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Abstract: The availability of brackish groundwater in the Negev Desert, Israel has motivated the 
cultivation of various salinity tolerant crops, such as olives trees. The long term suitability of surface 
drip irrigation (DI) or subsurface drip irrigation (SDI) in arid regions is questionable, due to salinity 
concerns, in particular, when brackish irrigation water is employed. Nevertheless, DI and SDI have 
been adopted as the main irrigation methods in olive orchards, located in the Negev Desert. Reports 
on continued reduction in olive yields and, essentially, olive orchard uprooting are the motivation 
for this study. Specifically, the main objective is to quantify the spatial distribution of salinity and 
sodicity in the active root-zone of olive orchards, irrigated with brackish water (electrical 
conductivity; EC = 4.4 dS m−1) for two decades using DI and subsequently SDI. Sum 246 soil samples, 
representing 2 m2 area and depths of 60 cm, in line and perpendicular to the drip line, were analyzed 
for salinity and sodicity quantities. A relatively small leaching-zone was observed below the 
emitters depth (20 cm), with EC values similar to the irrigation water. However, high to extreme EC 
values were observed between nearby emitters, above and below the dripline. Specifically, in line 
with the dripline, EC values ranged from 10 to 40 dS m-1 and perpendicular to it, from 40 to 120 dS 
m−1. The spatial distribution of sodicity quantities, namely, the sodium adsorption ratio (SAR, (meq 
L−1)0.5) and exchangeable sodium percentage (ESP) resembled the one obtained for the EC. In line 
with the dripline, from 15 to 30 (meq L−1) 0.5 and up to 27 %, in perpendicular to the drip line from 
30 to 60 (meq L−l)0.5 and up to 33 %. This study demonstrates the importance of long terms 
sustainable irrigation regime in arid regions in particular under DI or SDI. Reclamation of these soils 
with gypsum, for example, is essential. Any alternative practices, such as replacing olive trees and 
the further introduction of even high salinity tolerant plants (e.g. jojoba) in this region will intensify 
the salt buildup without leaving any option for soil reclamation in the future.  

Keywords: arid region; brackish water; sub surface drip irrigation (SDI); salinity; sodicity; olives 
trees 

 

1. Introduction 

Salinity and drought are the major abiotic stress factors limiting yield in arid regions [1]. To 
counteract these limitations, advanced irrigation management practices, such as drip irrigation (DI), 
were introduced and soon hailed as a breakthrough in agricultural efficiency [2]. Additionally, 
advanced breeding methods and genetic engineering tools have been developed to confer abiotic 
stress tolerance in different crops, with emphasis on enhanced tolerance to drought and high soil 
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salinity [3]. With the advent of these technologies, saline water agriculture has gained importance 
and facilitated cultivation in arid environments. Due to drought conditions (low precipitation) in arid 
regions soil, salinity often increases, impeding plant water uptake. The initial plant responses to 
salinity and drought stress are fundamentally identical across species and are often complex [4,5]. 
Plant root adaptations play a key role in coping with these stresses [6]. For the successful management 
of arid agriculture choice of crop, cultivar and irrigation management regimes play a key role.  

In the late 1970s, the introduction and cultivation of various saline tolerant crops with brackish 
water started in the Negev Desert of Israel [7]. Today farmers in the Negev region grow olives using 
DI or sub-surface drip irrigation (SDI) with brackish ground water (EC ~4.5 dS m−1) from the local 
aquifer, as they have no alternative for other economical irrigation water source [8]. Olive trees are 
generally tolerant of drought and salinity [9,10]. However, salinity tolerance in olives is a cultivar 
specific trait. The main active root zone distribution in olives trees is at a depth of 30 to 60 cm [11,12] 
and various studies have reported that the upper critical limit of soil EC for normal olive 
development is 4 to 6 dS m−1 [12–15]. In olives trees, the maximum root growth rate can be achieved 
under fresh water irrigation and the high root mortality rate and root growth restriction occurs under 
moderately saline irrigation (4.2 dS m−1) [16–19]. Irrigation water salinity of 4 dS m−1 limits significant 
production of the potential yield possible with good quality water [15] and there is a gradual buildup 
of soil salinity over the years in the root zone [16]. Therefore, an appropriate management of irrigation 
regime and salinity in root zone is necessary to optimize yield and oil quality in olive orchards 
irrigated with saline water [15,20].  

