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Abstract: Recycling materials from waste has been considered one of the essential principles in the
context of sustainable development. In this study, we used teak sawdust as the feedstock material to
synthesize activated carbon (AC) samples and evaluated the application of these ACs in the adsorption
of methylene blue (MB), Cd(II), and Cu(II). The sawdust was carbonized by a hydrothermal process,
followed by chemical activation using K2CO3 or ZnCl2 in various weight ratios. The AC samples
produced were characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area
analysis, Fourier-transform infrared spectroscopy, X-ray photon spectroscopy, and mass titration
of acidic groups. The characterization results showed that the ACs did possess a high surface area
and rich oxygen-containing functional groups. The adsorptive amounts of MB, Cd(II), and Cu(II)
on ACs approximately increased with the concentration of the activating agent: when the weight
ratio of the carbonaceous material to ZnCl2 reached 1.75, the maximum adsorption capacities for MB,
Cd(II), and Cu(II) were achieved, and the values were 614, 208, and 182 mg/g, respectively. The level
of oxygen-containing functional groups was identified as an important factor in determining the
adsorptive amounts. While the electrostatic force was the primary pathway that led to the adsorption
of the tested contaminants onto the AC, the complexation reaction was a vital mechanism responsible
for the adsorptive interaction between ACs and Cu(II). The high adsorption capacity of the synthetic
ACs for MB, Cd(II), and Cu(II) demonstrated in this study points out the potential application of
biomass-residue-based adsorbents prepared via a coupled hydrothermal carbonization/chemical
activation process in wastewater treatment.
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Highlights

- The activated carbon samples were synthesized through a two-step process.
- The hydrothermal carbonization resulted in rich oxygen-containing functional groups.
- The activating agents were used with different weight ratios to synthesize the new adsorbents.
- Heavy metals and dyes were used as the adsorbates to examine the adsorption capacity.
- The potential adsorption mechanisms were discussed in depth.
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Nomenclature of Synthesized Activated Carbon

WAC Only high-temperature calcination without activation process
ACZ1075 Weight ratio of ZnCl2 to HTC = 0.75:1.0
ACZ1100 Weight ratio of ZnCl2 to HTC = 1.0:1.0
ACZ1125 Weight ratio of ZnCl2 to HTC = 1.25:1.0
ACZ1175 Weight ratio of ZnCl2 to HTC = 1.75:1.0
ACZ1200 Weight ratio of ZnCl2 to HTC = 2.0:1.0
ACK1075 Weight ratio of K2CO3 to HTC = 0.75:1.0
ACK1100 Weight ratio of K2CO3 to HTC = 1.0:1.0
ACK1125 Weight ratio of K2CO3 to HTC = 1.25:1.0
ACK1175 Weight ratio of K2CO3 to HTC = 1.75:1.0
ACK1200 Weight ratio of K2CO3 to HTC = 2.0:1.0

1. Introduction

Water contamination has become an important issue in recent years, especially in developing
countries such as Vietnam. Biodegradation is the most common method for removing contaminants
from water bodies. However, some contaminants, such as heavy metal ions and high-molecular-weight
dyes, cannot be treated through biodegradation. Hence, a number of methods need to be developed for
the removal of these contaminants [1–4]. Precipitation or ion exchange is commonly used to remove
heavy metal ions from wastewater or water. Photocatalysis and advanced oxidation processes can
be used to decompose dyes [5–8]. Although the abovementioned methods can effectively remove
contaminants, many investigators have sought some simpler and lower-cost processes [9]. Adsorption
is a process that is often used to remove various kinds of contaminants from water or wastewater [10–13].
Adsorbents with high adsorption capacities can lower the costs of water and wastewater treatments.

Activated carbon (AC) has been widely used to adsorb organic and inorganic contaminants. This
is because AC possesses a large specific surface area (SBET) and high pore volume. Organic compounds
can be adsorbed onto the surface of AC owing to the influence of van der Waals forces or through
other mechanisms [14,15]. Following physical activation, commercial AC exhibits only low adsorption
capacities for heavy metal ions [16]. When AC is activated via a chemical process, it can possess
relatively higher adsorption capacities for heavy metal ions. A number of investigators have studied
the ability of carbonaceous materials to adsorb heavy metal ions and dyes [17–21]. However, these
adsorption mechanisms have not been discussed in depth.

