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Abstract: Green infrastructure is an increasingly popular approach to mitigate widespread degradation
of urban waters from stormwater pollution. However, many stormwater best management
practices (BMPs) have inconsistent water quality performance and are limited to on-site, land-based
deployments. To address basin-wide pollutant loads still reaching urban streams, hyporheic zone
engineering has been proposed as an in-stream treatment strategy. Recognizing that regulator
and practitioner perspectives are essential for innovation in the water sector, we interviewed U.S.
water management professionals about the perceived risks, opportunities, and knowledge gaps
related to in-stream stormwater treatment. We used engineered hyporheic zones as a case study
to understand interviewee perspectives on an emerging class of in-stream treatment technologies.
Interviews revealed that many considerations for in-stream stormwater treatment are common to
land-based BMPs, but in-stream BMPs have additional unique design and siting requirements. Here,
we synthesize practitioner goals, their recommendations on in-stream BMP design, and open research
questions related to in-stream BMPs. Many interviewees suggested pairing engineered hyporheic
zones with other BMPs in a treatment train to improve in-stream treatment, while simultaneously
reducing risk and cost. We discuss how treatment trains and other strategies might also help overcome
regulatory hurdles for innovative stormwater treatment.

Keywords: stormwater; low impact development; green infrastructure; urban hydrology; nonpoint
source pollution; in-stream treatment; hyporheic; co-design

1. Introduction

Urban nonpoint source pollution is the fastest-growing cause of surface water quality impairment
in the U.S. [1], and urban streams around the world face similar degradation [2]. Land-based best
management practices (BMPs, also known as stormwater control measures or sustainable drainage
systems), such as bioretention and grass swales, can remove contaminants and reduce peak storm
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flows [3–6]. However, stormwater can still reach the urban stream corridor by draining from lands
with insufficient BMP coverage or by passing untreated through undersized and/or unmaintained
BMPs [7–9]. In some locations, expanding BMP coverage may still be an insufficient strategy to address
stream impairments. For example, all nonpoint source violations in Los Angeles, California would
not be eliminated even if all available public land were retrofitted with typical green infrastructure
BMPs [10]. To mitigate widespread impairments of urban streams and downstream habitats [1,11,12],
many studies have called for a comprehensive management approach in which in-stream strategies
(e.g., stream restoration) are used to complement land-based stormwater BMPs [8,13–21].

Urban drainage channels range from natural streams to artificial gutters. Classification of these
drainage channels as nature versus infrastructure is imprecise because of widespread human impacts
on the environment and the incorporation of natural processes into engineered green infrastructure
designs [22]. For simplicity, the term “in-stream” is used for all channels along the artificial-natural
continuum, but regulatory distinctions are discussed in detail later in this paper. In-stream treatments
can address untreated and undertreated stormwater by enhancing the contaminant attenuation capacity
of urban drainage channels at a semi-centralized scale. Unfortunately, few stormwater BMPs (i.e.,
detention ponds, wetlands) are designed for in-stream use, and only wetland channels do so in a
confined urban stream footprint [3]. As with most stormwater BMPs, wetland channels can provide
significant water quality benefits with respect to suspended solids and sediment-bound metals, but
generally do not treat dissolved metals or bacteria, can actually act as net sources of nutrients, and
have limited performance data for the dozens of organic contaminants that are consistently detected in
urban stormwater [3,23–25].

Efforts to improve contaminant removal in-stream could better incorporate the hyporheic zone
(HZ), which has been referred to as a river’s liver due to its unique role as a natural biofilter [26].
Located in streambed sediments at the interface of surface water and groundwater, the HZ is known
to attenuate a variety of stormwater and wastewater contaminants found in urban streams [27–31].
However, urban HZs are often scoured and clogged by hydromodification that limits their contributions
to water quality [32], and there are no widely adopted stormwater BMPs that explicitly harness the HZ.
To our knowledge, the only possible exception is a new treatment train technique called Regenerative
Stormwater Conveyance (RSC), which uses a series of step-pools and subsurface geomedia to detain
and treat stormwater, e.g., [33]. Experimental RSC systems show promise in restoring pre-development
hydrographs and attenuating some contaminants [34,35], but do not yet prescribe specific hydraulic
residence times to optimize contaminant removal. As a result, RSC systems can, at times, fail to reduce
nitrate concentrations and be inactivated by groundwater upwelling [33].

To improve hyporheic circulation and target specific hyporheic residence times in urban channels,
Herzog et al. [36] proposed a new HZ engineering technique called Biohydrochemical Enhancements
for Streamwater Treatment (BEST). The BEST technique is based on the role of variations in sediment
permeability in driving hyporheic exchange [37,38]. For example, consider a degraded urban stream
with polluted surface water and a sandy streambed. The bedforms and meanders that normally mix
surface water and streambed water are less common than in healthy streams, so almost all the surface
water bypasses hyporheic treatment. Likewise, the streambed porewater may be treated thoroughly,
but does not return to the stream efficiently after pollutant removal. A low-permeability baffle wall in
the streambed can improve circulation by forcing clean water out of the hyporheic zone and bringing
new, polluted surface water into the streambed for treatment.