In the long term, the commitment to utilizing marginal irrigation water sources, such as brackish 
water, may be fundamentally unsustainable, in particular, in arid lands where precipitation is too 
low to leach the accumulated salts from the active root zone [21]. There is a higher risk of soil 
salinization if rainfall is lower than 250 mm and the salts are not leached from the upper 60 cm depth 
[22–24]. The Negev region has an arid climate with high rates of evapotranspiration (about 2600 mm 
year−1) and low rainfall (70 to 125 mm/year) [8,25]. When SDI was employed it reduced evaporation 
and improved irrigation water-use efficiency with olive yield similar to DI irrigation [26,27]. 
However, in SDI systems, salt accumulation above the dripper is high and does not offer an 
advantage over DI in regard to soil salt distribution under conditions of high evaporative demand 
[28,29]. In arid and semiarid areas, using SDI placed at shallow depths (about 20 cm) resulted in large 
amounts of salt accumulation near the soil surface [30], specifically located above the dripline [31,32]. 
When salts accumulate in soil surface layers, sprinkler irrigation is commonly used in SDI plots to 
leach salts below the drip tapes, but, in the long term it affects the economic sustainability of SDI [30]. 
Nevertheless, it was recently demonstrated [33,34] that a sequential practice of sprinkler irrigation 
for potato germination, followed by low discharge shallow SDI with brackish irrigation water, can 
result in similar potato yields to traditional methods that utilize sprinkler irrigation with fresh water. 

There is high transient salinity and sodicity risk associated with saline water SDI in orchards 
[35] and they change with the amount and quality of infiltrated water, evapotranspiration rates, and 
rainfall [36]. When water quality of EC >2.5 dS m−1 and SAR >4 was used in olive and other orchards 
with SDI, there was a significant increase in soil salinity and sodicity values at 0–60 cm soil depths 
[37–40]. Most studies which examined the salinity and/or sodicity effect on olive growth and yield 
are short term (<8 years) studies [19,24,41,42] and, consequently, a severe accumulation of salts in the 
soil profile was not reported.  

As mentioned, the introduction and cultivation of salt-tolerant crops in the arid regions in 
conjunction with brackish irrigation water for the past few decades has resulted in increasing soil 
salinity. In the current study, we quantify the salinity and sodicity spatial distribution in an olive 
orchard following twenty years of irrigation with brackish water. The motivation for this study stems 
from recent reports on continues decrease in yields (Figure 1) and the eventual uprooting of some 
olive orchards due to unprofitability. Therefore, it is necessary to understand the sustainability of 
olive cultivation under saline brackish water with SDI, so that secondary salinization is prevented 
and the soil can be reclaimed for agriculture in future years. The main objective of this study is to fill 
the knowledge gap regarding the spatial distribution of salinity and sodicity in long term sub-surface 
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drip irrigated soils with brackish irrigation water. Given the relatively high distance (1 m) between 
drippers, we hypothesized that a high level of salinity and sodicity will be established between 
nearby drippers.  

 

Figure 1. Yield trend for 15 years of the Barnea olive variety grown in the Revivim orchard. 

2. Materials and Methods 

2.1. Site Description 

A field investigation was carried out in the olive (Olea europaea) cultivar ‘Barnea’ orchard of 
Kibbutz Revivim (31.0436° N, 34.7212° E), located in the central Negev Desert, Israel. The climatic 
conditions of the location are of the typical arid type, with cooler night temperatures and hot, dry 
summers (Figure 2). The mean annual rainfall ranges from 75 to 125 mm [25]. During the 2014/2015 
season, the total precipitation was 105 mm and cumulative potential evapotranspiration was 2500 
mm (Figure 3). The olive orchard was planted in 1995 and has been irrigated with brackish 
groundwater (EC = 4.4 dS m−1) since then, for approximately 20 years. Water quality parameters of 
the brackish irrigation water are presented in Table 1. 