The synthesis of AC is carried out in two steps: carbonization and activation. Carbonization has
been previously applied to calcine agricultural wastes in oxygen-free environments [22,23]. However,
a high carbonization temperature might reduce the amount of surface functionalities, such as the
phenolic and carboxylic groups [3]. The conditions for the adsorption of cationic contaminants onto
the adsorbent become unfavorable. Therefore, a new process of carbonization has been developed
recently [24–26]. In this process, agricultural wastes are carbonized through a hydrothermal process,
and the hydrothermal carbon products are subsequently applied to synthesize AC by chemical
activation [16]. This process of carbonization can maintain the richness of surface functional groups,
such as phenolic, lactonic, and carboxylic, on the carbonaceous materials. As the amount of surface
functional groups is a critical factor in determining the adsorption capacities of carbonaceous materials
for heavy metal ions, synthesized AC samples can be expected to possess high adsorption capacities
for cationic contaminants.

In this study, sawdust from teak (Tectona grandis), which is rich in lignocellulose, was used as
the raw material to prepare AC. This material is the waste of furniture-manufacturing factories, and
to the best of our knowledge, discussion of its use in AC synthesis is still limited in the literature.
To further improve the methylene blue (MB) and heavy metal species (including Cu(II) and Cd(II))
sorption efficiency of AC, the hydrothermal method of carbonization was selected, and K2CO3

and ZnCl2 were selected as the activating agents. The synthesized AC samples were characterized
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using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray
photoelectron spectroscopy (XPS), and specific surface area and porosity analysis. The acidic functional
groups on the surfaces of the AC samples were determined by the common Boehm titration method.
The AC samples were used to adsorb dissolved copper and cadmium species, as well as the cationic dye
MB. The adsorption capacities of the adsorbents under various conditions of activation were estimated.
The potential adsorption mechanisms were evaluated by analyzing the adsorption capacities and
surface properties of the adsorbents. The results obtained can be used as references for the treatment
of water or wastewater.

2. Materials and Methods

2.1. Chemicals and Activated Carbon Preparation

All chemicals were of analytical grade and were directly used without further purification. K2CO3

was purchased from J. T. Baker. The other chemicals (i.e., MB, Cu(NO3)2, Cd(NO3)2, and ZnCl2) were
purchased from Sigma-Aldrich, Merck KGaA, Darmstadt, Germany. The teak (T. grandis) sawdust
was obtained from a furniture factory in Taiwan. It was washed first with tap water to remove any
adherent dirt and then with deionized distilled water at least twice. The sawdust was then ground
and sieved using a 20-mesh screen. It was then placed in an oven at 80 ◦C for 24 h to obtain the
dry samples. For the process of carbonization, 10 g of the sawdust sample was added into a beaker
containing 120 mL of deionized distilled water. The mixture was transferred into a stainless Teflon-lined
autoclave, which was placed in an oven at 190 ◦C for 24 h. The sample produced through hydrothermal
carbonization (HTC) process was designated as sawdust-hydrochar. The precipitate was separated
by filtration, washed repeatedly with deionized distilled water, and then dried in an oven at 105 ◦C.
The sawdust-hydrochar samples obtained were stored in glass bottles until use.

The sawdust-hydrochar samples were activated using K2CO3 or ZnCl2 in various weight ratios
(0.75, 1.0, 1.25, 1.75, and 2.0) of the activating agent to the sample. The hydrochar samples were
impregnated in 100 mL solutions of the activating agents in the abovementioned weight ratios at 50 ◦C
for 30 min. The solutions were dried in an oven at 105 ◦C. The dried samples were placed in the
oven at 800 ◦C for 4 h to conclude the process of activation. The products were allowed to cool to
room temperature and then were washed with deionized distilled water until their pH values were
approximately 7.0. The products were dried in an oven overnight at 50 ◦C, and the AC samples were
thus synthesized (Figure 1).
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Figure 1. Schematic illustration of the preparation procedure for the activated carbon (AC) samples.

2.2. Sorbent Characterization

The surface properties of the synthesized adsorbents were determined using suitable instruments.
An SEM (Hitachi S-3000N, Hitachi Scientific Instruments, Tokyo, Japan)was used to determine the
morphologies of the adsorbents. The surface textures, including the values of SBET and pore volume,
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were determined using the nitrogen adsorption/desorption isotherms (Micromeritics ASAP 2020
sorptometer, Micromeritics Instrument Corp., Chiba, Japan)at 77 K. The surface area and volume
of the micropores were calculated using the t-plot method (Jura–Harkins equation). The surface
functional groups on the adsorbents were analyzed through FTIR spectroscopy (PerkinElmer Model
1600, Perkins Elmer Inc., Greenville, SC, USA) in the range of 400–4000 cm−1. An XPS (Thermo Fisher
Scientific K-Alpha, the Thermo Scientific Inc., Waltham, MA, USA) was used to measure the elemental
compositions. As functional groups are a critical factor in determining the adsorptive amount of
the contaminants tested, the oxygen-containing functional groups (OFGs) were quantified using the
Boehm titration method [27,28].