BEST implementations use such baffle walls and geomedia emplaced in the streambed to increase
hyporheic exchange, control residence times, and accelerate contaminant attenuation rates (Figures 1
and 2). A single BEST module is defined as the streambed sediment between two baffle walls; the
number of modules in series can be selected to treat the desired fraction of total stream flow. Numerical
models provided proof of principle [36], and flume experiments demonstrated proof of concept: BEST
increased hyporheic exchange and reactive solute attenuation by 50% compared to a control [39].
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BEST could be a standalone or complementary technique to increase the efficiency of RSC or other
stormwater systems.

However, adoption of new technologies and approaches is notoriously slow in the water sector [40],
in large part because inventors focus predominantly on technical solutions at the expense of feasibility
and regulatory concerns. Therefore, it is unclear how BEST and related in-stream technologies can
bridge the so-called “valley of death” [41] between invention and implementation, particularly when
they do not fit into the dominant regulatory paradigm (e.g., in-stream versus land-based stormwater
BMPs, stormwater treatment versus stream restoration). To improve technologies that address
pressing issues in stormwater treatment, it is critical to coordinate innovations with the regulators and
practitioners that approve, design, and implement stormwater BMPs [42].

This study reports on our efforts to identify the potential opportunities and limitations of in-stream
stormwater BMPs through interviews with stormwater regulators and practitioners. In this study, we
synthesize practitioner input to identify both technical and nontechnical design challenges and open
research questions related to in-stream stormwater treatment. Next, we discuss the main results of our
surveys with respect to implementation of enhanced in-stream technologies—centered on siting issues
and the advantage of tying new technologies into existing practices to improve treatment performance
and facilitate regulatory approval.
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Figure 1. (A) Conceptual diagram of flow in and out of the BEST module, (B) BEST tank with two 
impermeable triangles installed and sand/woodchip geomedia mix, and (C) red dye showing BEST 
creating hyporheic exchange compared to (D) control tank with no exchange. Each tank measures 
178 cm long, 28 cm deep, and 13 cm wide (text and caption exactly as shown to the interviewees 
upon request). 

Figure 1. (A) Conceptual diagram of flow in and out of the BEST module, (B) BEST tank with two
impermeable triangles installed and sand/woodchip geomedia mix, and (C) red dye showing BEST
creating hyporheic exchange compared to (D) control tank with no exchange. Each tank measures 178
cm long, 28 cm deep, and 13 cm wide (text and caption exactly as shown to the interviewees upon
request).
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and Control streams running side by side at 0.5 L/s (0.02 cfs). Each stream measures 15 m long, 0.3 
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directors of stormwater infrastructure implementation or maintenance programs, but generally not 
in the senior leadership of the agency, while those from the private sector were consultants or project 
managers specializing in stormwater projects.   

Figure 2. Photos from constructed streams showing (A) triangular BEST modules and sand/woodchip
geomedia in BEST stream (right) versus all-sand control stream (left), and (B) BEST and Control streams
running side by side at 0.5 L/s (0.02 cfs). Each stream measures 15 m long, 0.3 m deep, and 0.35 m wide
(text and caption exactly as shown to the interviewees upon request).

2. Methods

2.1. Interviews

We conducted 13 telephone interviews with 19 stormwater professionals in California and Colorado
in July and August of 2016 (in some instances, multiple professionals were questioned as part of the
same phone interview). These two states encompass a range of stormwater management conditions,
with wide variation in rainfall patterns, annual temperature, slope, stormwater contaminants of
concern, and development conditions. The interviewees were selected to span a range of stormwater
management roles, including municipal and agency engineers (five), municipal and agency planners
(three), consulting engineers (three), landscape architects (three), real estate developers (two), public
works officials (one), and policy professionals (two). In addition, interviewees were selected to
represent a range of implementation contexts, including municipalities of varying sizes, varying
climate types within California and Colorado, agencies with different water management scopes
(stormwater only versus combinations of stormwater, wastewater and water supply), and agencies
managing varying types of relevant water infrastructure (green infrastructure, combined sewers,
and recycled water). In selecting interviewees, extensive direct experience with stormwater project
management and BMPs was prioritized over seniority within the agency or firm in question. Therefore,
the individuals interviewed from public sector agencies were managers or directors of stormwater
infrastructure implementation or maintenance programs, but generally not in the senior leadership of
the agency, while those from the private sector were consultants or project managers specializing in
stormwater projects.
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We used a semi-structured interview methodology, e.g., [43,44] that followed a scripted set of
questions (see Appendix A) but expanded upon these questions when the interviewer identified a unique
perspective or wanted to gain a clearer understanding of a specific topic that was discussed. The scripted
questions focused on desirable performance specifications, system dimensions, seasonal variability
and peak flows, highest-priority stormwater pollutants, desirable visual and aesthetic characteristics,
desirable construction and maintenance characteristics, cost targets, important regulatory gatekeepers,
and foreseeable regulatory challenges for BEST systems. The express intent of the interviews was
to gather input on these topics from experienced stormwater professionals during—as opposed to
after—the technical research and development of in-stream stormwater treatment systems, so that
these technologies may be optimized to meet the practical needs of working stormwater engineers,
designers, and planners in real-world implementation contexts. Interviews were not audio recorded.
Responses represent the interviewer’s notes taken during the interviews. Quotes reflect a faithful
attempt to capture interviewee’s verbatim responses. All responses were considered in the formulation
of the research results reported here, but not all responses were directly quoted.

