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Abstract: In this study, a Fenton-activated persulfate (Fe2+/PS) system was introduced for the efficient
degradation of Mordant Blue 9 (MB 9) as a textile dye in an aqueous solution. Results showed that
the degradation of MB 9 was markedly influenced by operational parameters, such as initial pH, PS
concentration, Fe2+ concentration, and initial dye concentration. Optimal reaction conditions were
then determined. Inorganic anions, such as Cl− and HCO3

−, enhanced the degradation efficiency of
MB 9 under optimal conditions. Addition of HCO3

− reduced the degradation performance of MB 9,
whereas the addition of Cl− increased the degradation percentage of MB 9. In addition, quenching
experiments were conducted using methanol and tert-butyl alcohol as scavengers, and methanol
was identified as an effective scavenger. Thus, the degradation of MB 9 was attributed to SO•−4 and
•OH radicals. The degradation and mineralization efficiency of MB 9 was significantly reduced using
the conventional Fenton process i.e., Fe2+/ hydrogen peroxide (HP) because of the formation of a Fe
complex during degradation. Meanwhile, the Fe2+/persulfate (PS) system improved the degradation
and mineralization performance.
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1. Introduction

Dyes have prompted serious widespread concern because of their substantial contribution to
water pollution. The presence of these colorants in effluents not only deteriorates water aesthetically
but also harms the social system and health; moreover, these colorants present a threat to environmental
sustainability [1–3]. Mordant dyes derived from acid dyes have been widely used for the coloration of
textile fibers, such as wool, silk, polyester, cotton, and some modified cellulose fibers [4,5]. During
coloration, some transition metal ions are typically used with mordant dyes to form a durable dye–metal
complex ligand, which enhances fastness to light and washing in dyed fabrics [6]. However, treatment
of these dye effluents before they are discharged to the environment has received significant attention
because of the potential adverse effects of dyes [7].

Various technologies have been adopted for the degradation of dyes from wastewater, including
advanced oxidation processes (AOPs), adsorption, biological and chemical methods, and the use of
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membrane modules [8–10]. Fenton oxidation-based AOPs are among the most effective processes
because of their relative ease of operation, low-cost facility, and high removal efficiency [11,12].
The Fenton process oxidizes organic pollutants using hydroxyl radicals (HO•), which are generated
from the hydrogen peroxide (H2O2)–ferrous sulfate reaction in an acidic medium [13]. However,
the widespread application of Fenton oxidation is impeded by several constraints, such as the limited
pH range, sludge generation and large consumption of chemicals [14]. In addition, some studies [15–17]
have reported that the mordant dye degradation efficiency in Fenton oxidation was inhibited because
of the formation of an iron complex with dye ligands. Determining a useful process for the efficient
degradation of mordant dyes is desirable and can be a significant step in solving environmental issues.

Persulfate (PS) oxidant has recently been recognized as an essential substitute for hydrogen
peroxide (HP) in Fenton processes for the effective removal of pollutants [18,19]. PS can be decomposed
to produce sulfate radicals (SO•−4 ) via an activation process that can efficiently remove pollutants from
wastewater [20]. SO•−4 possesses higher redox potential and half-life span stability than HO• [21].
PS activation by transition metal ions (Fe2+, Co2+, etc.) has received particular attention owing to
the generation of a significant amount of SO•−4 radicals [22]. Ferrous sulfate (Fe2+) is the most widely
used PS activator because of its cheap, non-toxic, and high natural abundance compared with other
transition metals [23]. As shown in Equation (1), sulfate radicals can be obtained in the presence of Fe2+

ions. Moreover, in the reaction, a stronger oxidant, sulfate radical, is converted to a weaker oxidant,
and the hydroxyl radical and both radicals contribute to the degradation, resulting in higher efficiency
(Equations (2) and (3)) [24].