2.3. Sorption Experiment and Data Analysis

To avoid adsorption interference, each adsorption experiment was conducted using a single adsorbate.
Stock solutions of 1000 mg Cu/L (using Cu(NO3)2·3 H2O), 1000 mg Cd/L (using Cd(NO3)2·4 H2O), and
1000 mg MB/L were prepared in distilled water. Approximately 0.1 g of the adsorbate was added to a
Teflon centrifuge tube containing 50 mL of a solution of pH 5 with the contaminant concentration in
the range of 50–900 mg/L. Three kinds of synthetic AC samples were used to adsorb MB, Cd(II), and
Cu(II) at a fixed pH value of 5.0. The initial pH of the solution was adjusted to 5.0 ± 0.1 by 0.1 M NaOH
and HCl solution. The centrifuge tubes were placed in a reciprocating shaker at 150 rpm and 25 ◦C and
equilibrated for 24 h. After the process, the solution was filtered with a 0.45 µm filter. Next, copper and
cadmium were analyzed using atomic absorption spectrometry (Avanta/AAS, GBC). MB was measured
using a spectrophotometer (Genesys 10S UV-VIS, Thermo Fisher Scientific, Madison, WI, USA) through
a colorimetric method at the wavelength of 665 nm.

The Langmuir equation [29] was used to estimate the maximum adsorption capacities and can be
expressed as follows in Equation (1):

Q =
x
m

=
KLbC

1 + KLC
(1)

where Q is the maximum adsorptive amount of the contaminant for a given adsorbent (mg/g or
mmol/g), x is the amount of contaminant adsorbed onto the adsorbent (mg or mmol), m is the adsorbent
weight (g), C is the equilibrium concentration (mg/L or mmol/L) of the adsorbate in the solution,
KL is the equilibrium constant in the Langmuir equation (L/mg or L/mmol), and b is the maximum
adsorption capacity (mg/g or mmol/g).

3. Results and Discussion

3.1. Characteristics of Sorbent Materials

Figure 2 shows the SEM images of three representative AC samples: WAC, ACK1075, and ACZ1175.
These samples were chosen because ACK1075 and ACZ1175 exhibited higher adsorptive amounts
than the other AC samples activated using K2CO3 and ZnCl2, respectively. The SEM micrograph
results indicate that their structures were not homogeneous. Notably, WAC displayed fragment shapes,
whereas ACK1075 and ACZ1175 showed a rugged surface with a rather large pore. Moreover, the
carbonaceous materials exhibited their relatively porous characteristics. These properties are close to
those of other ACs synthesized through chemical activation [30,31]. The results demonstrated that
the synthesized AC samples could possess comparatively high SBET values to adsorb contaminants
through the mechanism of van der Waals forces and pore filling. Based on the abovementioned results,
all the AC samples synthesized through various activation processes in this study can be regarded as
porous carbonaceous materials.
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Figure 2. SEM images of (a) WAC, (b) ACZ1175, and (c) ACK1075.

To understand the pore characteristics, a nitrogen adsorption/desorption analyzer was used
to measure the values of SBET, pore volume, and average pore size of the AC samples selected.
Table 1 lists the measured values for WAC, ACK1075, and ACZ1175. WAC was synthesized through
high-temperature calcination alone without activation. Thus, WAC possessed a relatively lower SBET

than the two activated carbon samples (ACK1075 and ACZ1175). Activation using K2CO3 and ZnCl2
significantly enhanced the SBET values of the AC samples. Based on their average pore size, WAC
and ACK1075 were classified as micropores (pore size < 2 nm), while ACZ1175 was classified as a
mesopore (2 nm < pore size < 50 nm). Although the AC samples produced possessed high SBET, their
adsorption capacities for contaminants such as heavy metal ions is not often proportional to their SBET

values [16,32].
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Table 1. Pore characteristics of the synthesized AC samples.

