying effect of high ETWCSO values in providing high ETW outputs.
However, this effect was insignificant compared to the observed correlation between ETW and R.
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Figure 6. Scatter plots of the MC simulation results for ETW impact corresponding to (a) RWH capacity;
and (b) ETWCSD. The dash-dot line shows the partitions boundary obtained from analysis of GWP in
Figure 5.

Figure 7 is presented to illustrate the value of components and impacts in two hypothetical
scenarios with different RWH capacities and functionalities to provide a clear insight on RWH impacts
in the watershed. Values in this figure are differences in the existing condition. Hence, as represented,
the volume of CSO is reduced by implementing the RWH system since RWH helps the system to
capture CSO in the peak of extreme events. As a result of capturing CSO, the value of ETW is reduced
significantly. The avoided CSOs would convey to the WWTP instead of discharging to water bodies.
Therefore, it increases ETW and GWP impact. However, for ETW, this increase is much lower than the
reduction that caused benefits by avoiding CSOs discharges to water bodies. Thus, the ETW net value
stays negative (meaning reducing overall impacts).

Figure 7. Impact of two RWH scenarios with different capacities (presented values are differences to
the existing conditions. i.e., no RWH). Results are for one RWH unit (to achieve this, the first results
for having RWH systems on entire building units were obtained. Then, we divided the results by the
number of buildings). As presented in this figure, RWH units could avoid CSOs by adding to the
drainage system capacity. However, this avoided volume would need to be treated in the treatment
facility, which could contribute to the GWP and ETW impacts.

Figure 8 shows the probability density of the MC simulation for the final uWISE outputs.
According to this figure, the highest probability of GWP and ETW is approximately associated with
0–5 million kg CO2e and −500–0 million CTU eco, respectively. Since these results are based on a
change from existing conditions, they indicate that RWH implementation is likely to lead to an increase
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in GWP and a decrease in ETW. In addition, a higher variance was observed in GWP than ETW, which
can be explained through the dependency of GWP to rainfall use and dependency of ETW to CSO.
The difference in variance of rainfall use and CSO were discussed in Section 3.1.

Figure 8. Probability density of the 10,000 MC simulation results for GWP and ETW.

Lastly, the First Order Sensitivity Analysis method identified the relative roles of uncertainty
sources to fulfill the goal of uncertainty analysis for the present study. Table 3 summarizes estimates
of the portion of uncertainty brought by each parameter, which specifically results in estimating
the sensitivity coefficient of each variable using this method. This table indicates that R is the most
significant source of uncertainty with more than 86% of contribution in propagating the uncertainty.
C was ranked second in this table with around an order of magnitude lower effect. The effects of
uncertainties in GWPCSD and ETWCSO were the lowest. Furthermore, these results (Table 3) indicate
that uncertainty in R provides a higher contribution in uncertainty in ETW (94.4%) than GWP (86.1%),
which stems from the great dependency of ETW to CSO and CSO to rainfall (Figure 3b). These led to a
higher effect of C and the LCIA model parameter on GWP compared to ETW.

Table 3. Estimating the sensitivity coefficient of variables using the First Order Sensitivity
Analysis method.

Function (F) Variable (X) Unit ∂F
∂X Var(X)

(
∂F
∂X

)2
×Var(X)

Portion of
Uncertainty

Propagated by X (%)

GWP
R cm 0.9 165.9 152.0 86.1%
C m3 0.7 24.3 12.5 7.1%

GWPCSD k CO2 e/m3 8.5 0.2 12.1 6.8%

ETW
R cm 66.6 165.9 736,617.1 94.4%
C m3 −38.7 24.3 36,366.4 4.7%

ETWCSO CTU eco/m3 −5.6 242.8 7524.3 0.9%

3.3. Model Validation and Discussion

The present research used average values for water quality of combined sewage, CSOs,
and stormwater per their volume. For a higher accuracy, the hydrologic model could be extended to
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include a water quality module in order to directly simulate the pollutant concentration for combined
sewage, CSOs, and stormwater over the time. In addition, Toledo’s combined sewer network was
selected for implantation of this research due to the fact that this city has the lowest level of low impact
development plant implementation in its long-term control plan among all the US cities surrounding
the Great Lakes [51], while this network may not be a representative site necessarily. Although
rainfall varied to account for different climatic conditions, findings of this research still need further
corroboration with additional studies on different urban water infrastructure.

To overcome the above deficiencies, the present study considered the highest recommended
uncertainty in the LCIA parameters and still found the effect of this uncertainty insignificant when
compared to the hydrologic components. This finding emphasizes that, in order to advance the
LCA-based design of the urban water infrastructure, increasing the accuracy of long-term performance
simulations may be of high importance. This is the key area that we consider our conclusions have
impacts on future research and publications.

