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Abstract: A new degree of freedom in water management is presented here. This is obtained by
displacing water, and in this paper is conceptually explained by two methods: using an excavated
cavern as a container for compressed air to displace water, and using inflatable balloons. The concepts
might have a large impact on a variety of water management applications, ranging from mitigating
discharge fluctuation in rivers to flood control, energy storage applications and disease-reduction
measures. Currently at a low technological readiness level, the concepts require further research
and development, but the authors see no technical challenges related to these concepts. The reader
is encouraged to use the ideas within this paper to find new applications and to continue the
out-of-the-box thinking initiated by the ideas presented in this paper.

Keywords: water management; reservoirs; hydropower plants; pumped storage power plants;
hydropeaking; environmental flows

1. Introduction

Fresh water is a paramount part of any human life and a prerequisite for a developed society and
high quality of life. Apart from the obvious use of drinking it, water can provide many services for
both society and environments, either in a natural or modified system. The IPCC 2011 climate report
(chapter five) has an extensive section (on services and characteristics of Hydro Power Plant (HPP)
projects, but transferrable to the general case as well) in which energy and water management services
as well as their main environmental and societal characteristics are identified.

For society, these services might be the following: transportation and recreation (riverboats and
barges); irrigation; fisheries; energy storage and power production (hydropower production (at HPP));
electric energy storage (Pumped Hydro Storage, (PHS)); waste management; fertilization of farmland
(sedimentation by flooding); protection of shorelines (sediments settling in estuaries and river mouths
dampening waves and tidal erosion); flood protection (dams and natural lakes reduce flood intensity);
and groundwater stabilization.

For environments, the services might be as follows: providing habitat and reproduction areas for
living organisms ranging from the smallest protozoa and algae to plants, fish, birds and mammals; the
cleaning of river beds during floods; bringing nutrients in the form of sediments to coastal regions;
and the settling of sediments to protect ocean shorelines and thus habitats.

The availability of fresh water varies between different parts of the world. Consequently, the use
and management of water also vary between countries and continents. Climate changes are predicted
to result in changing weather systems, altering the intensity and distribution of precipitation around
the globe. The effect of this on the watercourses on a regional and local scale is difficult to predict,
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as global models must be downscaled into climatic data for use in models of catchments areas [1].
An overall trend seems to be captured in Figure 1, however, which represents the median of 12 climate
model projections using the A1B scenario, “A balanced emphasis on all energy sources”, from the
Special Report on Emissions Scenario by the Intergovernmental Panel on Climate Change (IPCC) [2].
“Climate change has large direct impacts on several aspects of the hydrological cycle—in particular,
increases in extremes—making managing and using water resources more challenging” [3].
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Current water management systems and infrastructures have been established based on historical
data, typically before anthropogenic climate changes were even theorized as being possible. The systems
represent large investments and, quite often, incremental additions and/or modifications are not possible,
or at least are very expensive. Utilizing the infrastructure to the fullest or even increasing their capacity
without modifying the systems is important. When developing the ideas presented in this paper,
reusing existing infrastructure has been a guiding principle. The applications presented here are
at a low technological readiness level (TRL). As such, cost has not been given any weight in this
paper, although it is likely that cost is strongly related to any installation derived from the ideas
presented. Hence, a cost–benefit analysis is of course necessary in the long term, but if the benefits are
large enough, funding is often available. To put things into perspective, following the 2008 financial
crisis, the aid to the financial sector from EU member states was 1400 billion US$ [4], whereas the
worldwide government spending on low-carbon Research and Development (R&D) in 2017 was just
above 20 billion US$ [5]. This means that close to 70 years of global low-carbon R&D funding was used
to keep the EU financial system afloat. This strongly indicates that, where there is a governmental and
political will, funding is available.

This paper will present novel ideas on how to achieve a new degree of freedom for topics related
to water management. This freedom is linked to the active control of the displacement of water by
compressed air in different configurations. The objective of this paper is to present the concepts and to
get engineers and scientists to “think outside the box”, and in this way stimulate ingenuity and the
emergence of new technical solutions. The motivation of the authors is stimulate the development of
new technical solutions that will provide water management services to society in the future.