2.2. Interpretation

The goal of these interviews was to capture a wide range of feedback rather than to determine
majority or plurality opinions, and all relevant practitioner feedback is reported. Responses were
grouped by thematic coding for clarity. Many responses could reasonably be assigned to multiple
categories, but such distinctions were insignificant because they only dictated where, as opposed
to if, each result was reported. To place our findings in a broader context, we draw on additional
literature examples from around the U.S. and other countries. While effort is made to provide the
necessary regulatory context for U.S. water management, an exhaustive review of numerous diverse
and hierarchical stormwater and stream restoration regulations is beyond the scope of this research.

3. Results

We present summary responses grouped into three overarching questions, as shown below.

3.1. What Are the Stakeholder Concerns Related to Novel In-Stream Stormwater Treatment Technologies?

3.1.1. The Need to Reliably Meet Diverse Water Quality Control Standards

Water quality is defined differently by various respondents: standards can be volume-based,
concentration-based, or load-based depending on local regulations. Such variety is not unique to the
United States, as the European Union member states and other countries also feature a mixture of
flow-based, volume-based, and concentration-based stormwater standards [45]. For example, some
respondents would judge a new technology by its ability to achieve 80% total suspended solids
removal during field trials (i.e., concentration-based), while others consider an assumed level of
total suspended solids removal indirectly through an established detention time for a design storm
(i.e., volume-based). Stakeholders suggest that an ideal technology would thus be able to meet
all types of standards consistently and predictably, including in dry or cold seasons. Practitioners
subject to concentration-based standards noted that dissolved contaminants are more difficult to treat
than suspended solids and sediment-bound contaminants. Furthermore, a wide range of dissolved
contaminants are frequently named as key pollutants of concern, including Escherichia coli and other
fecal indicator bacteria, nutrients, and metals. Other respondents were less concerned with “removal
efficiencies at each [treatment] stage” (i.e., percent removal) and more focused on “the bottom line” of
getting below a threshold pollutant concentration at the end of treatment.

3.1.2. Cost and Space Demands

Several respondents noted the success of bioretention technologies as a de facto competitive
standard (i.e., “the default that everyone accepts”) for new technologies to match. Justification was
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based on bioretention’s relatively low cost and small spatial footprint to achieve compliance. Some
expressed concern about the potential need for expensive liners in BEST, while others noted that liner
costs could be justified by performance. Most interviewees emphasized the importance of considering
long-term operational costs at least as strongly as capital and installation costs.

3.1.3. Risk of Catastrophic Failure

Two interviewees discussed a general lack of confidence that any particular BMPs will work
consistently. One said that “We end up using a shotgun approach because we don’t know a lot
about BMP performance”, while another noted that they have “seen a lot of cases where the same
BMP succeeds in one place and fails in another and it’s not clear why.” In particular, one respondent
cited “total failure” of previous flow-through stormwater treatment technologies due to clogging.
Clogging is a major potential concern for engineered HZs, and can be especially common in areas
where stormwater carries high sediment loads.

3.1.4. Stormwater Treatment Must Occur Before Reaching Receiving Waters

A critical issue with respect to in-stream technologies is whether they are intended for placement
in receiving waters, which in the U.S. are called waters of the state or waters of the U.S. (WOTUS).
In brief, waters of the state automatically include all WOTUS that are located within a given state, but
some states have more expansive definitions that also include additional streams. For brevity, we use
the term “jurisdictional waters” to represent both waters of the state and WOTUS. One respondent
said that “treatment before it reaches [jurisdictional waters] is key” because outfalls to receiving waters
are typically the point of stormwater compliance. Furthermore, water treatment within jurisdictional
waters is discouraged by the Clean Water Act except in extreme circumstances [46]. Accordingly, some
respondents felt that regulatory approval for treatment in jurisdictional waters may not be worth
pursuing: “Once you put a structure in (jurisdictional waters), the regulators have problems. Would
be very hard to permit that.”