Sample BET Surface Area Pore Volume Average Pore Size

(m2 g−1) (cm3 g−1) (nm)

WAC 792 0.34 1.74
ACZ1175 1757 1.02 2.34
ACK1075 1013 0.42 1.65

Abbreviation: BET—Brunauer–Emmett–Teller.

Figure 3 indicates the pore size distributions of the AC samples selected. As can be seen, the main
pore sizes of the three AC samples were approximately focused on 1.0 nm. However, the maximum
pore sizes exceeded 50 nm. Small pore size and high pore volume could increase the SBET values of the
adsorbents. The adsorbent with high SBET might favor dye adsorption. When the pore size is less than
2.0 nm, it is difficult for a dye of high molecular weight to enter their micropore network. This might
lead to lower adsorption capacity for the dye if the pore filling mechanism plays a dominant role in the
adsorption process.
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Figure 3. Pore size distribution of WAC, ACZ1175, and ACK1075.

The main functional groups on the adsorbent surface are a critical factor in determining the
adsorptive amounts of the contaminants tested. Therefore, the FTIR spectra of WAC, ACK1075, and
ACZ1175 are presented in Figure 4. It was found that the process of activation can lead to an evident
increase in the number of functional groups. The bands at around 3700 cm−1 are attributed to OH group
stretching vibrations. The potential functional groups include carboxylic acids, phenols, and alcohols.
In addition, the presence of C=O groups such as in carboxylic acid likely resulted in the formation
of bands at around 1700 cm−1. Moreover, the observed bands at 1500–1600 cm−1 are ascribed to the
vibration of aromatic C=C. Lastly, the identified bands in the range of 700–900 cm−1 are attributed to
the groups of substituted aromatic rings.

Although the functional groups can determine the adsorption characteristics of the contaminants
onto the adsorbents, the elemental compositions of the adsorbents yield further insight. Table 2 indicates
the elemental compositions of the representative AC samples. Carbon was the primary element in the AC
samples. The carbon contents of the representative AC samples exceeded 85%, thereby corresponding
to those of the other AC samples synthesized and reported in the literature [33,34]. The oxygen contents
were in the range of 7%–14%. These results imply the presence of oxygen-containing functional groups
on the surfaces of the AC samples. According to the FTIR spectra, the C=O and OH groups were the
major oxygen-containing functionalities in this study.
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Table 2. Elemental compositions of the selected AC samples.

Sample Atomic Concentration of Elements by XPS (At%)

C O1s K Zn Cl

WAC 90.31 9.69 - - -
ACZ1175 91.32 7.55 - - 0.17
ACK1075 85.72 13.8 0.49 - -

Abbreviation: XPS—X-ray photoelectron spectroscopy.

The OFGs of all the AC samples, as determined by the Boehm titration method [27,28], are
provided in Table 3. The oxygen-containing functional groups of the activated samples were higher
than those of WAC. This result is in agreement with the observations from the FTIR spectra. The process
of activation can evidently enhance the adsorptive amounts of the contaminants tested. Of the AC
samples, ACZ1175 and ACK1075 possessed more oxygen-containing functional groups than those
of the others activated using either ZnCl2 or K2CO3. The amounts of oxygen-containing functional
groups of the AC samples activated by ZnCl2 were slightly greater than those of the AC samples
activated by K2CO3. However, the amount of phenolic functional group did not vary evidently with
activation. In addition, significant changes in the quantities of carboxylic and alcoholic groups were
found when the activating agent ZnCl2 was used. Moreover, the amounts of the oxygen-containing
functional groups of the AC samples were only slightly altered by employing different ratios of K2CO3

to HTC. These results likely affected the adsorptive amounts of the contaminants tested.

Table 3. Oxygen-containing functional groups (OFGs) of the AC samples.

Sample Acidic Groups (mmol/g)

Carboxylic Alcoholic Phenolic Total

WAC 0.54 0.72 0.38 1.64
ACZ1075 0.83 0.82 0.40 2.05
ACZ1100 0.94 0.84 0.41 2.19
ACZ1125 1.11 0.97 0.42 2.50
ACZ1175 1.21 1.04 0.45 2.70
ACZ1200 1.08 0.92 0.44 2.44
ACK1075 0.92 081 0.43 2.16
ACK1100 0.88 0.90 0.37 2.15
ACK1125 0.84 0.78 0.44 2.06
ACK1175 0.81 0.88 0.36 2.05
ACK1200 0.83 0.81 0.40 2.04
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3.2. Adsorption Capacity of MB, Cd(II), and Cu(II) by ACs

