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Abstract: Understanding the spatial-temporal dynamics of evapotranspiration in relation to climate
change and human activities is crucial for the sustainability of water resources and ecosystem
security, especially in regions strongly influenced by human impact. In this study, a process-based
evapotranspiration (ET) model in conjunction with the Global Land Surface Satellite (GLASS) LAI
dataset was used to characterize the spatial-temporal pattern of evapotranspiration from 1982 to
2016 over the Gan River basin (GRB), the largest sub-basin of the Poyang Lake catchment, China.
The results showed that the actual annual ET (ETa) weakly increased with an annual trend of 0.88 mm
year−2 from 1982 to 2016 over the GRB, along with a slight decline in annual potential ET (ETp). On an
ecosystem scale; however, only the evergreen broadleaved forest and cropland presented a positive
ETa trend, while the rest of the ecosystems demonstrated negative trends of ETa. Both correlation
analysis and sensitivity analysis revealed a close relationship between ETa inter-annual variability and
energy availability. Attribution analysis illustrated that contributions of climate change and vegetation
greening on the ETa trend were −0.48 mm year−2 and 1.36 mm year−2, respectively. Climate change
had a negative impact on the ETa trend over the GRB. However, the negative effects have been offset
by the positive effects of vegetation greening, which mainly resulted from the large-scale revegetation
in forestland and agricultural practices in cropland. It is concluded that large-scale afforestation and
agricultural management were the main drivers of the long-term evolution of water consumption
over the GRB. This study can improve our understanding of the interactive effects of climate change
and human activities on the long-term evolution of water cycles.
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1. Introduction

Climate change and human activities have altered the global hydrological cycle at multiple
spatiotemporal scales. Due to the tremendous heterogeneity in climate and geographical conditions in
different regions, responses of the hydrological cycle to the environmental changes are region-dependent.
With climate warming, the annual runoff of major rivers in north China has shown a decreasing trend,
aggravating the existing water shortage in this region [1–3]. However, for most rivers in south China,
the impacts of seasonal pattern changes in hydrological variables are more prominent than those of the
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inter-annual changes [4]. For example, due to the seasonal asymmetry of the changes in precipitation,
the upper Yangtze River basin has witnessed both an increase in summer runoff and a significant
decrease in autumn runoff over the past decades, which posed a certain threat to the water security and
ecological environment [5]. Further, climate variability has been revealed to increase security risks with
respect to water supply and food production (Intergovernmental Panel on Climate Change (IPCC) Fifth
Assessment Report). Hence, understanding the eco-hydrological processes and the associated impacts
on water budget components is essential for water security, hydrological prediction, crop irrigation
schedule, and ecosystem conservation, which are indispensable for practices of integrated catchment
management and water resources assignment [6].

Poyang Lake is the largest freshwater lake in China and located in the middle reaches of the Yangtze
River basin. The catchment of Poyang Lake plays an important ecological and hydrological role in the
middle and lower reaches of the Yangtze River and also acts as one of the major agricultural production
areas in China. However, influenced jointly by the climatic and non-climatic factors, the hydrological
regimes in the Poyang Lake basin (PLB) are changing significantly. For example, the rise in frequency
and severity of floods has been observed in the PLB in recent decades [7,8], which is partly attributed
to the increased fluctuation of the warm-season rainfall [9]. Meanwhile, more frequent droughts in the
PLB have been observed since 2000, especially during autumn and summer [10,11], with an enhanced
influence in terms of duration, frequency, intensity, and severity [12]. These prominent changes in
the hydrological situation have raised the concern about what natural and anthropogenic factors are
and how these factors have contributed to the changes. Sun et al. [13] showed that the streamflow
at four hydrological stations of the PLB exhibited an increasing trend between 1961–2000, and that
the increase in precipitation and decrease in potential evapotranspiration were the main contributors
to the streamflow increment. Based on a coupled water and energy budget analysis, Ye et al. [14]
confirmed the dominant role of climate change in variations of mean annual streamflow in the PLB and
found that the relative effects of climate change and human activities varied among sub-catchments,
as well as the whole catchment during different decades. Zhang et al. [15] further discovered that
although climate change dominated the annual change of streamflow, human activities also played a
key role in the streamflow variation during some months. As the main type of land-cover change in
recent decades, afforestation and revegetation (i.e., the Mountain-River-Lake watershed management
program (MRL) and the Grain for Green (GFG) project) are considered to be the dominant ways that
humans influence the hydrological processes in PLB [10,16]. The MRW program was launched in the
early 1980s and the GFG project was implemented in the late 1990s. Engineering measures of these
projects mainly include forestation, natural forest conservation, and returning mountainous farmland
to forest, etc. [16]. These programs have improved vegetation growth and contributed to vegetation
greening. Huang et al. [16] reported that the reforestation in the PLB had promoted the forest coverage
from 33.1% in 1983 to 60.5% in 2011. Meanwhile, improvements in agricultural management practices
(renewals of cultivars, irrigation facility improvement, fertilizer application) also resulted in an obvious
increase in the coverage and greenness of the cropland in the PLB [10]. These human-induced changes
of the underlying surface are expected to have exerted great impacts on the hydrological processes in
the PLB [11,14,17]. On the basis of model experiments, Guo et al. [7] concluded that the increase of
forest cover reduces streamflow in wet seasons and increases it in dry seasons; thus, reducing flood
potentials in the wet season and drought severity in the dry season. However, Tang et al. [10] reported
that during continuing and intensifying droughts, increased vegetation greenness could cause or
aggravate water conflicts in sub-watersheds with high forest cover and high human water demands.
Overall, the long-term evolution of eco-hydrology in response to climate change and vegetation
greening in the PLB is still not well understood, and the relative role of climate variability and human
activities in driving the multiple spatiotemporal eco-hydrological processes is yet to be investigated.

Previous studies on hydrological changes in the PLB mainly concentrated on the changes in
streamflow and their associations with climatic and anthropogenic factors. However, these runoff-focus
studies are usually difficult to uncover the differences in hydrological responses among
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terrestrial ecosystems, since they were generally conducted on a catchment scale. Essentially,
terrestrial evapotranspiration (ET) is a better indicator of hydrological change than streamflow,
since the runoff process is intermittent and influenced by various factors, whereas ET occurs every day
and its evolution is relatively stable. Also, ET plays a vital role in connecting water, energy, and carbon
cycles in the terrestrial ecosystem [18], and its long-term tendency of ET may be regarded as a critical
indicator of regional water cycle intensification. Terrestrial ET is considerably affected by climate
variabilities through a set of coupled physical and physiological processes. Climate variabilities also
exert significant impacts on the ecological and hydrological processes, which interact crossing scales
in complex ways and are closely linked to the types of ecosystems. However, ecosystem resilience
may maintain the plant water use efficiency through modifying vegetation dynamics (phenology,
photosynthesis, canopy density, etc.), which to some extent, has stabilized the function of the ecosystem
exposed to climate variations [19,20]. Eco-hydrological responses to environmental change vary with
vegetation type or ecosystem, due to differences in the physiological structures among vegetation
types [21–24]. On the other hand, vegetation dynamics may exert significant impacts on the hydrological
processes, such as transpiration, streamflow, and groundwater recharge [25,26]. Hence, a careful and
in-depth investigation of the ET spatiotemporal changes over different ecosystem types and their
driving factors can improve our abilities to predict land surface-atmosphere interactions and terrestrial
ecosystems dynamics in response to climate change and land-cover changes.