Fe2+ + S2O2−
8 → Fe3+ + SO•−4 + SO2−

4 (1)

SO•−4 + H2O→ OH• + HSO−4 (2)

SO•−4 + OH− → OH• + SO2−
4 (3)

The degradation of recalcitrant pollutants in wastewater using a Fe2+/PS system has been the
focus of many previous studies. Rastogi et al. [25] reported that 90% of polychlorinated biphenyl could
be removed within 24 h by Fe(II)/Fe(III)-mediated activation of the PS system. In addition, several
contaminants, such as carbamazepine [26], acetaminophen [27], diatrizoate [28], and iohexol [29],
could be successfully degraded using the Fe2+/PS system. Studies on the degradation of dyes from
textile wastewater by using the Fe2+/PS system have thus far been rarely investigated. Kusic et al. [30]
reported that the degradation efficiency of reactive azo dyes was strongly influenced by the Fe
(II)-activated persulfate system. A large amount of Orange G dye could be successfully degraded from
aqueous solution by using the iron (II)-activated persulfate system instead of the conventional Fenton’s
reagent [30,31]. However, this study was prompted by a previous report regarding the lack of studies
on the degradation of mordant dyes in the presence of the Fenton-activated persulfate system and
compared with the conventional Fenton process.

Therefore, the main purpose of the present study is to evaluate the enhancement of Mordant
Blue 9 (MB 9) degradation and mineralization efficiency using the Fenton-activated PS system with
an innovative approach. The results demonstrated that the inhibition of degradation during the
conventional Fenton process could be overcome by the wide-scale application of the Fenton-activated
persulfate system. Moreover, the effects of the operational parameters, such as initial MB 9 concentration,
initial pH, and oxidant dosage on the degradation efficiency of MB 9 were evaluated to determine the
optimal conditions. The results can potentially provide an invaluable resource for MB 9 degradation
from wastewater.
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2. Experimental

2.1. Reagents and Materials

Mordant Blue 9 (MB 9, 50%) with molecular weight 502.8 g mol−1 was obtained from Sigma-Aldrich
Co. (St. Louis, Mo, USA). Hydrogen peroxide (H2O2), ferrous sulfate (FeSO4·7H2O), sodium
persulfate (Na2S2O8), sulfuric acid (H2SO4), and sodium hydroxide (NaOH) were supplied by Aladdin
Chemistry Co., Ltd. (Shanghai, China). All selected materials and reagents were used without further
purification. Double-distilled water was collected from the analytical chemistry lab of Wuhan Textile
University, China.

2.2. MB 9 Degradation Procedures

The degradation procedures were conducted in a 100 mL beaker at a constant temperature of 25 ◦C.
Specific amounts of MB 9 and ferrous sulfate were introduced into the beaker from their stock solution
prepared using a preset molar ratio. The initial solution pH was adjusted using both 0.1 M H2SO4,
and 0.1 M NaOH whenever required. The reaction was then initiated by adding PS at a predetermined
concentration. The final volume of the solution was fixed at 100 mL, and the solution was magnetically
stirred (DF-101S, Tianjin Gongxing Experimental Instrument Co., Ltd., Tianjin, China) at 120 rpm for
1 h to ensure proper mixing. At a specific time interval, 1 mL of the sample was withdrawn from
the reactor. Quenching experiments were immediately started by adding methanol solution, and the
solution was filtered using a membrane with a pore size of 0.38 µm for further analysis. To degrade
MB 9 by using the conventional Fenton process, PS was replaced by hydrogen peroxide under the
same aforementioned experimental conditions, and the entire experimental procedure was repeated
for verification (Scheme 1).
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2.3. Analytical Methods

The concentration of MB 9 was measured using an ultraviolet–visible (UV–vis) spectrometer
(Tianmei Techcomp Ltd., Shanghai, China) at a maximum wavelength of 522 nm (pure dye) and 469 nm
(Fe2+/PS system). The degradation percentage (%) was calculated using Equation (4):

Degradation (%) =
A0 −At

A0
× 100 (4)

where A0 is the initial concentration of MB 9 and At is the concentration of MB 9 at time t, respectively.
The mineralization performance of the samples was investigated through the total organic carbon (TOC)
with a Shimadzu TOC-5050 analyzer (Shimadzu, Japan). PS decomposition studies were conducted as
described in the literature [32].