Figure 5 displays the adsorption isotherms of MB, Cd(II), and Cu(II) for the selected AC samples.
All curves exhibit a concave downward shape, representing the high affinity between the adsorbates and
adsorbents. The target adsorbates were classified as typical cationic contaminants. Thus, ion exchange
(or electrostatic force) was regarded as a potential adsorption mechanism based on the COOH-group-rich
surfaces of the adsorbents. This demonstrated that the process of activation can effectively enhance
the adsorptive amounts of the cationic contaminants. As seen in Figure 5, the adsorptive amounts of
the three adsorbates decreased in the following order: ACZ1175 > ACK1075 > WAC. The amounts
adsorbed onto the selected adsorbents were proportional to their amounts of oxygen-containing groups.
The results suggest that the amount of oxygen-containing groups was the primary factor in determining
the adsorption of the cationic contaminants tested.

The MB adsorption capacities of all the ACs synthesized, as estimated from the Langmuir model,
are listed in Table 4. The ACZ1175 and ACK1075 samples exhibited the highest MB adsorption
capacities among all the AC samples activated using ZnCl2 and K2CO3, respectively. In Table 4, all the
R2 values are more than 0.95. This indicated that the Langmuir model can be used to estimate the
maximum adsorption capacities. The adsorptive amount of MB is proportional to the amount of OFGs.

Table 4. Methylene blue (MB) adsorption capacities of the AC samples synthesized through various
processes of activation.

Sample KL b
R2

(L mg−1) (mg g−1)/(mmol g−1)

WAC 0.0138 360/1.13 0.995
ACZ1075 0.0117 503/1.57 0.984
ACZ1100 0.0148 536/1.68 0.993
ACZ1125 0.0219 569/1.78 0.978
ACZ1175 0.0250 614/1.92 0.985
ACZ1200 0.0863 576/1.80 0.991
ACK1075 0.1112 516/1.61 0.994
ACK1100 0.0910 509/1.59 0.985
ACK1125 0.1236 494/1.54 0.975
ACK1175 0.0986 493/1.54 0.984
ACK1200 0.1032 499/1.56 0.986

The Cd(II) and Cu(II) adsorption capacities of all the ACs synthesized are presented in Tables 5
and 6, respectively. As can be seen, the AC samples synthesized demonstrated high adsorption
capacities for Cd(II) and Cu(II). The ACZ1175 and ACK1075 samples exhibited the highest adsorption
capacities among the samples activated using ZnCl2 and K2CO3, respectively. Thus, these results
additionally demonstrated that the oxygen-containing functional groups were critical factors for
adsorption on the surfaces of the AC samples. In addition, the adsorptive amounts of cationic metals
on the AC samples activated by ZnCl2 increased with the ratio of the activating agent to HTC. When
the ratio exceeded 1.75:1, the adsorptive amounts of the heavy metal ions began to drop. These
results indicate that a high weight ratio of the activating agent to HTC could lead to a reduction in the
adsorptive amounts of the contaminants, which can be primarily ascribed to the ability of the activating
agent to destruct the properties of the carbonaceous materials. A similar result was presented in the
literature [16]. However, high weight ratios of K2CO3 to HTC do not result in obvious changes in
the adsorptive amounts of the metal ions tested. This result indicates that different activating agents
exhibit diverse effects in the process of activation.
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Table 5. Cd2+ adsorption capacities of the AC samples synthesized through various processes
of activation.

Sample KL b
R2

(L mg−1) (mg g−1)/(mmol g−1)

WAC 0.037 113/1.01 0.987
ACZ1075 0.042 156/1.39 0.997
ACZ1100 0.048 164/1.46 0.991
ACZ1125 0.014 182/1.63 0.982
ACZ1175 0.024 208/1.86 0.992
ACZ1200 0.018 174/1.55 0.983
ACK1075 0.045 166/1.48 0.992
ACK1100 0.045 159/1.42 0.974
ACK1125 0.066 158/1.41 0.976
ACK1175 0.075 164/1.46 0.982
ACK1200 0.034 162/1.45 0.984

Table 6. Cu2+ adsorption capacities of the AC samples synthesized through various processes
of activation.