Accurate estimation of water vapor flux is important to evaluate the eco-hydrological responses
to climate variability and land use/cover changes on a basin or regional basis. However, in recent
decades, direct ET measurements have only been available at tower sites with the eddy covariance
technique or the Bowen ratio system [27]. ET information at large scale is still derived indirectly,
along with considerable uncertainties. In many cases, the basin-scale annual ET is only estimated as a
residual of precipitation minus the stream discharge, whose accuracy is questioned due to the lack of
information about the changes in the terrestrial water storage (TWS). However, this shortcoming has
been overcome by the Gravity Recovery and Climate Experiment (GRACE) data, which provided the
spatiotemporal variations of TWS anomalies over the global surface since 2002 [28]. Due to tremendous
heterogeneity in the vegetation conditions, soil texture, geomorphology, hydrologic, and climatic
forces, obtaining the detailed information of the spatial distribution of ET at a large scale seemed to
be out of reality a few decades ago. However, the advent and development of remote sensing (RS)
technology made it possible to directly retrieve the large-scale land surface characteristics from the
remotely sensed information [29–31]. For example, visible and near-infrared spectral reflectance and
their combinations are widely used to detect the spatiotemporal variations of vegetation cover fraction
and leaf area index [32–34], which are the main factors regulating the spatial pattern of ET. On this basis,
process-based land surface models or eco-hydrological models that integrate vegetation information
remotely sensed by frequently revisiting satellites and ground climate data have been developed to
predict the spatiotemporal variations of ET at multiple spatiotemporal scales [35–38]. In these models,
the prevailing and physically-based ET schemes, such as the Penman–Monteith (P–M) model and the
Priestley–Taylor (P–T), are commonly employed. Although some ET datasets generated by the models
(e.g., MODIS-ET) have been validated at a global scale, their performances at regional scales are yet to
be improved [29,37,39]. For the prediction of regional or basin ET, more elaborate schemes and more
careful calibration should be used to account for the ET variations at a smaller spatiotemporal scale.

The purpose of this study is to investigate the evolution of eco-hydrological processes and
the driving mechanism in the PLB during the past several decades. By using a process-based
evapotranspiration model integrated with the Global land surface satellite (GLASS) LAI products at
5 km resolution from 1982 to 2016, the spatiotemporal pattern of ET and the driving forces in the Gan
River basin (GRB), the largest sub-basin of the PLB, are explored. The following issues are revealed: (1)
multi-temporal variabilities of ET over the GRB and over ecosystems during the past several decades;
(2) driving forces that dominated ET multi-temporal variabilities; (3) contributions of climate change
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and human activities (mainly referring to the land use/cover change, agricultural management, etc.)
on the interannual trend of ET over ecosystems and over the GRB.

2. Method and Materials

2.1. Study Basin

Located on the south bank of the middle reaches of the Yangtze River, the Gan River basin (GRB)
is the largest sub-basin of the Poyang lake and also one of the principal southern tributaries of the
Yangtze River, with an approximate area of 83,500 km2 (Figure 1a). Landforms in the basin are relatively
complex, with the central and south parts being dominated by mountainous regions and subordinate
hilly areas, and the lower basin featured with alluvial plains [40]. Hence, the altitude span of the GRB
is fairly large, ranging from 2045 m in the southwest to 12 m in the north. The total length of the Gan
River is 815 km, and the multiannual average discharge was 6.79 × 1010 m3 over the period 1953–2014
at Waizhou station—the outlet of the GRB, accounting for 50% of the total runoff within Poyang Lake
Basin. Land use derived from the Landsat ETM+ in 2015 showed that forest land is dominated in
the GRB, accounting for 65.2% of the total area (Figure 1b). Agricultural land, pasture, urban areas,
and open water cover 24.9%, 5.5%, 2.3%, and 1.6% of the basin, respectively. The double rice cropping
system (early rice and later rice) prevails over the plain areas of the GRB.
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Figure 1. (a) Location of the Gan River basin and the distribution of hydrological stations,
meteorological stations and the flux tower; (b) land use/cover map of the Gan River basin in 2015 (ENF:
evergreen needle-leaved forest; EBF: evergreen broad-leaved forest).

The GRB has a humid subtropical climate mainly governed by the East Asian monsoon, with an
average annual temperature ranging from 16.6 ◦C to 20.3 ◦C, and an average annual precipitation from
1450 mm to 1770 mm. The precipitation shows strong seasonality, with 53.2% of the annual amounts
concentrated in the wet season (March to June) but only 28.2% in the dry season (July to October)
(Figure 2). Therefore, the wet season is more prone to flooding, while the dry season is vulnerable to
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drought [41]. Meteorological observations showed a warm-wet trend in climate over the past decades,
with an annual trend of 0.014 ◦C year−1 for the air temperature and 4.136 mm year−1 for precipitation
(Table 1). Meanwhile, both wind speed and relative humidity exhibited a negative trend, in line with
that of other parts of eastern China [42]. The seasonal variations of streamflow are principally driven
by precipitation, showing an increase in the first half of the year, and then a decrease in the second half
of the year with a sharp decline from June to August.
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Figure 2. Monthly precipitation and air temperature in the Gan River basin (GRB) averaged over the
period of 1982–2016.

Table 1. Inter-annual trends of the annual and monthly air temperature (T), precipitation (P), wind speed
(U), and sunshine duration (SD) from 1982 to 2016 over the Gan River basin (GRB).

Climatic Variables Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

T (◦C year−1) −0.003 −0.027 0.067 ** 0.041 * 0.008 0.012 0.001 −0.004 0.017 0.028 0.015 0.01 0.014
P (mm year−1) 0.17 −2.4 ** −1.332 −0.522 1.975 1.173 1.231 1.36 −0.271 −0.858 2.209 * 1.401 4.136

U (m s−1 year−1) −0.013 ** −0.011 ** −0.014 ** −0.009 ** −0.011 ** −0.013 ** −0.014 ** −0.004 −0.009 ** −0.01 ** −0.009 ** −0.008 ** −0.01 **
SD (h year−1) −0.235 1.004 1.002 * 0.281 −0.743 −0.869 −0.764 −1.048 −0.355 0.069 −0.933 −0.891 −3.48

Significance level: * (p < 0.05) ** (p < 0.01).