 Table 1. Irrigation water quality parameters (Mekerot Water Company). 
Parameter Value 

Boron (mg L−1) 1.200 
Calcium (mg L−1) 171.000 
Chloride (mg L−1) 1120.000 

Electrical Conductivity dS m−1 4.400 
CaCO3 (mg L−1) 748 
HCO3 (mg L−1) 301 

Potassium (mg L−1) 1900 
Magnesium (mg L−1) 78.000 

Sodium (mg L−1) 684.000 
pH 7.000 

Total organic carbon (mg L−1) <0.200 
Total dissolved matter (mg L−1) 2697.000 

SAR (meq L−1)0.5) 10.900 
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During the first 15 years, DI was used but later converted to SDI by placing drip laterals at 20 
cm soil depth and about 1 m distance from the tree line with an emitter flow-rate of 4 L h−1 and 1 m 
distance between nearby emitters. An initial tree spacing of about 3 × 7 m was first established and 
after ten years, each alternate tree within a row was uprooted, giving the current spacing of 6 × 7 m. 
Irrigation was scheduled according to class evaporation pan located nearby the orchard. Specifically, 
in average, a factor of 35% to 60 % was used to calculate the irrigation amounts from the 
predetermined cumulative pan evaporation (class A pan) [8]. Accordantly, irrigation intervals were 
scheduled every 3 days during summer and every 7 days during winter. Approximately, 800 mm 
plus an excess of 100 mm, as the leaching requirement of irrigation water, was applied annually.  

 

Figure 2. Minimum and maximum temperature in Revivim during 2014–2015. 

 

Figure 3. Rainfall and potential evapotranspiration (ETo) in Revivim during 2014–2015. 
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2.2. Soil Sampling and Analysis  

Comprehensive soil sampling was carried out to explore the spatial distribution of salinity and 
sodicity along and perpendicular to the drip-line, representing a total area of 2 m2 (Figure 4). Soil 
samples were collected from 41 locations along the drip-line between three nearby emitters that were 
perpendicular and diagonal to the central emitter. At each sampling location, disturbed soil samples 
(n = 246) were taken from six depths: 0–5, 5–10, 10–15, 15–30, 30–45, and 45–60 cm. In addition, 
representative intake soil samples were taken near the sampling locations mentioned above, from 
which the bulk density of each layer was calculated (Table 2). The gravimetric water content (WC) 
was measured shortly after the sampling event from the differences in weight before and after drying 
at 105 ℃ for 24 hours. The rest of the soil samples were air-dried and thereafter passed through a 2-
mm sieve. 

 

Figure 4. Schematic view of soil sampling spots in an olive orchard under sub surface drip 
irrigation. 

Table 2. Revivim olive orchard soil properties. 

Depth Texture Sand Silt Clay Organic 
Matter 

Bulk 
Density CEC SSA*  CaCO3 

(cm)  (%) (%) (%) (%) (g/cm3) (meq/100g) (g/m2)  (%) 

0–5 Loamy 
Sand 

80.83 
±5.77 

11.67 
±5.77 

7.50 
0.00 

10.22 
±0.05 

0.96 
±0.017 

8.54  
±1.13 

28.29 
0.00  8.0 

±3.5 

5–10 Sandy 
Loam 

70.83 
±1.44 

16.67 
±2.89 

12.50 
±2.5 

5.41 
±3.28 

1.09 
±0.006 

9.27 
±0.77 

57.19 
±14.45  8.9 

±1.5 

10–15 Sandy 
Loam 

67.50 
0.00 

19.17 
±2.89 

13.33 
±2.89 

1.62 
±0.17 

1.46 
±0.006 

8.61 
±0.22 

62.00 
±16.69  8.5 

±2.3 

15–30 Sandy 
Loam 

65.83 
±5.20 

19.17 
±5.20 

15.00 
0.00 

1.60 
±0.20 

1.48 
±0.006 

8.59 
±0.63 

71.64 
0.00  9.5 

±1.6 

30–45 Loam 50.83 
±3.82 

28.33 
±1.44 

20.83 
±2.89 

1.53 
±0.21 

1.45 
±0.006 

9.19 
±0.94 

105.35 
±16.69  8.6 

±1.2 

45–60 Loam 54.17 
±3.82 

27.50 
±2.50 

18.33 
±1.44 

1.38 
±0.11 

1.47 
±0.006 

9.03 
±0.19 

90.90 
±8.34  10.9 

±1.9 
± Standard deviation, SSA*—specific surface area (calculated according to [43]). 