Sample KL b
R2

(L mg−1) (mg g−1)/(mmol g−1)

WAC 0.048 151/2.30 0.989
ACZ1075 0.031 158/2.49 0.966
ACZ1100 0.041 162/2.55 0.967
ACZ1125 0.048 172/2.71 0.968
ACZ1175 0.056 182/2.87 0.991
ACZ1200 0.062 176/2.77 0.982
ACK1075 0.057 159/2.48 0.991
ACK1100 0.044 156/2.46 0.988
ACK1125 0.037 154/2.43 0.976
ACK1175 0.047 155/2.44 0.992
ACK1200 0.031 152/2.39 0.978

3.3. Comparison of Adsorption Mechanisms

Tables 4–6 present the adsorptive amounts of the contaminants in millimoles per gram. It can be
seen that the adsorptive amounts on the millimole-per-gram basis trend down approximately in the
following order: Cu(II) > MB > Cd(II). This is probably a result of different adsorption mechanisms,
indicating that ion exchange was not the sole mechanism promoting adsorption. The driving factors
of the adsorption of organic dyes onto the AC samples have been classified as (i) van der Waals
forces, (ii) pore filling, (iii) ion exchange, (iv) hydrogen bonding, (v) π–π interaction, and (vi) n–π
interaction [35,36]. Although the π–π and n–π interactions could potentially occur according to the
elemental compositions of the adsorbents and the chemical structure of MB, the two interactions are
deemed less important than the other mechanisms [37]. The influence of van der Waals forces mainly
correlates with the SBET values of the adsorbents. Pore filling occurs easily in porous carbonaceous
adsorbents. The AC samples synthesized possess high values of SBET and pore volume. Hence,
van der Waals forces and pore filling are regarded as the potential adsorption mechanisms. However,
MB is a high-molecular-weight dye. It may be difficult for MB to enter the inner pores of the AC
samples, which reduces its adsorptive amount.

The adsorbate MB is an aromatic dye with the molecular formula C16H18ClN3S. The N atoms
could generate hydrogen bonding with the oxygen atoms on the surfaces of the ACs. As a result,
hydrogen bonding is a potential adsorption mechanism of MB onto AC. Moreover, the surface of
AC is rich in acidic groups and could attract the MB molecules by means of ion exchange. The two
adsorption mechanisms were highly correlated with the total amount of oxygen-containing functional
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groups and were regarded as potential adsorption mechanisms. Nonetheless, pore size could still
affect the adsorption mechanism of MB onto the porous materials.

Major mechanisms for the adsorption of cationic metals onto the AC samples, in general, include
ion exchange and complexation reaction. These two adsorption mechanisms correlate to a certain
extent with the amount of oxygen-containing functional groups as well. Therefore, the AC samples rich
in oxygen-containing functional groups could exhibit a relatively high adsorptive capacity towards
certain heavy metal ions. As shown in Tables 5 and 6, the adsorptive amounts (mmol/g) of Cu(II) were
higher than those of Cd(II), which implies that the complexation reaction between the metal ions and
AC samples might have been a rather important underlying mechanism. This is because ion exchange
increases with ion radius, but the ion radius of Cd2+ is larger than that of Cu2+ (0.97 Å vs. 0.73 Å), so if
ion exchange was the sole adsorption mechanism, the adsorptive amount in millimoles per gram of
Cd2+ should have been higher than that of Cu2+. However, the trend of ionic radii was in opposite
direction of the trend of the adsorption capacity in this study. On the other hand, it is known that Cu(II)
can easily form complexes with the oxygen moiety on the AC surface. Hence, the higher adsorptive
amount of Cu(II) than that of Cd(II) might in large part have been due to the complexation reaction.

When the adsorptive amount of MB was compared with that of Cu(II) and Cd(II) on the basis
of millimoles per gram, the results further indicated that the adsorption of MB onto the AC samples
might have proceeded via ion exchange and other mechanisms. This comes from the rationale that ion
exchange was the primary mechanism for the adsorption of Cd(II) onto the AC samples, and if it were
assumed to be the primary pathway resulting in the AC–MB adsorptive interaction, the adsorptive
amounts of MB should have been approximately twice those of Cu(II) and Cd(II). However, the
adsorptive amounts of MB were slightly higher than those of Cd(II). This again implies that hydrogen
bonding, van der Waals forces, and other mechanisms might have all been involved in the process of
MB adsorption on the AC samples, but they played a smaller role.

Additionally, the maximum adsorption capacities of MB and heavy metals on the ACs compared
with carbonaceous materials reported in the literature are listed in Table 7 [38–43]. It can be seen
that the adsorption capacities of the ACs prepared in this work are equally good or even superior to
those reported in other studies. Therefore, teak-sawdust-based ACs (or biomass-based carbonaceous
sorbents in general) prepared via a coupled hydrothermal carbonization/chemical activation process
may have high application potential for wastewater treatments.
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Table 7. Comparisons of the adsorption capacity of various adsorbents for methylene blue and heavy metals.