The authors acknowledge that part of this paper has the characteristics of a popular scientific
publication more than a technical science publication. However, to be able to bring the concepts in
focus to a higher TRL, they need to be presented to a technical audience. Furthermore, the actual ways
of implementing the concepts might vary depending on the needs of the services required, so a high
degree of tailor-made solutions are likely to be needed. This also suggests that presenting something
with a high level of technical detail will not aid the objective of this paper, namely to present the
concept and induce creativity within the technical community.
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2. New Technical Concepts; Method

The new concepts are based on displacement of water as a method to obtain a new degree of
freedom to operate and manage water bodies and flows. Both concepts make use of air as the medium
to displace water, but the configurations for obtaining the displacements are different. Problems related
to not being able to provide the new degree of freedom are numerous and will be presented in more
detail in later sections which will more specifically explain the problems and how displacement can
resolve them.

In the next section, the proof for displacement as a method for obtaining a new level of freedom is
presented based on first principles. If this proof is not needed from the reader’s point of view, this
section can be omitted with no loss of continuity.

2.1. Displacing Water Using Compressed Air

Water is, for all practical purposes, incompressible, meaning that a given mass will have a fixed
volume. Decoupling water volume and levels means that a portion of the volume must be moved to a
different location. This is called displacement and is what the compressed air is claimed to be able to
do in the concepts presented.

Although rather intuitive, in the end, it can be shown mathematically to be true as well. This can
be done by utilization of the Reynolds Transport Theorem. This theorem can be applied to any
extensive property, such as energy, momentum and mass. It basically describes a control volume (CV)
which has inlets and outlets crossing a control surface (CS) and formulates that the rate at which an
extensive property Bsys is produced/consumed in the system must be equal to the sum of the net flow
of B through the CS, and the change of the amount of B within the CV according to [6]

dBsys
dt = d

dt

∫
CV ρbdV +

∫
CS ρb(

→

Vr·
→
n)dA, (1)

where ρ (kg/m3) is the density of the fluid carrying the property B; b = B/m (B/kg) is the intensive

property linked to the extensive property; and
→

Vr (m/s) and
→
n (-) are the relative velocity vector

between the fluid and the local CS and the normal vector of the local CS, respectively. Consider two
such systems, one for air (subscript a) contained within another one for water (subscript w), as shown
in Figure 2:
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The interphase between the water and air is intended to be flexible—like a balloon—so that it is
free to expand or collapse. The quantities

.
mw,in and

.
mw,out are the mass flow of water in and out of the

CV, respectively, while
.

ma is the mass flow of air (positive or negative) through the air inlet.
Two versions of Equation (1) can be constructed, considering that no air or water is produced or

consumed ( DBa
Dt = 0; DBw

Dt = 0); using B1 = ma; b1 = ma/ma = 1; B2 = mw; b2 = mw/mw = 1;

d
dt

∫
CV,w ρwdV = −

∫
CS,w ρw(

→

Vr·
→
n)dA =

.
mw,in −

.
mw,out, (2)
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d
dt

∫
CV,a ρadV = −

∫
CS,a ρa(

→

Vr·
→
n)dA =

.
ma. (3)

Assuming the densities to be constant (which holds for low-pressure water, and is a slight
simplification for low-pressure air), the densities can be removed in the respective equations, and
adding the resulting equations together yields

d
dt

(∫
CV,a dV +

∫
CV,w dV

)
= Qa + Qw,in −Qw,out, (4)

where Q is the volume flow (or discharge) of water or air, corresponding to the mass flows. The left-hand
side of Equation (4) describes the rate of change of the combined volume of air and water. The right-hand
side considers the sum of the discharge through the inlets and outlets. Imagine that a volume of air is
submerged in a balloon in a water reservoir (as shown in Figure 2) and for some reason the water level
in the reservoir is not allowed to change. This means that the combined volume should be constant,
and Equation (4) is simplified to

Qa = Qw,out −Qw,in. (5)

If no air volume exists, as is the case for existing reservoirs, Equation (5) reduces to Qw,out = Qw,in,
meaning that the discharge of water into and out of the reservoir must be identical. Thus, Equation (5)
show that the presence of the air displacement makes it possible to decouple the water out of and into
the reservoir, obtaining the new degree of freedom.