The concentration of the main cations (Na, K, Mg, and Ca) in the soil solution was obtained from 
the extraction of the soil to distilled water ratio of 1:1. Samples were shaken on an end-over shaker 
and then centrifuged at 4000 rpm for 10 min. The supernatant was analyzed for soluble cations, 
bicarbonate, and chloride concentration. The cation exchange capacity (CEC) was measured by the 
sodium acetate method [44] and the exchangeable cations concentrations (xNa, xK, xMg, and xCa) 
from the sodium acetate extraction [45]. The cations concentration was measured by atomic 
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adsorption spectrophotometer (Analyst 400, ParkinElmer) and Chloride (Cl−1) concentration by 
Chloride Analyzer (926, Sherwood).  

The sodium adsorption ratio (SAR) and the exchangeable sodium ratio (ESR) were calculated 
according to the Gapon equation.  ௫ே௔௫஼௔ା௫ெ௚ = 𝐾ீ ∙ ே௔ඥ଴.ହ∙ሺ஼௔ାெ௚ሻ  ≡ 𝐸𝑆𝑅 = 𝐾ீ ∙ SAR (1) 

where, the concentrations of the soluble and exchangeable cation are in meq L−1 and meq Kg−1, 
respectively. The KG is the Gapon selectivity coefficient. 

Contours map of the spatial distribution of the WC, EC, Cl−1, SAR, and ESP in the soil profile 
were established with Surfer software (version 8, Golden Software, Colorado, USA) using the Kriging 
regression. 

3. Results and Discussion 

From the soil properties (Table 2) it can be seen that the texture in the examined soil layers 
changes from loamy-sand in the top soil layer (0–5cm), sandy-loam in the middle ones (5–30cm), and 
loam in the deeper layers (30–60cm). A distinct difference in organic matter (OM) percentage could 
be observed from 10.2% (0–5 cm), 5.4% (5–10 cm) and similar values ranging from 1.62% (10–15 cm) 
to 1.38% (45–60 cm). The bulk density exhibited an inverse linear correlation to OM content (BD =  
1.54 - 0.06×OM, R2 = 0.93) rather than any of size fractions; ranging from about 1 g cm−3 in the top soil 
layer (0–10 cm) and exhibited similar values of about 1.45 g cm−3 for the rest of the soil profile. The 
above observation may imply a higher water holding capacity in the top soil layers, due to water 
adsorption and/or structures formation induced by the level of soil OM. 

In the followings, the spatial distribution obtained for water content, salinity, and sodicity 
quantities are presented for two 60 cm soil transect: (i) along the drip line and (ii) perpendicular to 
the drip line (crossing the middle dripper), (Figure 4). In addition, a three dimensional visualization 
is presented as a counter map calculated from all measured data points of the four transects for a 
given soil layer (Table 2).  

3.1. Water Content Spatial Distribution  

In Figure 5 the spatial distribution obtained for the WC is presented for the sampled transect 
along (Figure 5a) and perpendicular (Figure 5b) to the drip line. The WC distribution demonstrates 
that relatively higher WC can be found directly above and below the location of the emitters (i.e. 20 
cm depth). A typical wetting bulb of relatively light-texture soil can be observed with the bulb radius; 
the horizontally wetted radius is less than the vertically wetted depth radius [46,47]. The near-
saturation zone was located about 20 cm from the emitters from which a gradual reduction in WC 
can be observed up to 50 cm distance, which is located in the middle, between two nearby drippers. 
At this location, the WC above the emitters is the lowest one, suggesting that there is no significant 
overlap between nearby emitters. The relatively large distance between the emitters (i.e. 1 m) and the 
corresponding spatial distribution of the WC also affected the salinity and sodicity spatial 
distribution, as is demonstrated below. Regarding the perpendicular transect (Figure 5b), it should 
be noted that +100 cm on the x- axis is towards the tree-line and –100 cm is towards the road, i.e. away 
from the tree-line. Toward the tree-line, there is a gradual reduction in WC which is likely due to root 
water uptake. Away from the tree-line, the reduction in WC may stem from higher evaporation rates, 
due to less shading from the tree.  
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(a) (b) 

Figure 5. Gravimetric water content (%) distribution (a) along the drip line and (b) perpendicular to 
the drip line. The black and white stars indicate the location of the drippers. 