2.2. Model Description

The model used in this study is a daily-scale process-based ET model. It adopts a dual-source
scheme on the basis of the Penman–Monteith equation. In this model, net radiation at the canopy
top (Rn, MJ/(m2

·d)) is further partitioned into energy for the canopy and that for the soil (Rnc for the
canopy and Rns for the soil). Correspondingly, total ET is calculated as the sum of canopy transpiration
(Ec), soil evaporation (Es), and the canopy interception evaporation (Ei) using the Penman–Monteith
type equation [43]. Ec and Es (mm/d) are estimated as follows:

Ec =
1
λ

∆Rnc + FrρCpD/rac

∆ + γ (1 + rc
rac

) (1)

Es =
1
λ

∆(R ns − G) + (1 − F r) ρCpD/ras

∆ + γ (1 + rs
ras

) (2)

where λ is the latent heat of vaporization of water (MJ/kg); ∆ is the slope of the saturated vapor pressure
curve versus air temperature (hPa/K); G is the soil heat flux (MJ/(m2

·d)); Fr is the fractional vegetation
cover and retrieved with the remote sensing vegetation index [44]; rc and rs are the bulk canopy stomatal
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resistance and soil surface resistance, respectively (s/m); rac and ras are the aerodynamic resistances on
the canopy and soil surface, respectively (s/m); γ, ρ, Cp, and D represent the psychrometric constant
(hPa/K), air density (kg/m3), specific heat capacity of air (MJ/(kg·K)), and vapor-pressure deficit
(hPa), respectively.

Net radiation at the top of the canopy (Rn) is estimated using the empirical relationships
recommended by the Food and Agriculture Organization (FAO) [43], in which Rn is calculated as the
difference between net shortwave radiation (Rns) and net long-wave radiation (Rnl), namely:

Rn = RS −RL (3)

RS = (1− α)
(
0.25 + 0.5

n
N

)
RO (4)

RL =
(
0.1 + 0.9

n
N

)(
0.34− 0.14

√
ea
)
σ(Ta + 273)4 (5)

where RS and RL are the incoming net shortwave radiation and the outgoing net long-wave radiation
(MJ/d), respectively; RO is the incoming solar radiation at the top of the atmosphere (MJ/d); α is the
land surface albedo; n and N are the actual and potential sunshine durations, respectively; ea is the air
vapour pressure (hPa); σ is the Stefan–Boltzmann constant; and Ta is the daily average air temperature.
The land surface albedo (α) used for calculating Rns is related to leaf area index [45] as:

α = αm − (αm − αs) exp(−0.56 LAI) (6)

where αm and αs are the albedo corresponding to the “closed” canopy and the bare soil, respectively.
According to Liu et al. [46], surface albedo in barren land varied from 0.194 to 0.250 during an average
year. Therefore, αs = 0.25 is used in this study given that αs denotes the surface albedo in an ideal bare
surface. αm is from the literature and varies with vegetation types [36]; LAI is the satellite-based leaf
area index. Rn is further partitioned into Rnc and Rns using a layer approach of Beer’s law, namely,
Rnc = Rne−kcLAI and Rns = Rn −Rnc, in which kc is the extinction coefficient for net radiation.

Bulk canopy stomatal resistance (rc) is estimated using the approach proposed by Jarvis [47],
in which rc is assumed to be a function of vegetation type (denoted by the minimum leaf stomatal
resistance under the optimal condition) and the environmental conditions. The soil surface resistance
(rs) is related to the soil water content near the soil surface layer. The aerodynamic resistance on the
canopy surface (rac) is calculated using the scheme of Choudhary et al. [48], which is a function of
canopy structure (represented by the characteristic length of leaf width), leaf area index, and wind
speed at the canopy height. The aerodynamic resistance on the soil surface (ras) is estimated using the
approach proposed by Guan et al. [49], which is a transformation of the scheme of Campbell et al. [50].

Soil water movement is described using a discrete form of Richards’ equation. The root zone
(soil depth within 1.6 m) is divided into three layers in the vertical direction. Soil water exchange
between layers is governed by Darcy’s law in which the soil hydraulic parameters are estimated using
the scheme of Clapp et al. [51], and the changes of soil water in each layer are simulated based on
a water-balance equation. Rainfall infiltration is an external forcing of soil water movement and is
estimated using the water storage capacity curve method on a daily scale.

In this study, we assume that the long-term trend of LAI (vegetation greening) may represent the
effects of human activities on crop and natural ecosystems. Therefore, human activities are mainly
incorporated into the model via LAI, which is used to retrieve the vegetation dynamics and land
surface characteristics. Irrigation is assumed as the main way of anthropogenic water utilization over
the GRB. During the rice-growing period (late April to early November), the volume of irrigation
water at different growth stages was set according to the Agricultural Irrigation Water Quota of the
Jiangxi Province.
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2.3. Data

2.3.1. Model Input Data

The model input data include Digital elevation model (DEM), land use/cover, vegetation characteristic,
soil physical properties, and atmospheric forcing variables. The DEM data originated from the SRTM
90 m Digital Elevation Database v4.1 (http://srtm.csi.cgiar.org/srtmdata/) and was used to derive the
topography map of the GRB. Also, it was used for spatial interpolation of climatic variables.

A land-use/cover dataset (LU, spanning from 1980 to 2015 and being available in every five
years) and a vegetation type dataset (VT) were used to generate the land use map of the GRB. The LU
classification was derived from the Landsat TM/ETM+ images for each period, and the VT dataset
was originated from the 1:1,000,000 vegetation map of China [52]. These datasets were all provided
by the Data Center for Resources and Environmental Sciences, the Chinese Academy of Sciences
(RESDC) (http://www.resdc.cn), and were available with a spatial resolution of 1 km. The land use
map of the GRB was derived from a combination of the LU and VT, in which the overall pattern of
land use in the LU was preserved while the more detailed vegetation type information in the VT was
also incorporated.

The Global Land Surface Satellite (GLASS) LAI product, generated from the Moderate-Resolution
Imaging Spectroradiometer (MODIS) and Carbon Cycle and Change in Land Observational Products
from an Ensemble of Satellites (CYCLOPES) LAI products as well as MODIS reflectance products [53],
was used to retrieve canopy phenology and land surface characteristics. This dataset spans from 1982
to 2016 with an eight-day temporal composite at 5 km spatial resolution. For quality control, the LAI
data were first corrected with Savitzky–Golay (S–G) filter, which has been confirmed to be a reliable
way to remove the contamination by cloud and abrupt points [54]. Then, the eight-day data were
interpolated to daily values using the Lagrange polynomial method.

Soil texture data were digitized from a 1:1,000,000 scale map [55] in which the surface soil texture
was classified into 11 types, according to the fractions of sand, silt, and clay. The parameters of soil
porosity and saturated hydraulic conductivity are estimated as in Bonan [56].

Daily meteorological data (precipitation, air temperature, air pressure, relative humidity,
wind speed, and sunshine duration) at 35 stations inside and around the GRB were employed
to generate the spatial regime of atmospheric forcing with the spatial resolution of 5 km by gradient
inverse distance square (GIDS) method [57], in which the effects of terrain, latitude, and longitude
were considered with multivariate regressive analysis.