The case study application suggested that the optimal RWH system capacity could be defined
as a linear function of annual rainfall depth. This optimal design would lead to minimized life cycle
impacts in terms of global warming potential (GWP) and aquatic Eco-Toxicity (ETW). Capacities
smaller than the optimal would make the RWH system lose potable water treatment savings and
CSO control benefits, while capacitates larger than the optimal would cause an additional wastewater
treatment burden and construction phase impacts. Since the future annual rainfall depth is unknown,
for a robust life cycle assessment of water infrastructure plans, robust analysis of the future rainfall
considering possible changes and anomalies is needed (e.g., Nasseri et al. [95], Tavakol-Davani et al. [96],
Tavakol-Davani et al. [97], and Sinha et al. [98]). The analysis horizon should be consistent with the
considered life cycle of the infrastructure (i.e., 75 years for the present study). This is another area that
we consider our conclusions may have an impact especially in future studies.

4. Conclusions

This study identified the major sources of uncertainty in an integrated framework for an
environmentally-sustainable design of urban drainage infrastructure based on hydrologic analysis and
the life cycle assessment (LCA). The study compared the uncertainty effects of inaccuracy in LCIA
parameters with variability in hydrologic data as input parameters. The uncertainty analysis platform
was applied to a watershed-scale LCA of RWH to supply indoor demands and control CSOs. Rainfall,
as a hydrologic input parameter, appeared to be the most significant source of uncertainty. Therefore,
for a reliable LCA-based urban water infrastructure design, it is necessary to adopt robust hydrologic
analysis to inform the operation phase of the LCA. This analysis allows understanding the possible
responses of watersheds to variability in rainfall during the life cycle of a water infrastructure. Without
hydrologic analysis, the LCA results may not represent the actual impacts of the water infrastructure
governed by variability in rainfall. Moreover, analyzing the operation impacts for a short period and
projecting it to the entire life cycle may be inappropriate.

This study considered the highest recommended uncertainty in the LCIA parameters and still
found the effect of this uncertainty insignificant. To advance the LCA-based design of the urban
water infrastructure, increasing the accuracy in compiling LCI may be of a higher importance than
defining LCIA parameters. This statement is in need of further corroboration with additional studies
in a different urban water infrastructure. The case study application suggested that the optimal
RWH system capacity could be defined as a linear function of annual rainfall depth. This optimal
design would lead to minimized life cycle impacts in terms of global warming potential (GWP) and
aquatic Eco-Toxicity (ETW). Capacities smaller than the optimal would make the RWH system lose
potable water treatment savings and CSO control benefits, while capacitates larger than the optimal
would cause an additional wastewater treatment burden and construction phase impacts. However,
the annual rainfall depth varies each year and may not provide a practical design guideline. Thus,
to achieve the minimized impacts, this study suggests RWH capacities to be designed for short periods
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(e.g., 10 years) through robust analysis of the future rainfall considering possible changes and anomalies
(e.g., Tavakol-Davani et al. [97]). This statement is in need of further corroboration with additional
tests of the presented method for different drainage system capacities and climates.

The present study had limitations that could be addressed by future studies, including:

• As explained in Section 2.1, assessing the LCIA characterization factor uncertainty was beyond
the scope of this study. Particularly for ETW results, this could introduce a systematic uncertainty
as discussed by Rosenbaum et al. [59] and Wender et al. [60]. However, this limitation may not
impact the overall conclusion of the present study drawn from simultaneous GWP and ETW
results. Since this limitation could introduce uncertainty regarding the relative significance of
different contributors to the aquatic eco-toxicity scores, we suggest a follow up study to focus on
aquatic eco-toxicity impacts of RWH incorporating the characterization factors.

• Other sources of uncertainty, i.e., model structural and decision uncertainties, may be studied
to provide insight into the overall status of uncertainty of the integrated framework. Such an
analysis may identify the areas where the results’ reliability can be improved, and, thus, advance
the integration of hydrologic and LCA models for urban water infrastructure assessment.

• Other urban drainage infrastructures, e.g., separate sewer systems, detention basins, and pervious
pavements may be studied in the future to understand their optimal LCA-based design with a
consideration of the existing uncertainties.

• A broader hydrologic representation of the urban drainage system can be considered a follow up
study, including water quality simulation modules.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/12/2592/s1,
Figure S1: Cumulative probably density functions for parameters selected to perform the uncertainty analysis,
Figure S2: Results of topology-inspired regression model, Figure S3: Tributary subwatersheds, major pipes and
the interceptor at the case study.
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