Raw Material Process Production
Temperature/Time

Target
Sorbate

Adsorption
Mechanism

Adsorption Capacity
Q0

max
Reference

Factory-rejected tea (FTR)
1st: Hydrothermal

carbonization (HTC) 200 ◦C, 5 h Methylene
blue (MB)

The hydrochar-to-NaOH ratio plays a role in the surface
structure of AC. Provided the best textural characteristics
with diverse functional groups.

487.4 mg/g [40]

2nd: Impregnated by NaOH 800 ◦C, 1 h

Bamboo

1st: Hydrothermal
carbonization (deionized water

and HCl 1 M).
200 ◦C, 24 h

Methylene
blue (MB)

The surface area and pore volume of hydrochar produced in
acid medium was large and NaOH treatment of as-produced
hydrochar can enhance the oxygen-containing functional
groups on its surface.

655.7 mg/g of modified hydrochar
compared to 268.9 mg/g of original

hydrochar
[43]2nd: Mixture between

1 g of hydrochar samples,
0.25 M 100 mL NaOH

Room temperature,
1 h

Vegetables such as prickly pear
peels—CarTuna, white sapote
seeds—CarZapQ, and broccoli

stems— CarBrocQ.

1st: The impregnation ratio of
vegetable residue/H3PO4

(w/w).

Room temperature,
24 h

Methylene
blue (MB)

Introduction of a large specific surface area and high total
pore volume with average pore size. Additionally, the
presence of anionic and cationic functional groups, found by
means of FTIR, confers the carbons the ability to adsorb MB.

Maximum adsorption capacities of
CarZapQ, CarTunaQ, and CarBrocQ

for MB were 277.8, 416.7, and
500.0 mg/g, respectively.

[41]

2nd: Pyrolysis 400 ◦C, 3 h

Teak (Tectona grandis) sawdust

1st: Teak sawdust-hydrochar 190 ◦C, 24 h Methylene
blue (MB)

Increasing amount of oxygen-containing functional groups is
regarded as an important factor in determining the
adsorptive amounts. Electrostatic force is the primary
adsorption mechanism for the contaminants tested.
The complexation reaction is a vital adsorption mechanism
for Cu2+. Other mechanisms are less important in the
adsorption of MB and Cd2+.

ACZ1175: 614.0 mg/g
ACK1075: 516.0 mg/g This study

2nd: AC samples synthesized
by chemical activation K2CO3
(ACK1075) or ZnCl2 (ACZ1175)

in various weight ratios.
800 ◦C, 4 h

Cadmium
(Cd2+)

208.0 mg/g for ACZ1175 and
166.0 mg/g for ACK1075 This study

Copper
(Cu2+)

182.0 mg/g for ACZ1175 and
159.0 mg/g for ACK1075 This study

Coconut shells

1st: Hydrothermal
carbonization 200 ◦C, 2 h

Methylene
blue (MB)

Presence of carbon-rich hydrochar with a high yield of 77%
and an oxygen-group-enriched structure was produced
through hydrothermal carbonization

200.0 mg/g [42]2nd: Impregnated by NaOH
for 4 h. Activated by heating in

a horizontal tubular
stainless-steel reactor.

600 ◦C, 1 h

Sawdust, wheat straw, and
corn stalk

1st: HTC 200 ◦C, 20 h
Cadmium

(Cd2+)
KOH modification of hydrochars might have increased the
aromatic and oxygen-containing functional groups, such as
carboxyl groups.

Increasing the sorption capacity of
Cd (30.4–40.7 mg/g) [39]2nd: Impregnated by

500 mL of 2 M KOH
Room temperature,

1 h

Pitch-based carbon fibers

1st: Pyrolysis
(denoted as ACFs) 900 ◦C, 0.5 h Copper (Cu2+) Increasing the formation of functional groups without

damage to the fiber surface. The adsorption capacity of Cu2+

and Ni2+ is mainly influenced by the quantity of lactone
groups on the carbon surface at pH < pHzpc and by the
amount of acidic functional groups at pH > pHzpc.

32.2 and 11.2 mg/g of ACF15-HNO3
for Cu2+ and Ni2+, respectively.