Energy Considerations

Even if a new degree of freedom is obtained, some insight into the energy cost of this is appropriate.
Using energy E (kJ) as the extensive property under investigation in Equation (1), a starting point for
an energy analysis of the system can be defined. After divisions of energy into heat (which will be
neglected) and work, and further dividing work into work added to the system by a component and
pressure work added by the surroundings on the inlets and outlets [6], we get

.
Wsha f t =

d
dt

∫
CV
ρedV +

∫
CS
ρ

(
P
ρ
+ e

)
(
→

Vr·
→
n)dA, (6)

where
.

Wsha f t (kJ/s) is the power added or extracted by the component(s); e = u + V2

2 + gz, where
the right-hand side terms are internal, kinetic and potential specific energies, respectively (kJ/kg).
This system can be set-up for the water and air configuration in Figure 2, considering the case where
the water level must be maintained at a constant level while providing environmental flow Qw,out

while there is no inflow, Qw,in = 0. The water system has no component that can add (pump) or extract
(turbine) power to or from the flow, so there in no

.
Wsha f t-term in this system. However, for the air

system, a term
.

Wsha f t,a appears to represent the power added to inflate it. The development of the
equations can be found in Appendix A, yielding

.
Wsha f t,a = g(ρw − ρa)(zs − zcg,a)Qw,out, (7)

where zs is the elevation of the reservoir surface and zcg, a is the elevation of the centre of gravity (COG)
of the air body. Further realising that the density of air is much lower than the water density, the term
related to the air system will in practise be negligible; consequently,

.
Wsha f t,a = gρw(zs − zcg,a)Qw,out. (8)

This is the power needed to provide the necessary displacement of water by the air system.
Scrutinizing Equation (8), it is recognized that the term represents the power needed to bring the flow
from atmospheric pressure to the pressure at the COG of the air body. Another case can be investigated
by setting the discharge Qw,out to a negative value. This case is one in which the water level must be
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kept constant, and there is an inflow (negative outflow), but no outflow. In this case, the term
.

Wsha f t,a
will change sign, indicating power will go in the opposite direction. This means that regeneration of
power is possible when the air is released from the system. For a full cycle, we thus only must pay the
price of energy losses, because the inflation/deflating process is an energy storage process.

2.2. Examples of Use of the New Capabilities

There are several examples that can be used to highlight some uses of the new capabilities obtained
by this decoupling. First, we assume that the water level at its maximum in a reservoir used for
hydropower, for instance. The combined volume cannot be increased, because water would be spilled
over the dam or through spillways, and it can be assumed that this must be avoided, perhaps due to
safety issues or economical concerns. If the draining of water,

.
Vw,out, due to capacity issues is smaller

than the inflow of water,
.

Vw,in, releasing air from the balloon (having negative
.

Va) will keep the volume
constant. The volume of air in the CV will decrease, allowing for the water volume to increase, but
keeping the sum of the two fixed. For this to be possible, air must be present in the volume prior to
this incident occurring. However, the reservoir levels and weather forecast should give an indication
of such an incident occurring, and the draining of water can be kept higher than the inflow while air is
added to the volume in the hours before the incident. Alternatively, some air volume could be present
as a default safety margin. If such air volume—in this case, in the form of a balloon—does not exist,
there is no possibility at all of avoiding water to be spilled, and safety is no longer ensured.

The opposite case is if the water is at the minimum allowed level; for example, near the end of
the dry season. If the need for water downstream supplied by the draining of water,

.
Vw,out, is larger

than the inflow of water,
.

Vw,in, this is made possible by adding air to the balloon, having a positive
.

Va.
Then, the inflating balloon would displace water volume as the water was drained and the level would
be kept constant. If such a balloon did not exist, the needed water could not be supplied because this
would cause the level to go below the minimum allowable level. Supplying the needed water can, for
instance, be of paramount importance to avoid the stranding of fish, [7]. Keeping the level constant
can also be of importance for benthic fauna [8].

Both cases above assume that the combined volume should be constant, but the flexibility provided
by the displacement can also be used to increase or reduce the combined volume as well, effectively
changing the water levels more than what would be the case for mass balance in and out of the
reservoirs. Such applications will be discussed later in the paper.