All of the geographic information and remote sensing data were projected into the Lambert
Azimuthally Equal-Area Projection with a spatial resolution of 5 km. A summary of the datasets used
in this study can be seen in Table 2.

Table 2. Summary of the datasets used in this study.

Datasets Spatial
Resolution

Temporal
Resolution Time Span Source

Digital Elevation Model (DEM) 90 m × 90 m http://www2.jpl.nasa.gov/srtm/
Land use/cover data 1 km × 1 km 5\five-year 1980–2015 http://www.resdc.cn
Vegetation type map 1 km × 1 km http://www.resdc.cn

Global land surface satellite
(GLASS) LAI 5 km × 5 km eight-day 1982–2016 http://glass-product.bnu.edu.cn/

Soil texture data 1:1,000,000 scale http://geodata.pku.edu.cn
Daily meteorological observations N/A daily 1980–2016 http://data.cma.cn/

Gravity Recovery and Climate
Experiment (GRACE) RL 05 data 1.0◦ × 1.0◦ Monthly 2002–2015 http://www2.csr.utexas.edu/grace/

Eddy covariance flux measurements
at Qianyanzhou station daily 2003–2005 http://www.chinaflux.org/

http://srtm.csi.cgiar.org/srtmdata/
http://www.resdc.cn
http://www2.jpl.nasa.gov/srtm/
http://www.resdc.cn
http://www.resdc.cn
http://glass-product.bnu.edu.cn/
http://geodata.pku.edu.cn
http://data.cma.cn/
http://www2.csr.utexas.edu/grace/
http://www.chinaflux.org/
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2.3.2. Data for Model Validation

Eddy covariance flux measurements spanning from 2003 to 2005 at Qianyanzhou (QYZ) station
(115◦03′29.2” E, 26◦44′29.1” N) were used for the validation of daily-scale ET simulations. The land
cover at QYZ station is the evergreen needle-leaved forest, which is one of the main vegetation types in
GRB. The regional ET at monthly and annual scales was validated with the water-balance derived ET
at the basin scale, which is expressed as the residual of the water-balance equation, namely:

ET = P − R − ∆S (7)

where P and R represent the monthly or annual precipitation and runoff, respectively; ∆S is the change
in the terrestrial water storage (TWSC) during the corresponding period. The monthly runoff data at
the Waizhou hydrological station were collected from the Hydrologic Yearbook of China. The soil
water content simulated by this model was not used as the representation of water storage, because the
terrestrial water storage (TWS) consists of not only the soil water but also the stored surface water
and the groundwater storage. Instead, the Gravity Recovery and Climate Experiment (GRACE) data,
which represent the terrestrial water storage anomalies (TWSA) over the global surface, were used in
this study (https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/).

The GRACE satellites acquired monthly terrestrial water storage anomalies by monitoring the
spatial-temporal variations of the Earth’s surface mass, which have been widely used to derive the
spatial-temporal patterns of TWS [58], groundwater [59], ET [60,61], etc. In this study, the GRACE
RL05 data released by Center for Space Research of the University of Texas (CSR) were used to derive
the monthly/annual ET time series, and thus, provide validation for the modeled ET on the basin scale
(http://www2.csr.utexas.edu/grace/). This dataset covers the period from April 2002 to December 2015
with a spatial resolution of 1.0◦ × 1.0◦. In the generation of the GRACE RL05 product, a de-striping filter
and a 300-km Gaussian filter were applied to the primitive GRACE data to minimize errors associated
with the correlated noise and instrumental noise, which are manifested as north-south striping patterns
in the spatial domain. In this study, the data were re-corrected by the scaling factor approach to restore
signal losses arising from the sampling and post-processing of GRACE data (i.e., leakage errors) [62].
The scaling factor approach uses the TWS output from land surface models (LSMs) to generate scaling
factors for correcting the errors in GRACE data [63]. In this study, the scaling factors were generated
based on an LSM in the Global Land Data Assimilation System (GLDAS), i.e., the Variable Infiltration
Capacity (VIC) [63]. Although the GRACE data provide an unprecedented opportunity to validate
or constrain the hydrological model in combination with streamflow observations [64,65], the coarse
spatial resolution may introduce uncertainties in the estimation of TWSA for middle-scale basins such
as the GRB, because considerable proportions of GRACE grids within the GRB are across the basin
boundary (Figure 3a). To this end, we generated a finer resolution (0.25◦ × 0.25◦) time series of TWSA
(Figure 3b) over the GRB using a model-based downscaling approach proposed by Wan et al. [66],
in which the finer spatial patterns of the model-based TWSA are incorporated into the GRACE TWSA
data, while the original spatial variations of GRACE TWSA are also preserved. In this study, a 0.25◦ ×
0.25◦ hydrological variable dataset generated by the Variable Infiltration Capacity (VIC) model was
employed to downscale the GRACE data [67]. Figure 3 shows the inter-annual trends of the original-
and downscaled- GRACE TWSA in June from 2000 to 2012. As shown in Figure 3, the downscaled
GRACE data exhibited a similar spatial pattern but provided more detailed spatial information than
the original GRACE data.

The downscaled gridded GRACE data were then aggregated to the basin-scale TWSA. To better
interpret the inter-annual variations of ET in the GRB, a long-term basin-scale TWSA time series from
1982 to 2015 was reconstructed by setting up a multiple regression model, with annual precipitation
and annual runoff as the predictor variables and TWSA as the response variable. The regression model
came out to be strongly significant (R2 = 0.86, p < 0.01). As shown in Figure 4, the reconstructed TWSA

https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
http://www2.csr.utexas.edu/grace/
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and GRACE TWSA showed similar inter-annual variations from 2003–2015, both exhibiting favorable
agreement with precipitation anomalies at the inter-annual timescales.
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2.4. Methods

2.4.1. Analysis Methods

The ET of the GRB was simulated from 1980 to 2016 with a 5 km spatial resolution and daily
time step, wherein, the first two years were taken as the warming-up period. To evaluate the
relationship between two variables, Pearson’s correlation analysis was performed with the coefficient
of determination (R2) to describe its level of significance. To trace the inter-annual variation of ET,
LAI, and climate variables, the long-term annual trends of these variables were determined by the
slope of the simple linear regression model. In addition, the partial correlation analysis was used to
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investigate relationships between ET, LAI, and climate variables, considering that all the variables are
associated with each other. The partial correlation analysis was conducted with the linear trends of all
the variables removed in order to focus on the relationship of the year-to-year variations. The statistical
significance of a linear trend or a linear correlation was assessed using the t-test with a confidence
interval of 95% (i.e., p < 0.05).

2.4.2. Sensitivity Analysis Method

Sensitivity/Elasticity theory has been widely adopted in analyses of hydrological variables in
recent years [68–70]. The essence of this theory is to reveal the response rates of the dependent
variable to multiple independent factors by setting up a linear regression model with variations.
The sensitivity/elasticity coefficient represents the response rate of the dependent variable, responding to
the variation of each independent variable. In this study, the long-term response of ET to climate
variability and vegetation greening was revealed by the sensitivity method.