3. Results and Discussion

3.1. Comparative Studies on MB 9 Degradation Efficiency

The comparative results on MB 9 degradation efficiency by HP, PS, Fe2+, Fe2+/HP oxidation
system, and Fe2+/PS oxidation system were evaluated (Figure 1a). MB 9 was hardly removed by solely
using Fe2+. The degradation efficiency of the HP oxidant alone was also not satisfactory; however,
the removal efficiency slightly increased when PS oxidant was solely used over a period of 30 min.
This improvement is related to the higher solubility, oxidation potential, and stability of PS at room
temperature (25 ◦C) than those of HP [33]. The MB 9 degradation efficiency of the Fe2+/HP system
was considerably higher than the sum of the efficiencies of Fe2+ alone and HP alone. However,
the degradation percentage increased significantly when Fe2+ and PS were used together. Complete
removal of MB 9 was achieved after 30 min. These results suggest that SO•−4 and •OH radicals were
generated, causing MB 9 degradation in this system [34]. Figure 1a also shows the two steps involved
in MB 9 degradation: (i) fast-stage degradation, which occurred within the initial 15 min because of
the rapid production of SO•−4 via S2O8

2− dissociation [30] and (ii) slow-stage degradation, which was
related to the low concentration of the radicals. This result was also supported by the decomposition of
PS dosage during degradation (Figure 1b). The consumption rate of PS was more than 40% within the
first 15 min, suggesting that Fe2+ could effectively activate PS for the rapid production of SO•−4 radicals.
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3.2. Effect of Operational Parameters

3.2.1. Effect of Initial pH

In Fenton oxidation, the initial solution pH is commonly regarded as one of the most significant
parameters influencing the degradation efficiency of pollutants [35]. Therefore, the effect of variations
in initial solution pH on MB 9 degradation by the Fe2+/PS system was measured. In Figure 2,
the degradation efficiency of MB 9 is strongly influenced by the initial pH of the solution, which shows
that the percentage of degradation decreases from 82% to 32% with increasing pH from 2.65 to 9.24
within 30 min. The maximum degradation percentage of MB 9 (94%) was achieved at pH 4.88 and was
considered as the optimal solution pH for the subsequent experiments. Acidic conditions were largely
favorable for MB 9 degradation in the Fe2+/PS system. At a lower pH level, SO•−4 achieved a higher
redox potential and even oxidized water to generate HO• radicals [23]. Hydrolysis of S2O8

2− could
also produce hydrogen peroxide, increasing the efficiency of MB 9 degradation in the presence of a
Fe(II)-activated process [36]. Meanwhile, higher pH levels are suitable for generating Fe2+ hydroxyl
complexes and Fe3+ oxyhydroxides, both of which are considered as weak activators for PS [37]. Thus,
the efficiency of MB 9 degradation decreased as pH increased. Previous studies on carbamazepine
degradation by a Fe(II)-activated PS process also demonstrated that alkaline pH leads to reduced
degradation efficiency [26].
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3.2.2. Effect of PS Concentration

The effect of oxidants has often been considered a parameter affecting pollutant removal because
oxidants are the source of radical production in typical Fenton oxidation [34]. Thus, the influence of
variations in PS concentrations on MB 9 degradation efficiency was evaluated. The results in Figure 3
show that the maximum efficiency of MB 9 degradation is achieved when PS concentration is set to
0.8 mM; at either higher or lower PS concentration, the degradation efficiency declines. By increasing
the concentration from 0.2 to 0.8 mM, the efficiency of MB 9 degradation linearly improved from
50% to 95% after a 30 min reaction. Thus, the optimal PS concentration was determined to be
0.8 mM for the subsequent experiments. At higher PS concentrations, more PS molecules could react
with Fe2+, and a greater amount of reactive radicals (SO•−4 ) was produced for MB 9 degradation,
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improving the degradation efficiency during the reaction [38]. Meanwhile, the efficiency of MB 9
degradation decreased to 87% with a further increase in PS concentration to 1.0 mM. This result is
attributed to the excess PS in the solution, which may act as the scavengers of radicals, inhibiting the
efficiency of MB 9 degradation during the reaction. This finding is consistent with a previous report on
sulfamonomethoxine degradation by an iron-activated PS process [39].
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3.2.3. Effect of Fe2+ Concentration