Obtaining the desired displacement can be done in several ways. In principle, a crane could be
used to submerge a solid body with a density higher than the water and thus displace a water volume
corresponding to the volume of the body. With no indications of these being the only appropriate
ways of achieving displacement, two other configurations are considered in this paper; they use an
underground cavern and inflatable balloons, respectively. The reasons for choosing these are the fact
that much of the infrastructure and components needed are available from other applications existing
today and that a gas—in this case, air—is relatively easy to handle. This will be explained in the
sections describing the two configurations.

2.2.1. Inflatable Balloons

Displacing water by inflating balloons anchored to the bottom of the water body is the first
configuration discussed in this paper. It can be seen in Figure 3.

The principle is intuitively understood and identical to the example used to prove the concept in
the section above. Using compressed air to inflate the balloons will displace water, giving the flexibility
to operate with a new degree of freedom. Using balloons, the need arises to have strong foundation for
the balloons as they experience large buoyancy forces. Although used for a slightly different purpose
(compressed air energy storage at great ocean depths), balloons of the type considered appropriate for
this configuration have been made and tested in a laboratory [9].
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ACUR is an underground cavern excavated for retaining air near a water surface. It can be seen
sketched in Figure 4.
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Figure 4. Principal drawing of the Air Cushion Underground Cavern (ACUR).

The tunnel allowing water to go in or out of the ACUR element is connected to an adjacent water
reservoir. Displacing water in ACUR by admitting compressed air will give an addition to the water
volume of the adjacent reservoir; vice versa, expanding air from ACUR will allow for water entering
it, removing the same water volume from the adjacent water body. ACUR is simply an additional
volume in which water can be stored. However, the flexibility obtained by using air to displace water
is what gives the possibility of the manipulation of water levels.

Subject to acceptable ground conditions, making ACUR water and air-tight might be a challenge.
ACUR must be as close to the water level of the adjacent water body as possible, and this will make
the pressure inside ACUR quite low—not significantly higher that atmospheric pressure. There is a
resemblance between ACUR and a high-pressure component present in a hydropower plant, called
air cushion surge chambers. They are chambers in the rock hydraulically connected to the penstock
of power plants and are used where a surge shaft cannot be installed due to the local geographical
conditions. They are partially filled with water and air, and the purpose of the surge chamber is to
improve the governing stability and reduce retardation pressures when stopping the flow through
the power plant, either for regulation of power or shutting down the power plant. The fact that these
installations can provide sufficient air and water-tightness despite high pressures indicates that it
should be possible to make ACUR air and water-tight as well.

3. Applications

There are different applications that can be imagined for these concepts. The balloons clearly
need a water volume of some size to work, since they are positioned within the water volume. ACUR
provides an additional hidden volume and can be constructed adjacent to small rivers and where
no significant volume is present, as well as connected to reservoirs. In addition to flow in regulated
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rivers, as presented below, the configurations may be used in cities where flooding is a main issue [10].
Watersheds such as rivers, channels, lakes, pools and ponds may be equipped with balloons as shown
in Figure 3 to keep the water surfaces at a proper level. During heavy rains, air is released from the
balloons, creating a large volume for the water to fill. Once the weather conditions become stable, air
can be pumped into the balloons at a slow speed, letting the water leave the city in a controlled fashion.

3.1. Floods, Droughts and Discharge Fluctuation Manipulations

As Figure 1 shows, run-off is expected to change significantly for most of the planet in the
future. Floods and droughts are thus likely to intensify. Since simulations have shown that the ACUR
configuration can be used to both mitigate and mimic floods [11], it has a potential to be implemented
for rivers and used to dampen the magnitude of the discharge in flood incidents. Destructive floods
are ones that are so big that they rarely occur, named by the amount of years between their statistical
appearance. A 50-year flood is thus more severe than a 10-year flood. Furthermore, it is the flood
peak that is responsible for the level of destruction. Hence, by allowing some of the discharge to enter
ACUR, the peak flood discharges can be reduced, making the flood less dangerous. Such a scenario is
illustrated in Figure 5.
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The volume needed to turn a 50-year flood into a 10-year flood is of course dependent on the flood
characteristics. The duration of the flood peaks tends to be short, so it is not far-fetched to imagine
a feasible volume for ACUR being able to relieve the situation. Furthermore, the periods of a flood
incident in which the water retrieves rapidly might also be a concern, because an overly high hydro
morphological pressure in river embankments might cause landslides. The water stored at the peak
flood event could be stored and released to prevent water levels falling too rapidly, hence reducing the
risk of landslides. In rivers with many tributaries, ACUR can be used to shift the time of the occurrence
of the peak flow of the individual tributaries so that the flood peaks from the tributaries do not all add
to the main river flood peak.