For the soil-plant-atmosphere continuum system, the water vapor flux (ET) between the
land surface and the atmosphere is determined by multiple climatic drivers (Precipitation (P),
Temperature (Ta) and sunshine duration (SD), etc.) and the vegetation condition (represented
by LAI in this study), namely,

ET = f (P, Ta, SD, LAI, . . .) (8)

The changes in ET in response to the small changes of multiple drivers can be expressed
approximately with the first-order Taylor expansion as:

∆ET �
∂ f
∂P

∆P +
∂ f
∂Ta

∆Ta +
∂ f
∂SD

∆SD +
∂ f
∂LAI

∆LAI + . . . (9)

where ∆ET, ∆P, ∆Ta, ∆SD, and ∆LAI represent absolute changes in ET, precipitation, air temperature,
sunshine duration, and LAI, respectively; ∂ f

∂P , ∂ f
∂Ta , ∂ f

∂SD , and ∂ f
∂LAI denote the response rates of ET

responding to changes in precipitation, air temperature, sunshine duration, and LAI, respectively.
The values of these response rates depend on the unit of the independent variables. In other

words, they are dimension-dependent. To eliminate the influence of dimensions, the absolute changes
in the variables were replaced by the corresponding relative changes (except for Ta, for which the
sensitivity to a perturbation of 1K is more useful), and Equation (3) was rewritten as:

∆ET

ET
= SP

∆P

P
+ STa∆Ta + SSD

∆SD

SD
+ SLAI

∆LAI

LAI
+ . . . (10)

where ET, P, SD, and LAI refer to the long-term averaged values of ET, precipitation, air temperature,
sunshine duration, and LAI, respectively. SP, SSD, SLAI and STa are the sensitivity coefficients of ET in
response to changes in precipitation, sunshine duration, LAI and air temperature, respectively. Then,
contribution of one single variable to ET change could be expressed as (take LAI as an example):

Con(LAI) = SLAI
∆LAI

LAI
ET (11)

where Con(LAI) is the contribution of LAI change (∆LAI ) to ET change. If ∆LAI indicates the
inter-annual trend of LAI, Con(LAI) should be interpreted to the contribution of LAI trend to ET trend.

The conceptual scheme and methodology flow chart for this study can be seen in Figure 5.
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Figure 5. Flow chart of the methodology employed in this study.

3. Results

3.1. Model Validation

The simulated daily ET rates in the pixel, where QYZ site is located, were validated with
measurements of eddy covariance at QYZ site, a needle-leaved forest field within the GRB. In general,
agreements between measurements and predictions are quite satisfactory. As shown in Figure 6,
the simulated and measured daily ET exhibited a significant correlation, with the coefficient of
determination (R2) of 0.63 (p < 0.01), and the root mean square errors (RMSE) of 0.80 mm/d. This indicates
that the simulated daily ET basically traced the seasonal fluctuations of the field measurements. It is
noted that the model generated more severe errors in overprediction than underprediction, especially in
the 2–3 mm/d range. This may be partly owing to the oversimplified empirical relationship between
surface albedo and LAI in the Uchijima [45] scheme (Equation (6)), which might have led to an
underestimation of surface albedo (α) and an overestimation of the net radiation (Rn) in late spring
and early autumn when the LAI has reached or still remained a high level. In addition, the mismatch
between the flux tower footprint (usually hundreds of meters) and the pixel size (5 km) used in this
study may be another source of the biases. Also, the uncertainties stemmed from the interpolation of
the climatic variables in spatial and temporal aspects should be concerned.
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The water-balance derived ET at annual and monthly scales were used to verify the simulated
basin-scale ET over the GRB, which were calculated as average ET values over the whole basin.
As shown in Figure 7, simulated and water-balance derived basin-scale ET were in good agreement,
with R2 values being 0.57 and 0.53, and the RMSE being 26.6 mm year−1 and 24.8 mm month−1 for the
annual and monthly series, respectively. Both of the correlations were significant at the 99% confidence
level (p < 0.01). From 1982 to 2016, the modeled average annual ET over the whole basin was 747.2 mm
year−1, which was quite close to the water-balance derived average annual ET (744.7 mm year−1).
However, the water-balance derived annual/monthly ET was generally higher than the simulated
annual/monthly ET when the annual ET was above 750 mm year−1 or the monthly ET was over 100 mm
month−1. These biases may be partly attributed to the underestimation of precipitation due to missing
of some local storm events in hilly regions of GRB, where the meteorological stations were relatively
sparse. In addition, the higher uncertainty of GRACE TWSA in relatively small basins (≤200,000 km2)
may be another source of these biases [61,63].
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3.2. Spatial Patterns of ET, P, and LAI

On a regional scale, the spatial-temporal dynamics of actual ET (ETa) are principally controlled
by both precipitation and available energy (denoted by potential ET (ETp) and defined as the FAO
reference crop evapotranspiration in this study) and regulated by the vegetation condition (represented
by LAI) [71]. Their regulations on the ETa dynamics are associated with the corresponding spatial and
temporal scales.

As shown in Figure 8, the average annual ETa, precipitation (P), ETp, and growing season (March to
October) LAI (LAIg) illustrated large spatial variabilities over the study basin. The spatial distribution
of precipitation showed a remarkable bipolar pattern, with the south-western quadrant being the
driest area (<1500 mm year−1) and the north-eastern edge being the wettest part (>1700 mm year−1).
Regulated by patterns of solar radiation and humidity associated with precipitation, ETp exhibited a
spatial pattern similar to precipitation but opposite in phase; that is, the highest values were located
in the south-western quadrant, and the lowest values were distributed on the north-western edge.
It is noted that the distribution of ETp in the north part was also regulated by the terrain; ETp values
in western mountainous areas were obviously lower than those in the eastern plain. However,
the spatial gradient of ETp is significantly smaller than that of precipitation, being about half of
the latter. The spatial pattern of LAIg was clearly associated with topography and land-use types.
Higher LAIg values were mainly distributed in the middle and high mountainous areas where the
forests are dominant, and lower LAIg values were located in the northern plains and intermountain
basins in which the urban areas and cropland are concentrated.
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(c) potential ET (ETp), and (d) precipitation (P) over the period 1982–2016 in the GRB.

Due to the comprehensive influence of various factors mentioned above, the spatial pattern of ETa
was relatively complicated, varying in all cardinal directions (Figure 8a). However, some identified
spatial features still indicate that the spatial variability of ETa mainly followed that of LAIg. Generally,
ETa was relatively high in densely vegetated areas in the central and southern regions, ranging from
750 to 900 mm year−1. Low ETa values were mainly concentrated in densely populated regions in
plains and intermountain basins, being lower than 650 mm year−1. In irrigated croplands, however,
ETa values were generally higher than those in the surrounding natural vegetation areas, ranging from
650 to 930 mm year−1. Over the water bodies, ETa was about 1100 mm year−1, roughly equal to
the potential evaporation. Averaged over the whole basin, the mean annual ETa was 747.2 mm
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year−1, accounting for 46% of the corresponding annual precipitation. This means that over a decade,
water availability may not be a limiting factor for the atmospheric evaporative demand.