The three dimensional visualization (Figure 6) shows an entire 2 m2 view for the spatial WC 
distribution at six individual depths (Table 2). It is clearly illustrated that down to 30 cm (the three 
top layers), the dryer zone prevails toward the tree line compared to the corresponding locations, 
away from the tree line. The dryer WC zone may indicate water uptake by the active root zone [11,12]. 
The relatively low overlap between the wetting fronts of the nearby emitters is also illustrated, 
suggesting that in the long-term, the solute fluxes, due to convection, dispersion, and diffusion might 
have reached the wetting front of individual emitter and accumulated at this location. Consequently, 
in the long-term, higher salinity can be expected between emitters and perpendicular to the emitter.  
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Figure 6. An overall gravimetric water content (%) distribution at all six depths, 0–5, 5–10, 10–15, 15–
30, 30–45, and 45–60 cm. The black and white stars indicate the location of the drippers.  

3.2. Salinity Spatial Distribution  

Two quantities were used to describe the long-term accumulation of salinity: (i) electrical 
conductivity (EC)—representing the total salinity, and (ii) chloride concentration—as a soil native 
conservative tracer. The EC distribution is shown for the transect along (Figure 7a) and perpendicular 
(Figure 7b) to the drip line. The chloride distribution is shown in Figure 7c and d for transects along 
and perpendicular to the drip line, respectively. For both transects, salinity and chloride distribution 
exhibited similar patterns. Specifically, both quantities demonstrated a leaching zone above and 
below the emitters and salt accumulations zone between nearby emitters. For the transect along the 
drip-line, the highest salinity prevailed above the drip line in the middle of two nearby emitters. 
Nevertheless, the salinity values below the drip-line are also very high and may reduce water uptake 
by the olive trees’ roots, due to the high osmotic pressure, even if a high water content is maintained. 
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Regarding the perpendicular transect, a distinct, uneven distribution could be observed. Specifically, 
the salt accumulation away from the tree (−100 to 0 cm) is significantly higher than the one obtained 
toward the tree line (0 to 100 cm). The lowest salinity obtained near the tree line may be explained by 
a reduced evaporation and capillary rise toward the soil surface, due to the surface shading by the 
olive trees. However, the entire zone exhibited very-high to extreme values of EC, which indicates 
the salinization of the olive plantation, as clearly illustrated from the three dimensional visualization 
of the entire 2 m2 view of the spatial EC distribution at six individual depths (Figure 8). The 
representation of the entire domain emphasizes the extreme values of salinity above the drip-line and 
away from the tree-line. A clear pattern could not be observed, due to the large salinity spectrum that 
was considered in this counter map. Nevertheless, the leaching zones above and below the emitter is 
clearly demonstrated, indicating moderate to high salinity levels.  

  

  

Figure 7. Electrical conductivity (dS m−1) distribution (a) along the drip line, (b) perpendicular to the drip 
line, and soil chloride (mg L−1) distribution (c) along the drip line and (d) perpendicular to the drip line. 
The black and white stars indicate the location of the drippers. 
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Figure 8. An overall distribution of the electrical conductivity (dS m−1) at all six depths, 0–5, 5–10, 10–
15, 15–30, 30–45, and 45–60 cm. The black and white stars indicate the location of the drippers. 

As mentioned, the mean annual rainfall in this region is below 125 mm and may be distributed 
over ten low-rain events (Figure 3). Under these conditions, there is insufficient rain to leach the 
accumulated salts from the soil surface below the active root zone. This minimal rainfall can also 
exacerbate the salinity problem by bringing surface salts (0–15 cm) to the root zone (30–60 cm) after 
one or several rainfall events. The salinity observed in the orchard soils is far above the normal 
threshold salinity level for olive growth, i.e., a soil EC value of 4 to 6 dS m−1 is the accepted critical 
limit for normal olive growth [12–15]. To leach the excess salts from the root zone, high rainfall events 
>600 mm are required [48,49] or sprinkler irrigation has to be implemented in order to leach salts, but 
the long-term economic sustainability of this system is questionable [30].  