In periods of drought, stored water in ACUR can be used for periods where a river flow is at
critical levels. The water in the cavern would be subjected to little evaporation, as it is kept away from
solar radiation and winds.

Some natural phenomena are triggered by flood-like discharge events. This is might be migratory
events for fish in rivers. As an example, the Atlantic salmon migrate from the river as salmon fry in the
springtime snow-melt floods [12]. At the other end of the salmon life cycle, the salmon run up the river
at high-discharge periods to easily get to the spawning grounds. Mimicking local flood-like events
is, for instance, a perfect method to supply water to channels used to attract fish to fish-ways [13,14].
Active use of ACUR could thus facilitate these natural migrations.
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In heavily regulated rivers, natural floods have been reduced and silt and sediments have settled
in the gravel, which are used by fish as a substrate for hiding fertilized eggs. This has been found
to be the case for white sturgeon in the Kootenai River downstream Libby Dam, where the relative
rarity of very high flows due to the regulation by the dam is partially responsible for the lack of
successful spawning [15]. Therefore, there might be cases in which a regulated river would benefit
from a flood-like discharge event. ACUR could be used to provide this as well, by storing water and
releasing it when the natural river flow is high, artificially creating a flood-like peak in the discharge.
Simply releasing additional high-value water from the reservoir in such a case can be an alternative
but carries a high cost. The water stored in ACUR has already given its energy to the generators of
the hydroelectric plant and thus has a lower value. The cost of pushing water out of the cavern and
into the river would be the cost of operating the compressors providing the pressurized air. In fact, in
electrical sub-systems dominated by intermittent energy sources, energy prices have been negative,
due to the cost of shutting down wind turbines. Future systems will be dominated by intermittent
energy sources, and it is completely feasible that mitigating floods by running compressors will be a
net income incident for power companies in the future.

3.2. Energy Storage and Power Production

ACUR provides an additional volume for storage of water, and at some locations, this additional
volume might be very useful. The world is in dire need of reliable, large-scale and fast electrical
energy storage technologies. Currently, the best technology by far to provide this is Pumped Storage
Power plants (PSP) in addition to large reservoirs. The PSPs are, however, dependent on having
both water available as well as a steep terrain with the possibility to construct a reservoir with high
elevation. Such locations are not found everywhere, and the best locations have already been developed.
The expansion of the power capacity at existing PHS sites has been performed at several locations.
This is simply a matter of adding units between the existing upper and lower reservoir. This increases
the power that can be produced, but emptying the upper reservoir will then go faster, since the energy
storage capacity has not been increased. At some point, the expansion of power at the PSP might
be limited by the rate of water level decrease, because a too high rate might introduce too much
sediment into the water, or landslides might occur. Installing and operating ACUR to reduce the rate
of water level decrease by displacing water into the main reservoir might provide the possibility to
add more power by working around this limitation. A suggested position of ACUR in conjunction to
the reservoir can be seen in Figure 6.

Water 2019, 11, 2528 8 of 16 

 

salmon fry in the springtime snow-melt floods [12]. At the other end of the salmon life cycle, the 
salmon run up the river at high-discharge periods to easily get to the spawning grounds. Mimicking 
local flood-like events is, for instance, a perfect method to supply water to channels used to attract 
fish to fish-ways [13,14]. Active use of ACUR could thus facilitate these natural migrations. 