3.1.5. Acceptance by Regulatory Gatekeepers

Many respondents stated that “regulators need to accept something” or it becomes more difficult
to convince agencies, developers, or elected officials to approve a technology’s use. According to one
interviewee, “It’s not as much consultants recommending [a BMP] as it is municipalities accepting it.
It has to fit within the regulatory requirements.” The International Stormwater BMP Database, the
Washington Department of Ecology, and the New Jersey Corporation for Advanced Technology were all
cited as influential regulatory gatekeepers, along with regional and state water quality regulators. These
results align with literature showing that in most countries, local stormwater agencies simply adopt
regional or national stormwater guidelines [45]. One larger municipal stormwater agency expressed
willingness to pioneer new and improved technologies without waiting for blanket regulatory approval
(i.e., inclusion in a widely used stormwater BMP manual), and others echoed this sentiment when they
need to meet concentration or load limits at specific sites. However, most respondents stated that it is
simpler to select a pre-approved BMP. Representative quotes include: “Just take a look at the manual
and see if you can mimic that”, “We would only go beyond the norm in special circumstances”, and
“There are no specific targets so it’s more about complying with [the regulatory agency’s] needs. There
are a rare few who would pay more to do the right thing, but not most.”

3.2. What Technical and Nontechnical Design Modifications Could Improve Acceptance and Feasibility of
In-Stream BMPs?

3.2.1. Treatment Trains and Hardscape Elements for Scalability Across a Range of Discharges

Many respondents thought BEST and other in-stream treatments would benefit greatly from a
treatment train approach in which they are paired with other complementary BMPs. For example,
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interviewees recommended siting BEST downstream of a flow attenuation BMP (e.g., detention
ponds) and including hardscape elements to minimize the risk of scouring “blow-outs”. Notably,
hardscape can be made from natural materials such as logs and boulders to maintain a natural aesthetic.
Others suggested that coupling BMPs like BEST with detention basins, settling forebays, or another
pre-treatment BMPs would also allow trash and sediment to settle out of stormwater and reduce
clogging of the streambed. Some practitioners also questioned whether the engineered HZ would be
able to treat a significant fraction of the total stormwater discharge during peak flows and wanted to
see performance data at field scale. It was also noted that in-channel BMPs like BEST, unlike many
land-based BMPs, would be beneficial to use for treating dry weather flows. Dry weather flows tend to
have low but consistent discharge with high concentrations of contaminants. One respondent noted
that dry-weather flows are harder to manage because water quality standards are more stringent for
dry-weather flows than water quality standards for wet-weather flows. Therefore, BEST performance
in removing pollutants from these dry-weather flows may be as important as wet-weather performance.

3.2.2. Design for Ease of Maintenance

Almost all respondents cited ease of maintenance as a critical concern, with one stating that
“maintenance is probably even more important than pollutant removal efficiencies” as a technology
selection criterion. The interviewee added, “some BMPs we will never use again because of maintenance
struggles.” Cited factors affecting ease of maintenance include ease of geomedia replacement, avoidance
of woody vegetation that might impede geomedia clean-out, avoidance of confined space entry, ease
of maintenance truck or vacuum truck access, use of standard sizes and shapes to facilitate use of
skid-loader buckets and other standard-sized equipment, and the frequency of anticipated maintenance.
One interviewee explained that the average BMP requires 60 hours of maintenance per year. Another
respondent cited a geomedia replacement frequency of once per 8–10 years as “tolerable,” but any
higher frequency as problematic. One respondent asked if geomedia could be placed inside a cartridge
“so that it can be drop-in-place? That would be nice.” In addition, multiple respondents indicated that
BMPs should be designed for maintenance by crews without any technical expertise on their operation.

3.2.3. Focus on Retrofits for Cost-Effectiveness

Several interviewees suggested that in-stream treatments could be attractive as retrofits. “Right
now less than 20–30% of the watershed area is getting water quality treatment, so there is tons of
retrofit opportunity.” One described the lack of available land within the urban growth boundary and
liked that in-stream BMPs are not “consuming any additional land if [they] can fit between the outlet
structure and the receiving water.” Another noted that peak flow is already addressed by other BMPs,
so semi-centralized in-stream retrofits could focus on water quality treatment.

3.2.4. Maximize Aesthetics, Recreation, and Property Values

Most respondents identified aesthetic appearance as a critical factor in the acceptance of new
stormwater technologies by developers and the general public, especially in predominantly residential
environments. In general, respondents judged a “naturalistic look, not too mowed or manicured” as
the most favored, potentially including meanders or “wet meadow” plants such as sedges, rushes,
and certain grasses. Consideration should also be given to how the aesthetics of the technology
change in dry or cold seasons, and avoidance of trash accumulation and bad odors. In locations
with high property values, it can be much more cost-effective to treat stormwater within the existing
channel footprint rather than allocating buildable space for land-based BMPs. Real estate developers
described how stormwater features with a natural aesthetic are very popular for walking trails, such
that investing in ponds, wetlands, and in-stream treatments can justify higher costs by increasing
property values, as long as such systems are properly maintained. These responses align closely with a
stormwater project in Durham, North Carolina, where 76–91% of stakeholders surveyed considered
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trails, boardwalks, seating, and educational signage to be “important parts of any new stormwater
management design” [47].