3.3. Sodicity Spatial Distribution 
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The outcome of the long-term sodification is described by the calculated values of the SAR as a 
measure for the sodicity of the liquid phase and by the sodium adsorption percentage (ESP = 100 
xNa/CEC) as a measure the sodicity of the solid phase. The spatial SAR distribution is shown for the 
transect along (Figure 9a) and perpendicular (Figure 9b) to the drip line. The spatial ESP distribution 
is shown in Figure 9c and Figure 9d for transects along and perpendicular to the drip line, 
respectively. In general terms, the spatial distribution patterns obtained for the SAR and ESP 
resemble the one obtained for the salinity (Figure 7), demonstrating that a higher salinity in the soil 
solution resulted in higher SAR and consequently higher ESP. The SAR values obtained between 
nearby emitters, above a below the dripline, exhibited values >15% and reached values even higher 
than 30% at the top soil layers (Figure 10). Therefore, sodicity hazardous of soil structure degradation 
which can negatively affects soil hydraulic properties should be considered. Nevertheless, since high 
sodicity levels were accompanied by high salinity levels, the latter, may offset the negative sodicity 
effect on the stability of soil structure. The fact that sodicity levels increased with salinity implied a 
chemical equilibrium between the soil-solution and solid phase. In support of this argument is the 
linear correlation obtained from all samples between the ESR and SAR (Figure 11) with a slope of 
0.0134, which is close to the commonly accepted value of the Gapon constant, KG = 0.015, e.g. [50]. In 
addition, a positive linear correlation was obtained (data is not shown) between ESP and SAR (ESP = 
0.77SAR + 3.34, R2 = 0.73). It is well established [51] that if cation exchange reactions have reached 
equilibrium, the ESP values are similar to the SAR at the range of 0 to 40.  

  

  

Figure 9. SAR (meq L−1)0.5 distribution (a) along the drip line, (b) perpendicular to the drip line and, 
ESP (%) distribution, (c) along the drip line, and (d) perpendicular to the drip line. The black and 
white stars indicate the location of the drippers. 
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Figure 10. An overall distribution of the SAR (meq L−1)0.5 at all six depths, 0–5, 5–10, 10–15, 15–30, 30–
45, and 45–60 cm. The black and white stars indicate the location of the drippers. 
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Figure 11. Exchangeable sodium ratio (ESR) as a function of sodium adsorption ratio (SAR). 

4. Summary and Conclusions 

The main goal of this study was to quantify the long term development of salinity and sodicity 
in an olive orchard grown in an arid region and irrigated with brackish water for two decades using 
DI and, subsequently, SDI. The study was motivated by reports on olive orchard uprooting in the 
Negev Desert, due to the continual reduction in olive yields. We assumed that under the climate 
conditions that prevail in this arid region, long term salinization and sodification at the active root 
zone is inevitable, in particular, under SDI with brackish irrigation water. The results of this study 
clearly demonstrate that following twenty years of irrigation with brackish irrigation water, 
salinization and sodification took place in the examined soil profile (0–60 cm), which represents the 
active root zone of the olive trees. The relatively large distance (1 m) between nearby drippers 
resulted in no significant overlaps between the wetting fronts of two nearby emitters. Consequently, 
a relatively small area of salt leaching could be observed below the emitters, with EC values close to 
the ones in the brackish irrigation water. However, moderate salt buildup took place above the 
emitters. The salinity buildup between nearby emitters were above the salinity threshold level for 
olive trees with extreme EC values above the drip line and high ones below it. The spatial distribution 
of the sodicity levels resembled the ones obtained for salinity, corresponding to high sodicity levels 
(in terms of SAR and ESP) where salinization took place. The linear correlation obtained between the 
sodicity quantities (i.e. ESR vs. SAR and ESP vs. SAR) implies that chemical equilibrium has been 
reached between the brackish irrigation water, soil solution, and the solid phase. 

The results of this study show that in arid regions, the benefits of water saving, attributed to SDI, 
are masked by soil salinization and sodification that was induced by this irrigation method. The 
quantification of the long term suitability of brackish water irrigation with SDI may assist in 
improving the irrigation system design, for example, by significantly reducing the distance of nearby 
emitters and increasing the allocated leaching fraction. Finally, this study emphasizes the current 
necessity for salinity and sodicity reclamation in the studied region. Any alternative practices of 
replacing olives trees and further introduction of even higher salinity tolerant plants (e.g. jojoba) in 
this region will intensify the salt buildup without leaving any option for soil reclamation in the future.  
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