In heavily regulated rivers, natural floods have been reduced and silt and sediments have settled 
in the gravel, which are used by fish as a substrate for hiding fertilized eggs. This has been found to 
be the case for white sturgeon in the Kootenai River downstream Libby Dam, where the relative rarity 
of very high flows due to the regulation by the dam is partially responsible for the lack of successful 
spawning [15]. Therefore, there might be cases in which a regulated river would benefit from a flood-
like discharge event. ACUR could be used to provide this as well, by storing water and releasing it 
when the natural river flow is high, artificially creating a flood-like peak in the discharge. Simply 
releasing additional high-value water from the reservoir in such a case can be an alternative but 
carries a high cost. The water stored in ACUR has already given its energy to the generators of the 
hydroelectric plant and thus has a lower value. The cost of pushing water out of the cavern and into 
the river would be the cost of operating the compressors providing the pressurized air. In fact, in 
electrical sub-systems dominated by intermittent energy sources, energy prices have been negative, 
due to the cost of shutting down wind turbines. Future systems will be dominated by intermittent 
energy sources, and it is completely feasible that mitigating floods by running compressors will be a 
net income incident for power companies in the future.  

3.2. Energy Storage and Power Production 

ACUR provides an additional volume for storage of water, and at some locations, this additional 
volume might be very useful. The world is in dire need of reliable, large-scale and fast electrical 
energy storage technologies. Currently, the best technology by far to provide this is Pumped Storage 
Power plants (PSP) in addition to large reservoirs. The PSPs are, however, dependent on having both 
water available as well as a steep terrain with the possibility to construct a reservoir with high 
elevation. Such locations are not found everywhere, and the best locations have already been 
developed. The expansion of the power capacity at existing PHS sites has been performed at several 
locations. This is simply a matter of adding units between the existing upper and lower reservoir. 
This increases the power that can be produced, but emptying the upper reservoir will then go faster, 
since the energy storage capacity has not been increased. At some point, the expansion of power at 
the PSP might be limited by the rate of water level decrease, because a too high rate might introduce 
too much sediment into the water, or landslides might occur. Installing and operating ACUR to 
reduce the rate of water level decrease by displacing water into the main reservoir might provide the 
possibility to add more power by working around this limitation. A suggested position of ACUR in 
conjunction to the reservoir can be seen in Figure 6. 

 
Figure 6. ACUR connected to a reservoir. HRL: highest reservoir level; LRL: lowest reservoir level. 

Installing and operating ACUR thus gives the possibility to install more capacity than otherwise 
possible. Furthermore, the added volume of ACUR represents a novel way of increasing the energy 
storage capacity at reservoirs. The conventional way of doing this is not easy, because this will in 
most cases imply that the height of the dam must be increased, and this is not possible in most cases 
because the additional forces on the construction void the structural integrity of the existing dam (in 
Europe, this is still possible at several locations due to the high safety factor used when designing the 
dams due to the cold war). One project in which the dam height was increased due to energy storage 

Figure 6. ACUR connected to a reservoir. HRL: highest reservoir level; LRL: lowest reservoir level.

Installing and operating ACUR thus gives the possibility to install more capacity than otherwise
possible. Furthermore, the added volume of ACUR represents a novel way of increasing the energy
storage capacity at reservoirs. The conventional way of doing this is not easy, because this will in most
cases imply that the height of the dam must be increased, and this is not possible in most cases because
the additional forces on the construction void the structural integrity of the existing dam (in Europe,
this is still possible at several locations due to the high safety factor used when designing the dams due
to the cold war). One project in which the dam height was increased due to energy storage increase
considerations is at Vianden PHS [16]; however, this dam is not representative of the majority of dams.
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ACUR represents the possibility of increasing the energy storage at an existing power plant without
the need to replace the existing dam.

The position of ACUR below the lowest reservoir level (LRL) in Figure 6 is intentional, and the
interested reader can find reasons for this in a previous paper by one of the authors [17]. In that
same paper, the ACUR configuration is theoretically demonstrated, showing that the reduction in the
efficiency of a pump–turbine cycle due to losses in the compressed air system is small, and that the
relative reduction decreases with the increasing head of the PHS.