3.3. What Knowledge Gaps Remain for In-Stream BMPs That Impact Practitioner Acceptance?

3.3.1. Performance in Effluent Concentration, not Percent Pollutant Removal

Because in-stream BMPs would function within an urban drainage network as opposed to
an individual urban site, they would likely receive inflows with mixed pollutant loads that vary
geographically and seasonally, both in composition and in concentration (or mass load). As a result,
reliable achievement of performance targets in effluent concentrations may be more valuable than
reliable achievement of pollutant removal percentages. Regardless of how removal is assessed,
specific contaminants of concern varied. One respondent identified potential removal of Escherichia
coli, in particular, as the “holy grail” of urban stormwater treatment. Several others stated that any
BMP that could be shown to remove Escherichia coli predictably, reliably, and affordably would find
widespread applicability. Others said that they are looking for a single BMP that can effectively treat
multiple contaminant classes (i.e., nutrients, metals, and pesticides) to comply with specific load
reduction targets.

3.3.2. How Do In-stream BMPs Handle Cold Season Challenges?

When asked about seasonal changes in performance, several practitioners mentioned freeze-thaw
cycles but noted that freezing has not been a concern at any of their field sites. One Colorado
interviewee said of freeze-thaw, “we don’t seem to have that problem here—we usually have several
thaws throughout winter, so water can continue to infiltrate”. Two interviewees described that water
quality standards do not change in winter, with one adding that “it would be really valuable to have
data on seasonal differences” in biological performance of BEST. One noted that concentrations of
bacteria in stormwater are much lower during winter, but several also mentioned the potential for
high-concentration slugs of de-icing salts to reach in-stream BMPs in the winter in cold climates,
potentially harming fish and killing BMP vegetation. Better understanding of seasonal performance
and the resilience of an in-stream BMP to freezing and salt pulses is needed in cold climates.

3.3.3. Life-Cycle Costs

As with any new stormwater technology, the importance of a field-scale performance record
cannot be overstated. Interviewees expressed a need to accurately estimate the costs of capital and
installation as well as ongoing operation and maintenance. Several respondents also factor in the cost
of land, the cost of sending stormwater to combined sewers, or the “triple bottom line” of financial,
social, and environmental costs. Generally, interviewees noted that any new technology should be
competitive with other green infrastructure BMPs, but some also said they would be willing to pay
more for better performance.

3.3.4. Defining Jurisdictional Boundaries for Stormwater Management

Respondents told us that in-stream stormwater treatment is far simpler to approve upstream of
any outfall to jurisdictional waters. Certain locations within an urban drainage or storm sewer network
may be classified as jurisdictional by the US Army Corps of Engineers—a designation that can also
vary through time—and thus be subject to much greater regulatory scrutiny. Further clarification of
the potential regulatory limitations this might place on deployment of stormwater technologies within
jurisdictional waters would be needed as stormwater regulations evolve.

4. Discussion

A participatory design approach was used to collect stakeholder feedback about in-stream
stormwater treatment BMPs. Our interviews showcased how new approaches and BMPs can
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present a diverse set of challenges and opportunities for the stormwater community. However, any
discussion of the topics and concerns raised by respondents should also include prior analyses from
stormwater literature from many other climatic and regulatory settings alongside design advice from
the interviewees and the authors (Table 1). Although centered on in-stream BMPs, many of the
interview results are also relevant for land-based BMPs. In fact, all topics raised by interviewees for
in-stream BMPs have been explored by at least one other study in the context of land-based BMPs
or Low Impact Development generally (Table 1, columns 1 and 2). For example, the need for better
performance and cost data are common themes for all stormwater BMPs. In contrast, the topics of
design advice, knowledge gaps related to design, risk management, and jurisdictional considerations
have not been addressed as extensively in the literature. Accordingly, we focus our discussion on these
previously underemphasized topics, which are especially prominent for in-stream treatment.

Table 1. For each topic raised by interviewees regarding in-stream BMPs (e.g., BEST), we present
related findings from studies of land-based BMPs (e.g., bioretention) and relevant design advice from
interviewees and authors for in-stream BMPs.

Topic Raised by Interviewees for
In-Stream BMPs

Studies with Similar Findings
for Land-Based BMPs/Low
Impact Development (LID)

Design Advice from Interviews
(I) and Authors (A) for In-Stream

BMPs

Need to meet different types of
standards (e.g., volume-based,

load-based) depending on local
regulations.

Sage et al. [42] and Vogel et al.
[48] compare many different types
of standards and their impacts on
stormwater BMP implementation.

I: Pair with other BMPs in a
treatment train to meet water

quantity and quality regulations.

For concentration- and load-based
standards, need to manage diverse

contaminant(s) of interest
depending on local regulations.

Vogel et al. [48] discuss geomedia
mixes and BMP design

modifications to target specific
pollutants; Wolfand et al. [49]

show geomedia can improve water
quality compliance for load- and
concentration-based standards.

A: Include multiple types of
geomedia to address multiple

contaminant classes.