There are noticeable differences in spatially averaged ETa between vegetation types (Figure 9a).
It is seen that ETa in cropland is a bit higher than that in the natural vegetation, although the atmospheric
water demand (i.e., ETp) is relatively low. This is mainly because irrigation input mitigated the water
stress in cropland during dry seasons. Among the natural vegetation types, the evergreen broad-leaved
forest (EBF) has the highest ETa rate, which is associated with its relatively large leaf area and low
stomatal resistance. The spatial correlation coefficient (r) between ETa and LAIg for each vegetation
type ranged from 0.43 (for shrub (SH)) to 0.69 (for EBF), being much higher than that for the whole basin
(0.24), which does not exclude the physiological differences among the vegetation types. Therefore,
it is concluded that the spatial heterogeneity of ETa is principally dominated by the vegetation type
and LAI patterns together.Water 2019, 11, x FOR PEER REVIEW 14 of 26 
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Figure 9. Spatially averaged annual ETa and ETp (a) and the statistics of ETa temporal variabilities (b)
over ecosystems within the GRB. Error bars are the spatial standard deviations. Boxplots of each panel
illustrate the first and third quantile ranges (box), the median (red circle), and the maximum–minimum
range (whiskers) of ETa. (ENF: evergreen needle-leaved forest, EBF: evergreen broad-leaved forest,
SH: shrub, GL: grassland, CL: cropland, WB: water body).

3.3. Temporal Variations of ET, LAI, and P

3.3.1. Intra-Annual Variations

Averaged spatially over the whole basin, the monthly variations of ET (ETa, ETp, and Ec), LAI,
and precipitation all showed strong seasonality (Figure 10a). Except for precipitation, all cases followed
a roughly symmetrical single-peak pattern, with the peak occurring in July. This synchronism indicated
that the intra-annual variability of water flux was generally dominated by the available energy and
canopy leaf area rather than water availability. However, the enlarged deviation between ETa and ETp
in July and August implied a limited water supply in the summer months. For the seasonal variations
of precipitation, a noticeable asymmetry pattern was observed, with the peak occurring in June and a
sharp decline from June to July. Hence, the monthly variations of precipitation in the growing season
(March to October) can be divided into two phases, a wet season lasting from March to June and then a
dry season lasting from July to October. In the wet season, monthly precipitation is much higher than
both ETp and ETa, and only 34.2% of the wet-season precipitation returned to the atmosphere through
ETa. In the dry season, however, monthly precipitation quickly decreased to levels comparable to
ETp, even lower than the latter in some months, exerting water stress on the atmospheric evaporative
demand. During this stage, 76.9% of cumulative precipitation was consumed by ETa, more than twice
that during the wet season.
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(CV) of ETa, ETp, Ec, P, and LAI.

The inter-annual coefficients of variation (CVs) of monthly ET (ETa, ETp, and Ec), LAI,
and precipitation, are presented in Figure 10b. It is shown that the inter-annual CVs of monthly ETa
and ETp illustrated similar seasonal variabilities, with a correlation coefficient (r) of 0.73 (p < 0.01).
However, the inter-annual CVs of monthly Ec are more similar to those of monthly LAI, in magnitude
and in shape, indicating that the seasonal variability of transpiration is primarily controlled by the
vegetation phenology evolution. For each month, the inter-annual CV of monthly precipitation is the
highest of CVs of all variables, indicating that the water availability has higher inter-annual oscillation
amplitudes than the atmospheric water demand.

3.3.2. Inter-Annual Variations

Inter-annual variation of ETa is controlled by climate variability/change and land-use changes.
As shown in Figure 11a, ETp exhibited a slightly decreasing trend during the period 1982–2016,
which mainly resulted from the offsetting between the negative effects of declining wind speed (−0.1 m
decade−1, p < 0.01) & reduced sunshine duration (−34.8 h decade−1, p = 0.12) and the positive effect of
air warming (0.14 ◦C decade−1, p = 0.05) [72]. It is noticed that the ETp decreasing trend tended to level
off since 2002, possibly due to the accelerating air warming in the GRB since the 2000s. Simultaneously,
ETa showed a slightly increasing trend with lower inter-annual oscillation amplitudes than those
for ETp over the study period. The year-to-year changes of ETa and ETp demonstrated a strong
correlation (r = 0.66, p < 0.01), indicating that the inter-annual variations of ETa were principally
dominated by available energy. As the main component of ETa, Ec illustrated a remarkably similar
inter-annual variation with ETa, but with a much stronger positive tendency. This indicates that
the evapotranspiration partitioning have significantly changed due to the rapidly increasing ratio of
transpiration to evapotranspiration (Ec/ETa), which is confirmed to be closely correlated with the LAI
(r = 0.91, p < 0.01). Therefore, LAI increase may have exerted a more discernable effect on the long-term
process of ETa.

On a monthly scale, ETa mainly increased in the spring and autumn months but decreased in
summer months (Figure 11b). The positive tendencies may be attributed to the positive trends of
monthly LAI and ETp. However, a decline of ETp closely linked to the negative trend of sunshine
duration may lead to the downward tendency of ETa in June and August. Owing to the positive
effects of increased LAI and precipitation on transpiration, Eta, and ETp in summer months did not
change proportionally and even show the opposite trends. The inter-annual variabilities of ETa over
ecosystems were displayed by boxplots shown in Figure 9b. It is illustrated that the temporal variability
of ETa (i.e., the ETa range between quartile lines) in cropland was much higher than those in natural
vegetation communities, close to that in the water body, possibly owing to the relatively low stomatal
resistance and sufficient water supply. Among natural vegetation communities, EBF has the highest
ETa inter-annual range, exhibiting a more sensitive eco-hydrological response to climate variations.
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Figure 11. Inter-annual variations of annual ETa, ETp, Ec, and Ec/ETa (a) and inter-annual trends of
monthly ETa and ETp (b) from 1982 to 2016 (significance levels: * is p < 0.05; ** is p < 0.01).

Based on the Budyko framework, the dryness index (ETp/P) and evaporative index (ETa/P) of
each year for every vegetation type were calculated and plotted against the Budyko curve [73] to
investigate the long-term hydrological responses of different ecosystems to the climatic variability [74].
The location of a particular ecosystem in Budyko’s space illustrates a reference condition of the annual
water balance as a function of the climatic conditions during any particular year [75].