The concentration of Fe2+ markedly affected the efficiency of MB 9 degradation. Figure 4 presents
the MB 9 degradation studies under different Fe2+ concentrations. An increase in Fe2+ concentration
from 0.1 to 0.7 mM caused a significant enhancement in the efficiency of MB 9 degradation from 73% to
93% (Figure 4). The higher concentration of Fe2+ ions that corresponds to a substantial amount of Fe2+

can activate PS molecules to generate SO•−4 radicals in the solution, mainly improving the efficiency of
MB 9 degradation in the Fe2+/PS system. Thus, 0.7 mM is determined as the optimal concentration of
Fe2+. However, a further increase in Fe2+ concentration from 0.7 to 1.5 mM markedly reduced the
efficiency of MB 9 degradation from 93% to 38%. This occurrence can be interpreted in two ways: first,
the excessive amount of Fe2+ accelerated the scavenging activities of SO•−4 radicals in the solution [40],
and second, a higher concentration of Fe2+ shifts the equilibrium toward the Fe-complex formation
with the MB 9 pollutant in the solution [41]. Similar findings have also been reported in the literature
on the degradation of different types of pollutants in the Fe2+/PS system [28,42].

3.2.4. Effect of MB 9 Concentrations

The initial concentration of pollutants has been reported to considerably influence degradation
efficiency [43,44]. In the present study, the influence of the initial MB 9 concentration of the Fe2+/PS
system was evaluated, and the results are shown in Figure 5. Under these experimental conditions,
reduced MB 9 concentration indicated enhanced degradation efficiency. Accordingly, the degradation
efficiency was markedly reduced from 94% to 51% as the initial concentration of MB 9 increased
from 0.05 to 1.5 mM. The reason is that a higher concentration of MB 9 may reduce the production
of reactive radicals by the dissociation of PS molecules. In addition, more MB 9 molecules consume
more radicals, resulting in an insufficient amount of radicals to degrade the excess MB 9, and a lower
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degradation efficiency [45–47]. By contrast, a lower dye concentration is suitable for efficient MB 9
degradation, due to many SO•−4 radicals produced, ensuring a higher degradation percentage at a low
MB 9 concentration.Water 2019, 11, x FOR PEER REVIEW 7 of 14 
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3.2.5. Effect of Inorganic Anions

Various types of inorganic salt often exist in effluents from textile and dyeing industries, which
may influence the efficiency of dye degradation in Fenton oxidation [48,49]. Thus, the effects of Cl−

and HCO3
− anions on the efficiency of MB 9 degradation in the Fe2+/PS system were investigated,

and the results are presented in Figure 6a. It was noticed that without the addition of inorganic ions in
the solution the degradation efficiency of MB 9 was higher, whereas the addition of Cl− in the solution
decreased the degradation efficiency of MB 9, possibly due to the formation of less reactive chlorine
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species such as Cl•, Cl•− and Cl2, as shown in Equations (5)–(7) [50,51]. This result was similar to the
previously reported by Fang et al. [52] demonstrated that the efficiency of polychlorinated biphenyl
degradation in a PS-activated system was markedly inhibited by the addition of Cl−. On the other
hand, Wang et al. [53] reported that Cl− positively affected the efficiency of rhodamine B degradation
in the Fe2+/PS system. However, this difference in the performance of Cl− in the PS-activated system
was attributed to the variations in the molecular structure of pollutants [54].

SO•−4 + Cl− ↔ SO2−
4 + Cl• (5)

Cl• + Cl− ↔ Cl•−2 (6)

Cl•−2 + Cl•−2 → 2Cl− + Cl2 (7)
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HCO3
− is a vital compound in water. Here, we investigated the influence of HCO3

− on MB 9
degradation performance. As shown, the degradation efficiency of MB 9 markedly decreased to 67% by
the addition of HCO3

− in the solution (Figure 6a). This inhibition arises from the rapid consumption
of both SO•−4 and •OH radicals owing to the scavenging role of bicarbonate in the solution [55].
A previous report by Weng et al. [56] described that the presence of bicarbonate induced Fe-complex
formation in the solution, affecting the availability of Fe2+ for the production of SO•−4 radicals to oxidize
compounds in the Fe2+/PS system, hence, the degradation efficiency of MB 9 was reduced.