Need to perform consistently
across sites and seasons.

Moore et al. [45] highlight the
need to understand how BMP
designs influence performance;

Roseen et al. [50] showed modest
declines in winter performance for

most BMPs; Blecken et al. [51]
recommend conservative crediting

and design factors of safety to
account for uncertainty.

A: Conduct mechanistic studies of
water quality performance to

improve design; use a factor of
safety to account for slower
biological treatment in cold

seasons.

Need to perform at scale (i.e., treat
higher flow rates).

Olorunkiya et al. [52] discuss risk
factors (e.g., limited design

examples and fear of liability) as
barriers to LID implementation;

these factors are reduced by
demonstration projects.

I: Pair with flow modulation
BMPs; focus on polishing effluents

and dry-weather flows.

Need for resilience to freezing and
high salt loads in winter.

Roseen et al. [50] found that frost
penetration had a negligible

impact on most BMPs
performance; Snodgrass et al. [53]
conclude that green infrastructure
BMPs cannot treat road salts and

instead advocate for source
controls.

A: Ensure resilience of BMPs to
pulses of road salts, such as

avoiding geomedia that sorb via
cation exchange.
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Table 1. Cont.

Topic Raised by Interviewees for
In-Stream BMPs

Studies with Similar Findings
for Land-Based BMPs/Low
Impact Development (LID)

Design Advice from Interviews
(I) and Authors (A) for In-Stream

BMPs

Costs (capital and operational)
should be competitive with

alternative options.

Houle et al. [54] compared fixed
and ongoing costs of BMPs, and

found that LID systems generally
have greater water quality

performance than conventional
systems at lower costs.

I: Design for ease of maintenance;
include sedimentation forebay or

pre-treatment.

Minimize maintenance, especially
geomedia replacement interval

and effort.

Ashoori et al. [55] found that
additions of biochar geomedia can

improve water quality
performance without increasing

media replacement intervals.

I: Use cartridges for easy geomedia
replacement and select geomedia

with appropriate lifespans.

Minimize land footprint.

Nobles et al. [56] show that
seemingly cost-effective BMPs can
actually be non-economical after

considering the cost of land
footprint.

I: Retrofit existing stormwater
channels.

Uncertain cost-benefit compared
to other green and gray

infrastructure BMPs.

Roy et al. [47] and Barbosa et al.
[57] discuss uncertainties in

performance and cost as major
barriers to stormwater BMP use;

Bell et al. [46] show the same
cost-benefit uncertainty across the

green-gray continuum.

I: Monitor performance and costs
at scale, not just in lab-scale or

pilot-scale flumes.

Minimize risk of catastrophic
failure (e.g., clogging, blowout).

Hatt et al. [58] suggest that one
high profile failure can

permanently undermine a novel
stormwater approach.

I: Use treatment train for upstream
flow and sediment control;

hardscape elements to prevent
scour.

Need for acceptance by regulatory
gatekeepers.

Lane et al. [59] use Australian case
studies to show that regulatory

framework influences the
workflow and ease of approving

novel stormwater approaches.

A: Co-design with regulators and
practitioners; pursue inclusion in
stormwater guidance manuals.

Difficulty permitting stormwater
structures in jurisdictional waters.

The Chesapeake Bay expert panel
on stormwater retrofits removed
an in-stream BMP category from

consideration, noting that it
“appeared to show a retrofit in

waters of the US and would not be
allowed under state or federal

wetland permits” [60].

I: Avoid applications in
jurisdictional waters.

Opportunity for in-stream BMPs
to provide or complement

recreation (e.g., trails).

BenDor et al. [44] discuss
stormwater BMPs as "artistic

features" and the broader
ecosystem services of green

infrastructure in addition to water
quantity and quality.

A: Emphasize integration with
community amenities and

recreation (e.g., walking trails).
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Table 1. Cont.

Topic Raised by Interviewees for
In-Stream BMPs

Studies with Similar Findings
for Land-Based BMPs/Low
Impact Development (LID)

Design Advice from Interviews
(I) and Authors (A) for In-Stream

BMPs

Opportunity for in-stream BMPs
to improve aesthetics, which in
turn may boost property values.

Hansen et al. [61] report many
LID projects contributing to

recreation, habitat, and urban
revitalization in Europe; Wolch et
al. [62] present similar findings

from the U.S. and China but warn
that rising property values can

cause gentrification and displace
residents.

I: Prioritize natural aesthetics; A:
Add features that help improve

ecosystem health (e.g.
biodiversity).