Water bodies that are currently off-limits for use as reservoirs for pumped storage power plants
due to water level limitations might also be allowed for this kind of operation. Imagine two water
bodies close to each other with an elevation difference that makes them suitable for pumped hydro;
constructing a pumped hydro plant operating between the two water bodies and water displacement
capabilities at both bodies would make it possible to operate the plant without any water level changes
to either water body by the opposite operation of the displacement capabilities at the two reservoirs.
As water is pumped from the lower body, displacement by air would make the level constant. At the
upper water body, air would have to be evacuated to make place for the pumped water. Actually,
the air could be a closed cycle as well, in which air from the upper part is moved to the lower part
simultaneously as water is pumped, counter-cycled to the water. This can be seen in Figure 6, where
inflatable balloons are used. ACUR could also be used, but for both applications, the storage is
limited to the volume of ACUR/balloons. This might very well be suited for intra-day and hydraulic
short-circuit operation for grid stability issues close to a large concentration of energy consumers.
In fact, it could be possible to make existing Run-of-River (ROR) power plants operate in a less ROR-like
manner. With little or no power production in the power plant, the water level effect of the inflow
of water in the upper reservoir could be compensated for by removing the air from the balloons in
this reservoir. The same air could be added to the balloons downstream of the powerplant, displacing
water and maintaining the flow to the downstream river sections, as seen in Figure 7. When power is
needed, the power plant can be ramped up or brought on-line, producing large amounts of power as
the air is cycled back again, mitigating any water level and the discharge fluctuations of the reservoir
and river. This would change the merit order of the power plant and provide a much-needed addition
to the flexibility of the electrical system, allowing the higher penetration of intermittent renewable
energy sources into the system.
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For hydropower plants (without pumping capabilities), there might be limitations on their
operation due to restrictions on the allowed water level in the reservoirs. This is the case for several
Nordic hydropower plants, in which the restrictions are typically linked to the summer water level
due to fish migration, recreation, transport, etc. The power production capabilities are thus greatly
reduced because the level is linked to the volume, and the production of power reduces the volume
and thus reduce the level. In such cases, using compressed air to displace volume would lift or ease the
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restriction, and the installed capacity would be available for a duration corresponding to the available
maximum volume of air. Interestingly, this volume of air is then also available as a volume for flood
damping, as the overflow of water can be avoided as the air is expanded, storing the flood. Flood
reduction by hydropower reservoirs has great potential socio-economic value; in Norway, as one
example, conservative estimates on some waterways estimate several hundreds of million Euros could
be saved by the flood dampening capabilities of such reservoirs [18]. As precipitation is expected
to be more intense, the capabilities for flood damping by existing hydropower reservoirs might not
be sufficient. Furthermore, the Norwegian Water Resources and Energy Directorate has stated that,
in a phase where concessions are being renewed, environmental and recreational concerns will be
given more weight and will lead to less flexibility due to stronger water level restrictions. This has
made Statkraft—the biggest producer of renewable energy in Europe—raise concerns about the future
capability of flood protection in Norway [19].

Another possible use of ACUR is at storage hydropower plants with outlets to rivers. Storage power
plants are very important for the balancing of the grid because they have the energy storage and power
capacity needed to balance baseload generation, intermittent generation and consumption via market
mechanisms. This is typically referred to as “hydropeaking” [20]. However, outlets to rivers are often
problematic because the discharge to the river can violently fluctuate according to the hydropeaking of
the power plant. This is a serious environmental problem because it significantly alters the natural
dynamic characteristics of the river flow, affecting the ecology in a negative and often unacceptable
way [21]. There are ways of reducing the effect of hydropeaking, and retention/compensation basins
are examples of constructional measures [22]. However, there are limitations concerning the flexibility
enabled by such basins as well, and additional measures are likely to increase the flexibility further.
Using ACUR as a temporary water storage volume and compressed air as an active measure to control
the flow out of ACUR will make it possible to smoothen the discharge transients at large operational
changes, starts and stops. The layout of this can be seen in Figure 8.
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This application of ACUR is currently being investigated in the EU Horizon 2020 project HydroFlex,
and the findings are that ACUR is able to smoothen the discharge well, providing the possibility
of much faster ramp up/start up and ramp down/shut down of the power plants within current
environmental restrictions. This can be seen in Figures 9 and 10, respectively. These results are obtained
from a simulation of the power plant Bratsberg [23], which has two identical units. The “Q setpoint”
is the target for the governor, which is implemented to control the compressor providing an active
use of the ACUR element and represents current limitations due to environmental restrictions. “Q at
discharge” is the discharge into the downstream river that results from the operation of the ACUR
element. As can be seen, the start-up and shut-down of the units can be performed much faster than the
targeted flow due to the presence of the governed ACUR element. The ACUR technique significantly
increasing the flexibility of the units. The analysis corresponds to TRL3 and is regarded as proof of
concept by the authors.
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interest for the storage of water in general. As a final remark on this, it is noted that most of the 
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3.3. Environmental Operation