As shown in Figure 12a, Budyko points of each ecosystem are all below the energy limit line and
concentrated around the Budyko curve. This indicated that the long-term evolution of hydrological
condition was mainly controlled by energy availability and that the hydrological response of each
ecosystem to climate variability has been basically stable so far. It is noticed that the evaporative
index of cropland was generally higher than that of other ecosystems, owing to the irrigation input
and agronomic management. An interesting finding was that the evaporative index over cropland
presented a weakly positive trend (0.007 decade−1, r = 0.08) during the study period, whereas the
evaporative index over the rest of the ecosystems, as well as over the GRB, all demonstrated a slightly
negative trend (−0.015–−0.003 decade−1, r = −0.21–−0.04), in accordance with the tendency of dryness
index (−0.019–−0.012 decade−1, r = −0.16–−0.10). This phenomenon may be owing to the sufficient
water supply and increasing LAI in the cropland and confirms the prominent role of agricultural
practices (such as large-scale irrigation) in the long-term evolution of the water cycle [76].
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Figure 12. Reference hydroclimatic conditions of five ecosystems in Budyko’s space (a) and the statistics
of the temporal variabilities of the dryness index (ETp/P) and evaporative index (ETa/P) for each
ecosystem (b) during the period 1982–2016. In Figure 12b, the boxplots with red circles show statistics
of the dryness index, and those with blue circles show statistics of the evaporative index.

Figure 12b shows the ranges of the dryness index and evaporative index during the study period
for each ecosystem. It is found that the evaporative index for evergreen needle-leaved forest (ENF) and
shrub (SH) was slightly lower than that for the rest of the ecosystems, whereas there were no distinct
differences in climate conditions (dryness index) between ecosystems. This is closely related to their
physiological characteristics and the higher stomatal conductance.
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3.3.3. Temporal Trend of ETa in Relation to P, ETp, and LAI

The inter-annual trends of ET, precipitation, and LAIg showed quite different spatial patterns
(Figure 13). Precipitation exhibited an upward trend almost throughout the basin, although significant
trends were identified in only 5% of the whole basin (p < 0.05). A noticeable wetting trend (>15 mm
year−2 for precipitation) was identified in the western mountainous areas where a large amplitude
of dry-wet transition from the 1980s to 2000s was observed. Similar to the patterns of average
annual ETp and precipitation, ETp generally demonstrated a temporal tendency that is opposite to
precipitation trend. ETp was significantly decreasing mainly in the western part (19.6% of the whole
basin, p < 0.05), corresponding to the noticeable wetting trend in this area. LAIg was significantly
increasing in almost the whole basin (97.8% of the GRB, p < 0.05), revealing remarkable vegetation
greening trend throughout the GRB. The spatial pattern of the LAIg trend is clearly related to the
topography and land-use types. The LAIg trend in the mountainous areas is evidently higher than
that in plain areas, agreeing well with the pattern of MRL and GFG projects, in which the farmland in
hilly or mountainous areas was designed to be converted to forestland, and the existing forest land
was improved and conserved.Water 2019, 11, x FOR PEER REVIEW 18 of 26 
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Figure 13. Spatial patterns of inter-annual trends of ETa (a), LAIg (b), ETp (c), and P (d) over the GRB
during the period 1982–2016. Locations with statistically significant trends (p < 0.05) are shown in the
sub-panels, where positive trends are marked in blue and negative trends in red.
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Compared with trends of other variables, the trend of ETa showed more significant spatial
variability over the basin (Figure 13a), displaying a comprehensive response of water vapor flux to
both climate variabilities and human activities. ETa significantly increased and decreased in 37.2%
and 16.8% of the whole basin, respectively (p < 0.05); the former was mainly concentrated in and
around the mountain basins in the upper GRB, and the latter was more scattered in the lower plains
of the GRB. Averaged over the whole basin, the inter-annual trend of ETa was 0.88 mm year−2 from
1982 to 2016. However, averaged spatially over ecosystems, ETa trends were remarkably different,
ranging from −4.35 to 2.29 mm year−2 (r = −0.79–0.53 Figure 14a). ETa in the evergreen broad-leaf forest
and cropland was increasing while the trend in other ecosystems was negative. These inconsistencies
may be owing to differences in LAI trends and physiological characteristics (such as canopy stomatal
conductance) among vegetation types.
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ecosystems (a); partial correlation coefficients between ETa and its driving forces for each ecosystem (b).

The partial correlation coefficients (R) were calculated to investigate the driving effects of
precipitation, ETp, and LAI on the ETa trend over different ecosystems (Figure 14b). It is found that the
R-value between ETa and ETp (RETa-ETp) was the highest for all ecosystems, confirming the dominant
effects of available energy on the year-to-year changes of ETa. Except for the water body, RETa-P was
positive for all the ecosystems, with little differences among vegetation types. Compared with
RETa-ETp and RETa-P, RETa-LAIg values were much lower for all the ecosystems, mainly because the trend
components were removed from all the time series. However, it can be inferred that LAIg has had a
large impact on the ETa trend since the trend of LAIg was much more significant than those of the ETp
and precipitation. The opposite ETa trends to those for other ecosystems may be partly attributed to
the higher RETa-LAIg values of EBF and CL than those of others.

3.4. Sensitivity to Inter-Annual Variability in Climate and LAI

Sensitivity analysis was performed on a grid basis to further determine the quantitative relationship
between ETa and its driving factors. To avoid collinearity between climatic variables, only three
independent variables (precipitation, air temperature, and sunshine duration) were used to represent
water and energy availabilities. LAI was used to characterize the vegetation change. Partial correlation
analysis indicated that there were only weak correlations among the selected variables (r = −0.33–0.34,
p = 0.054–0.687), and the collinearity is unlikely to have a major impact on the sensitivity analysis.

Figure 15 shows the inter-annual sensitivities of annual ETa to climate and LAI variabilities.
It is found that there were both spatial and inter-ecosystem differences in sensitivities. As shown in
Figure 15a, sensitivities of annual ETa to precipitation (S (ETa, P)) were generally positive, but the
magnitude was relatively low (most values ranged from −0.05 to 0.16). High S (ETa, P) values were
mainly concentrated in the upstream mountainous areas where the precipitation was relatively low.
Also, S (ETa, P) was relatively high in plain areas in the middle and lower reaches, indicating that there
was a certain degree of water stress in plain ecosystems during the dry season.



Water 2019, 11, 2568 19 of 25

Water 2019, 11, x FOR PEER REVIEW 20 of 26 

 

 
Figure 15. Sensitivities of annual ETa to the climatic variables and leaf area index. (a) Sensitivity of 
annual ETa to P; (b) Sensitivity of annual ETa to Ta; (c) Sensitivity of annual ETa to SD; (d) Sensitivity 
of annual ETa to LAI. 

Sensitivities of annual ETa to air temperature (S (ETa, Ta)) illustrated large spatial variability 
(Figure 15b). The positive values were dominant in upstream mountainous areas, whereas both the 
positive and negative values were distinctive in the downstream plain. Air warming will enhance the 
atmospheric water vapor deficit. However, a higher temperature during the dry season may result 
in the closure of leaf stoma, especially in the plain area.  

Sensitivities of annual ETa to sunshine duration (S (ETa, SD)) were generally positive with 
relatively high magnitude. High S (ETa, SD) values were concentrated in the cropland in middle and 
lower reaches where water supply was sufficient. The average S (ETa, SD) over the whole basin was 
0.083, much higher than that for precipitation (0.057) and for air temperature (0.011), confirming the 
dominant role of energy availability in driving water vapor flux in this humid basin.  