4.1. Design Advice from Interviewees

Interviewees gave specific design advice to help in-stream BMPs deliver consistent and predictable
water quality treatment while minimizing costs and risks (Section 3.3; Table 1). Based on this feedback,
the best candidates for in-stream treatment are stormwater channels draining detention ponds and
other flow-regulating BMPs, as well as channels that have dry weather flow. Detention pond effluent
channels already receive modulated flows and pre-sedimentation, and can be retrofitted within the
existing footprint to provide better water quality. Detention features usually release stored stormwater
slowly over 12–72 h; thus, placing in-stream treatment downstream of a detention basin outlet would
have the additional benefit of lowering the dosing rate and improving the fraction of total water treated
per BEST module. Furthermore, water quality retrofits are expected to be relatively cost-effective and
easy to permit compared to brand new facilities. Future designs for BEST and other in-stream BMPs
should also include hardscape elements to prevent scour, and geomedia cartridges or other time-saving
techniques to minimize maintenance. Detention pond effluent channels can also be meandered and
vegetated for natural aesthetic, and maintenance access roads can double as walking or biking trails
for the community.

4.2. Research Knowledge Gaps Related to Design

All the performance data from BEST published thus far have been collected from controlled
pilot-scale systems or were estimated based on modeling efforts. Some of the interviewees were
concerned with scalability, revealing a need for performance data at field scale—both for storm
flows and dry-weather flows. Performance data across seasons are also needed, especially for
the biological component of treatment, as changes in temperature would affect microbially driven
processes. Furthermore, seasonal performance data need to include resilience of the in-stream system
to freeze-thaw cycles and occasional salt pulses. Other research topics to include are resistance to
scour, changes in hydraulic conductivity from biofilm formation or clogging from sediment deposition,
removal of contaminants not previously tested (Escherichia coli, deicers, metals, etc.), and long-term
structural integrity. Additionally, construction and maintenance cost data will be necessary to compare
the performance of BEST to its life cycle costs.

An emerging area of research is the use of engineered geomedia (e.g., biochar, polymerized
clays) to sorb contaminants or promote the growth of beneficial bacteria. It is essential to research
low-cost and nonproprietary geomedia mixes to efficiently remove a variety of stormwater pollutants
simultaneously. Due to a wide range of mechanisms governing removal of each class of contaminants
(and sometimes even within a class, e.g., in the case of metals), a better understanding of individual and
mixed removal processes is needed. As described by Moore et al. [63], poor mechanistic understanding
of water quality performance (including seasonal and operational variability) across many land-based
BMPs prevents design optimization and customization. Improved process-based monitoring will allow
the development of water quality specific design guidance for in-stream stormwater treatment systems.
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Methods to integrate engineered geomedia into BEST will also need to be studied. For instance, it is not
known if engineered geomedia need to be evenly mixed throughout the existing hyporheic sediments
or if they can be added in specific locations, which may be feasible through the use of cartridges.

The authors also envision BEST as a complementary modification to existing infrastructure,
such as bank stabilization structures, RSC, wetland channels, or bioswales. More research is needed,
however, on the appropriate scaling and siting of in-stream BMPs in treatment train settings or when
stormwater treatment optimization is investigated from an urban watershed-scale perspective.

4.3. Tradeoffs in Risk and Reward for Inventors and Regulators

Inventors from industry and academia have incentives to promote their design improvements
as novel technologies, as evidenced by the hundreds of proprietary stormwater technologies on the
market. However, all new BMPs need detailed field performance data to be approved by regulators
and accepted by practitioners. The same strict adherence to proven and pre-approved designs is found
in both stormwater and the closely-related field of stream restoration [64] and is logical from a risk
management perspective in which potential liabilities can be felt more strongly than the hypothetical
benefits of a new technique [52,65]. This represents a chicken-and-egg conundrum, because a BMP
cannot be constructed in the field without prior performance data, but field performance data cannot
be collected without a pilot field site. Designing, approving, and constructing a new BMP can take
several years. Subsequent performance monitoring for multiple contaminants across different seasons
requires significant investments of time and funds, which can be substantial hurdles to innovation.

These barriers to entry raise an important point about branding a BMP design as a new technology
versus an improved version of an existing technology. First, a new in-stream BMP could arguably
be considered an enhanced version of an existing BMP. For example, the interviewees’ suggestion
to pair BEST with a detention pond could simply be considered an improved version of a detention
pond, which may streamline the regulatory approval process or bypass it altogether. This would allow
in-stream BMPs to be tested at scale and optimized more rapidly, but must be considered carefully as
the loss of proprietary status may disincentivize innovation. Alternatively, a new technology may be
promoted as such, but still paired with another common BMP(s) in a treatment train to reduce risk
and facilitate pilot testing. In the same example as above, BEST could be installed downstream of a
detention pond and considered a separate BMP or polishing step without seeking additional water
quality credit beyond the standard for detention ponds alone. This would provide a pilot site for field
performance data as the basis for future crediting while preserving the intellectual property of the
inventors. The same strategy of small, low-risk experimental deployments has been suggested for
stream restoration as a means for academics and practitioners to co-generate long term performance
data and develop consensus on best practices [65]. Lastly, the pilot scale innovative technology could
be installed in parallel to an existing stream/BMP and the effluent of the technology could be directed
back to the influent of the existing stream/BMP similarly to how technologies are piloted at wastewater
or drinking water treatment plants.