26.8 and 10.2 mg/g of ACF15-NaOH
for Cu2+ and Ni2+, respectively

[38]2nd: Modification of ACFs
with HNO3 (1 M) and

NaOH (1 M)

Boiling temperature,
2 h. Nickel (Ni2+)
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4. Conclusions

In the present study, teak (T. grandis) sawdust was used to synthesize ACs through a two-step
process: hydrothermal carbonization, followed by chemical activation with ZnCl2 or K2CO3 at various
concentrations. The AC samples produced were characterized through the SEM, an SBET analyzer, FTIR,
XPS, and titration to determine the acidic functional groups. The results demonstrated that the synthetic
AC samples possessed high SBET and were rich in oxygen-containing functional groups, which was
favorable to the adsorption of cationic contaminants. The adsorbent generated from ZnCl2-activated
HTC, with HTC and ZnCl2 in the weight ratio of 1.75:1.0, exhibited the highest adsorption capacities
for MB, Cd(II), and Cu(II). The maximum adsorption capacities of ACZ1175 for MB, Cd(II), and Cu(II)
were 614, 208, and 182 mg/g, respectively. Activation of K2CO3 with various concentrations resulted
in little variation in the adsorptive amounts of the AC samples for the various contaminants tested.
The AC samples prepared from the teak sawdust-hydrochar via chemical activation using ZnCl2 and
K2CO3 exhibited high adsorptive amounts for cationic contaminants. Ion exchange was the primary
adsorption mechanism of the contaminants tested. Thus, the amount of oxygen-containing functional
groups was the critical factor in determining the adsorptive amounts of the contaminants tested.
The complexation reaction was a relatively important mechanism for the adsorption of Cu(II) onto the
AC samples. Compared with ion exchange, other mechanisms were determined to be less important
in the process of MB and Cd(II) adsorption in this study. Together, these results demonstrate that
teak-sawdust-based ACs (or biomass-based carbonaceous sorbents in general) prepared via a coupled
hydrothermal carbonization/chemical activation process can be potentially applied in the wastewater
treatment process.
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Rahmani-Sani, A.; Ivanets, A.; Hosseini-Bandegharaei, A. Efficient mercury removal from wastewater by
pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating
agent. J. Environ. Manag. 2018, 223, 1001–1009. [CrossRef]

http://dx.doi.org/10.1016/j.jhazmat.2013.10.033
http://dx.doi.org/10.1016/j.cej.2010.08.045
http://dx.doi.org/10.1016/j.chemosphere.2016.10.121
http://dx.doi.org/10.1016/j.psep.2017.02.010
http://dx.doi.org/10.1016/j.jenvman.2016.12.003
http://dx.doi.org/10.1016/j.jtice.2014.08.004
http://dx.doi.org/10.1016/j.molliq.2014.01.018
http://dx.doi.org/10.4155/bfs.10.81
http://dx.doi.org/10.1016/S0008-6223(99)00261-4
http://dx.doi.org/10.1016/j.biortech.2013.04.116
http://dx.doi.org/10.1016/j.cej.2012.06.116
http://dx.doi.org/10.1016/0008-6223(92)90140-R
http://dx.doi.org/10.1016/j.cej.2004.06.011
http://dx.doi.org/10.1016/j.jiec.2017.08.026
http://dx.doi.org/10.1016/j.cej.2013.10.081
http://dx.doi.org/10.1080/09593330.2017.1365941
http://dx.doi.org/10.1016/j.carbon.2013.09.044
http://dx.doi.org/10.1021/ja02242a004
http://dx.doi.org/10.1016/j.jenvman.2018.06.077


Water 2019, 11, 2581 15 of 15

31. Sajjadi, S.-A.; Meknati, A.; Lima, E.C.; Dotto, G.L.; Mendoza-Castillo, D.I.; Anastopoulos, I.; Alakhras, F.;
Unuabonah, E.I.; Singh, P.; Hosseini-Bandegharaei, A. A novel route for preparation of chemically activated
carbon from pistachio wood for highly efficient Pb (II) sorption. J. Environ. Manag. 2019, 236, 34–44.
[CrossRef]

32. Raymundo-Pinero, E.; Azais, P.; Cacciaguerra, T.; Cazorla-Amorós, D.; Linares-Solano, A.; Béguin, F. KOH
and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation.
Carbon 2005, 43, 786–795. [CrossRef]

33. Bouhamed, F.; Elouear, Z.; Bouzid, J. Adsorptive removal of copper (II) from aqueous solutions on activated
carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. J. Taiwan Inst. Chem.
Eng. 2012, 43, 741–749. [CrossRef]
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