3.2.6. Effect of Scavengers

Pollutant degradation in the Fe2+/PS system is caused by oxidative free radicals such as SO•−4 and
•OH [39,57]. Therefore, in the current study, radical quenching experiments were conducted in the
presence of tertiary butyl alcohol (TBA) and methanol (MeOH) to determine the potentially dominant
radicals for MB 9 degradation. MeOH is a strong scavenger of •OH and weak scavenger of SO•−4
because the rate constant of the MeOH + SO•−4 reaction is 1 × 107 M−1s−1, while that of the MeOH +

•OH reaction is 8 × 108 M−1 s−1, whereas TBA can only scavenge of •OH radicals [58]. The efficiency
of MB 9 degradation decreased to 78% by the addition of TBA (Figure 6b). This degradation efficiency
was less than that without a scavenger, but no significant difference was found. However, the efficiency
of MB 9 degradation was significantly reduced to 38% with the addition of MeOH. This result indicated
the presence of both SO•−4 and •OH radicals are responsible for MB 9 degradation in the Fe2+/PS system.
This finding was consistent with previous studies in the PS activation oxidation system [59,60].
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3.3. Degradation Pathway of MB 9

Structural changes in MB 9 during the conventional Fenton (Fe2+/HP) and Fenton-activated
persulfate (Fe2+/PS) degradation studies were investigated by UV–vis spectroscopy; the results are
shown in Figure 7a,b, respectively. In the conventional Fenton (Fe2+/HP) process, the absorption
spectra of the pure dye have two characteristic peaks at wavelengths of 311 and 522 nm (Figure 7a).
The maximum absorption peak in the visible region at 522 nm was responsible for the chromophore
bond, and the shoulder peak at 311 nm in the UV region was attributed to the aromatic rings. During
degradation, the peak maximum was shifted to 469 nm when the Fe-complex was formed in their
structure. This complex also added a broad protuberance from 650 to 750 nm, which could be due
to the increase in ligand conformational rigidity with Fe3+ cations after the coordination bond in
their terminal hydroxyl group [17,61]. However, no new characteristic peak appeared in the presence
of the Fe2+/PS system, suggesting that the chromophore—that is, the cleavage of the azo bond of
the MB 9 structure—was completely destroyed during degradation studies (Figure 7b). As a result,
the degradation efficiency was higher than the conventional Fenton process. Table 1 also shows that
Fe2+/PS is one of the most effective systems for MB 9 degradation.Water 2019, 11, x FOR PEER REVIEW 10 of 14 
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Table 1. Comparison of MB 9 removal using the proposed method and by other methods.

Samples Methods Conc. of MB 9 Removal
Efficiency (%) Ref

Fungal peroxidase enzymes batch shake flasks 10 mg L−1 97 [62,63]

Fungal peroxidase enzymes rotating biological
contactor (RBC) reactor 10 mg L−1 98 [64]

Fungal peroxidase enzymes media constituents 10 mg L−1 100 [65]

Ionic liquid adsorption 100 µmol 98.28 [66]

Fe2(SO4)3 coagulation 100 µmol 28 [66]

Fenton oxidation 100 µmol 98 [66]

CeO2 adsorption 200 mg L−1 91 [67]

Fenton oxidation 0.05 mM 48 This work

Fenton-activated persulfate oxidation 0.05 mM 97 This work

With the Fe2+/PS system, the degree of mineralization (TOC) removal percentage gradually
increased to 60%, whereas with the Fe2+/HP system, TOC removal was only 38% (Figure 7c). This result
demonstrates that MB 9 molecules were efficiently mineralized into H2O and CO2 using the Fe2+/PS
system (Figure 7d). Therefore, the degradation and mineralization of MB 9 can be effectively obtained
using the PS activation system without any complex formation during degradation.

4. Conclusions

The present study shows that Fenton-activated PS is a highly efficient system for MB 9 degradation,
with a degradation percentage exceeding 95% in an aqueous solution. In the Fe2+/PS system, the optimal
operating conditions were as follows: initial solution pH = 4.88, concentration of PS (PS) = 0.8 mM,
concentration of iron (II) (Fe2+) = 0.7 mM, and concentration of initial dye solution (MB 9) = 0.05 mM
at 25 ◦C. The presence of certain anions, such as HCO3

−, negatively affected MB 9 degradation,
whereas the addition of Cl− anions improved the efficiency of degradation. Methanol as a scavenger
strongly inhibited the efficiency of MB 9 degradation, confirming that SO•−4 and •OH radicals are
actively responsible for MB 9 degradation. The conventional Fenton process was not efficient for
MB 9 degradation because of their Fe complex formation behavior during the reaction. Finally,
Fenton-activated PS can be used as an effective oxidation system for the degradation of recalcitrant
compounds from wastewater.
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