4.4. Where Is Stormwater Treatment Permitted to Occur?

Our interview responses emphasized that it would be very difficult to obtain regulatory approval
for any in-stream stormwater BMP applications in jurisdictional waters. Instead, all stormwater
treatment should occur on-site or in small drainage channels upstream of the point of compliance.
However, this approach has failed to address the widespread stormwater pollution that still reaches
receiving waters. Nearly half of all river and stream miles in the U.S. are in poor biological condition [1].
For context, approximately half of E.U. rivers also fail to achieve good biological or chemical status
due in large part to diffuse pollution [66]. As BenDor et al. [47] describe U.S. stormwater regulations,
“federal stormwater rules (33 USC § 1342) often specify very tightly defined spatial and temporal effects
that can be considered when monitoring or regulating stormwater . . . federal rules, as a result, can
eliminate the ability to holistically consider non-point source discharges . . . ” However, stormwater
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treatment in jurisdictional waters has occasionally been approved in areas where on-site treatment
is technically infeasible [67], and has also been listed as an auxiliary benefit of (but not primary
motivation for) urban stream restoration projects [68]. Calls for distributed stormwater management
to be considered as a stream restoration technique, e.g., [21,69] further emphasize the potential overlap
between the two sectors. Future research should explore regulatory perspectives on the interface of
in-stream stormwater treatment and urban stream restoration to improve integrated management of
diffuse pollution.

5. Conclusions

Reversing the global trend of declining urban water quality is a monumental task, which demands
a multipronged approach. Distributed BMPs are being improved with modifications such as reactive
geomedia [23] and real-time hydraulic control [70]. Additionally, non-structural BMPs like street
sweeping and source controls are also being employed to great effect, e.g., [71,72]. However, in-stream
stormwater treatment remains an underutilized service. Extensive drainage networks in urban areas not
only span the green-gray infrastructure continuum, but also challenge the utility of the infrastructure
versus nature dichotomy. Resolving the impairment of urban waters will require integrated use of
all available technologies: source controls, land-based BMPs, and in-stream BMPs. With improved
in-stream BMPs, urban waterways could better protect themselves and downstream environments
from nonpoint source pollution, without utilizing any additional land footprint. In this study, we
worked with water management professionals to understand the unique opportunities and challenges
arising from in-stream stormwater treatment. Our goal was to report a wide range of opinions
rather than to determine majority or consensus views. It may not be realistic for future stormwater
BMP designs to accommodate all the feedback presented here. However, for each topic raised by
interviewees, there was at least one piece of design advice from the interviewees or authors. While
much of the feedback applied to both in-stream and land-based BMPs, we also identified unique
concerns and opportunities for in-stream BMPs. For example, there is potential low-hanging fruit in
the use of in-stream BMPs for water quality retrofits downstream from existing flow modulation and
sedimentation BMPs. By consulting stormwater regulators and practitioners early in the development
of in-stream stormwater treatments, we hope that technical and nontechnical hurdles can be defined,
shared, and contemplated by a diverse group of stakeholders. Notably, co-design does not end at the
data collection phase. Stakeholders from professional, regulatory, and academic institutions all benefit
from ongoing collaborations in developing, installing, monitoring, and reflecting upon in-stream
BMPs. More broadly, the approach presented in this paper for a specific technology can serve as a
general framework to enhance diffusion of other new and improved stormwater green infrastructure
into practice.
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Appendix A

The scripted questions used in the interviews are presented below.

1. What performance specs do you think need to be met for the BEST technology to be something you
would consider using in your professional work? This can relate to pollutant removal effectiveness,
removal reliability, flows that can be handled, resilience to high flow events, physical stability of
system, etc.

2. BEST systems, by themselves, don’t do anything to manage or reduce peak flows. Do they need
to be installed in concert with a BMP for management of peak discharges in order to be useful
to you?

3. What are the highest priority stormwater pollutants, in your opinion, that the BEST systems
should be designed to remove?

4. What visual or aesthetic characteristics are most important for the BEST technology to be deployed
in public spaces like street right-of-ways, parking lots, or parks? Are there particular plant types
or plant species that you think could or should be planted around the BEST systems to enhance
visual appeal?

5. What construction or maintenance characteristics do you think need to be met for the BEST
technology to be something you would consider using in your professional work? What other
BMPs from your current portfolio would you like to compare to BEST?

6. Are there particular targets for the cost of a BEST system that you would want to see met?
(This could be expressed in relation to the cost of other common BMPs, in relation to the cost of
installing storm sewers, or any other way.)

7. How important to you is design guidance from regulators and/or local agencies when you make
decisions about which stormwater management techniques to use (not whether to use them)?
Would a BEST system need to be “blessed” by inclusion in such guidance for you to consider
using one?

8. What lengths and widths of BEST systems are most manageable in the design contexts that you
work with? Any upper or lower limits?

9. Can you foresee any challenges—either regulatory or physical—with building constructed
channels such as a BEST system? They involve excavating shallow trenches and creating
semi-permanent open channels where there were none before.
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