Sensitivities of annual ETa to LAI (S (ETa, LAI)) were generally positive and showed a spatial 
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annual ETa to LAI.

Sensitivities of annual ETa to air temperature (S (ETa, Ta)) illustrated large spatial variability
(Figure 15b). The positive values were dominant in upstream mountainous areas, whereas both the
positive and negative values were distinctive in the downstream plain. Air warming will enhance the
atmospheric water vapor deficit. However, a higher temperature during the dry season may result in
the closure of leaf stoma, especially in the plain area.

Sensitivities of annual ETa to sunshine duration (S (ETa, SD)) were generally positive with
relatively high magnitude. High S (ETa, SD) values were concentrated in the cropland in middle and
lower reaches where water supply was sufficient. The average S (ETa, SD) over the whole basin was
0.083, much higher than that for precipitation (0.057) and for air temperature (0.011), confirming the
dominant role of energy availability in driving water vapor flux in this humid basin.

Sensitivities of annual ETa to LAI (S (ETa, LAI)) were generally positive and showed a spatial
pattern closely linked to the vegetation coverage and ecosystem types. S (ETa, LAI) is positively
related to the canopy leaf area and is regulated by water availability. Namely, areas with high values
correspond to low vegetation coverage regions or cropland with irrigation input. Therefore, it can be
inferred that the eco-hydrological response of the farmland ecosystem to vegetation greening may be
more remarkable than that of the natural ecosystem.
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Based on the sensitivities of the annual ETa to climate and LAI, contributions of climate change
and vegetation greening to ETa trend were estimated over different ecosystems and over the GRB
(Figure 16). It is found that climate change contributed negatively to ETa trends in all the ecosystems,
whereas the contributions of vegetation greening were positive for all of the vegetation ecosystems.
The negative effects of LAI in Built-up land and water bodies are owing to the expansion of urbanization,
which resulted in deforestation and devegetation in urban areas and reduced water bodies around
cities. The contribution of vegetation greening in EBF was much higher than that in other natural
vegetation ecosystems. This may be related to the more distinct leaf area growth and lower stomatal
resistance in EBF. As a result, the negative effect of climate change on ETa has been eventually offset by
the positive effect of the increasing leaf area. It is noticed that the effect of climate change on ETa in
cropland was slight and neglectable. This may be closely linked to agronomic management (irrigation,
fertilization, and new cultivars adoption), which increased crop production and water consumption.
Averaged over the whole basin, contributions of the climate change and vegetation greening on the
ETa trend were −0.48 mm year−2 (−54.8%) and 1.36 mm year−2 (154.8%), respectively. It is clear that
vegetation greening was the dominant driver for the long-term trend of ETa in the GRB over the past
several decades.
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4. Conclusions and Discussion

Over the past several decades, climate change and human activities have largely altered the
hydrological regimes in the Basin of Poyang Lake (PLB), the largest freshwater lake of China, posing a
potential threat to water resources sustainability and ecosystem security. In this study, a process-based
ET model in conjunction with the GLASS LAI dataset was used to characterize the spatial-temporal
pattern of evapotranspiration from 1982 to 2016 over the largest sub-basin of PLB-Gan River Basin
(GRB). Validated with eddy covariance flux and water-balance derived ET, the model is proved to be
reliable. It should be pointed out that the daily-basis ET predictions were validated with only one flux
tower, and thus predictions in only one ecosystem were verified, leaving uncertainties in results based
on the ecosystem type to some extent. However, we expected that these limitations could not have
significantly influenced the final results since most parameters (including those related to vegetation
type) in the model are more physical rather than empirical.

Simulation results showed that the actual annual ET (ETa) weakly increased with an annual trend
of 0.88 mm year−2 from 1982 to 2016 over the GRB, along with a slight decline in annual potential
ET (ETp). The increases in ETa mainly occurred in spring and autumn, while ETa decreased in
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the summer, owing to the decline in sunshine duration. On an ecosystem basis, however, only the
evergreen broad-leaf forest and cropland presented a positive ETa trend, while the rest of the ecosystems
demonstrated negative trends of the ETa, being consistent with that of ETp. Both correlation analysis
and sensitivity analysis revealed a close relationship between ETa inter-annual variability and the
availability (represented by ETp). Correlation analysis illustrated that contributions of climate change
and vegetation greening on the ETa trend were −0.48 mm year−2 (−54.8%) and 1.36 mm year−2

(154.8%), respectively. Climate change had a negative impact on the ETa trend over the GRB. However,
the negative effects have been offset by the positive effects of vegetation greening, which mainly
resulted from the large-scale revegetation in forestland and agricultural practices in cropland. It is
concluded that human activities were the main drivers of the long-term evolution of ETa over the
GRB. Our results agree well with the results of Liu et al. [77], who studied the long-term evolution of
water cycle over eastern China during the past decades and concluded that climate change dominated
the inter-annual variability of ET, while land-use change exerted more discernable effects on the
hydrological process in the long run.

Long-term variations of ETa inevitably have an impact on the regional water and energy balance,
thus affecting other aspects of the hydrological cycle, including streamflow. On an annual scale,
our results showed a long-term positive trend in ETa but a weakly negative trend in the evaporative
index due to the more discernable increase in the precipitation. This negative trend in the evaporative
index was verified by the observed increase in the runoff coefficient over the last several decades [78].
This confirmed the dominant role of precipitation in the long-term variations of annual streamflow
in the study area [8,11]. On the seasonal and monthly scales, changes in ETa may have shown more
distinct effects on the streamflow. For example, an increase of ETa in spring may have decreased the
streamflow since the precipitation did not change significantly, thus reducing the flood potential in
this season [7]. However, a decrease of ETa along with an increase of precipitation in August have
resulted in a significant increase in the streamflow [11], thus alleviating the water stress [7], while a
significant increase of ETa together with a decrease of precipitation in October may have decreased the
streamflow and further enhanced the drought impacts.

Our study also revealed a significant change in the evapotranspiration partitioning due to the
rapidly increasing ratio of transpiration to evapotranspiration (Ec/ETa). Over the study period,
Ec/ETa in the GRB displayed a remarkable increase from 0.52 in 1982 to 0.78 in 2016, which is closely
related to the LAI increase. The multi-year average Ec/ETa over the GRB was 0.70, which agreed well
with the measured Ec/ETa of 0.72–0.77 in the subtropical forest sites of eastern China [79]. A higher
Ec/ETa level suggests a higher proportion of biological flux and a lower proportion of physical flux
between terrestrial ecosystems and the atmosphere [80]. This means that the GRB may have had a
higher hydrological resilience in response to the projected increase in climatic extremes, especially the
drought since vegetation can respond to the expected climatic and hydrological anomalies through
adjusting the leaf stomatal conductance [81,82].

Our study also indicates that an ecosystem-basis analysis is necessary to quantify the long-term
evolution of the hydrological cycle in response to environment changes. This study can improve
our understanding of the interactive effects of climate change and human activities on the long-term
evolution of water cycles.
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