Several of the applications already described might be categorized as being initiated by
environmental concerns. However, other operations might give additional environmental benefits.
In large hydropower and irrigation reservoirs, water can become stagnant and result in an increase in
parasitic diseases [24] and other organisms associated with human illness [25]. In such cases, a grid of
balloons could be used (a minimum of two if the overall water level is to be kept constant) to circulate
water by inflating some balloons with a volume rate of air and at the same time deflating some balloons
with the same rate. In this way, water is set in motion within the reservoir. This would contribute
to preventing negative effects from occurring due to stagnant water, simply because it would be less
stagnant. Such systems are not limited to rivers and power production and can be of interest for
the storage of water in general. As a final remark on this, it is noted that most of the undeveloped
hydropower potential is in Africa, South America and Asia [26], in climates where there are challenges
associated with these kinds of problems.

4. Discussion

The authors recognize that the concepts described in this paper are far from being deployed, and
much research and development is needed before the concepts reach a TRL which make it ready for
field-testing. However, the authors see no major technological challenges related to these concepts.
Compressors exist today that move large volumes of air against low pressures. The compression heat
and subsequent energy loss is not very high for low pressures, if energy recovery from the compressed
air is necessary. Constructing caverns and trapping air is understood and has been successfully applied,
even at high pressures. Balloons have been made which are intended to be inflated/deflated by air, even
at high pressures. Anchoring balloons to the bottom of a reservoir should be a matter of dimensioning.

5. Conclusions

Climate change is expected to make the task of future water management more difficult.
The presented concepts represent a new degree of freedom, which might facilitate this task and
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make better use of existing infrastructure. The high degree of conceptuality presented in this paper,
along with no indication of cost, makes conclusions on an applicable level difficult. However, the
intention of the paper is to stimulate out-of-the-box thinking and the assessment of possible applications
among engineers and researchers throughout the community. No technical challenges have been
identified that makes the concepts unfeasible, but further research and development must be performed.

Author Contributions: Conceptualization, methodology, visualization and writing—original draft: P.-T.S.;
funding, acquisition and project administration: T.S.L.; investigation, supervision and writing—review and
editing: P.-T.S. and T.S.L.

Funding: Parts of this research is funded by European Union Horizon 2020 project HydroFlex grant agreement
No 764011, namely the part on using ACUR to smoothen discharge transients from hydropower plants with outlet
to rivers.
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Appendix A

Referring to Figure A1, the equations leading to the power needed (Equation (7)) for the operation
of the air system are developed here.
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Appendix A 

Referring to Figure A1, the equations leading to the power needed (Equation (7)) for the 
operation of the air system are developed here. 
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Replacing the specific energy e with the specific energy terms it contains results in 
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Adding the two versions of Equation (6) for the systems together, we get

.
Wsha f t,a =

d
dt

∫
CV,w ρedV +

∫
CS,w ρ

(
P
ρ + e

)
(
→

Vr·
→
n)dA + d

dt

∫
CV,a ρedV

+
∫

CS,a ρ
(

P
ρ + e

)
(
→

Vr·
→
n)dA.

(A1)

Replacing the specific energy e with the specific energy terms it contains results in

.
Wsha f t,a =

d
dt

∫
CV,w ρ

(
u + V2

2 + gz
)
dV +

∫
CS,w ρ

(
P
ρ + u + V2

2 + gz
)
(
→

Vr·
→
n)dA

+ d
dt

∫
CV,a ρ

(
u + V2

2 + gz
)
dV

+
∫

CS,a ρ
(

P
ρ + u + V2

2 + gz
)
(
→

Vr·
→
n)dA

(A2)

The further assumptions are as follows: fixed CS for inlets and outlets (
→

Vr =
→

V); all integrands
are uniform and constant (allowing the integrands to be extracted from the integrals) except for z, for
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the water volume, which will be addressed later; the air volume expands equally in all directions,
making the COG for the air volume constant, thus allowing the z for the air volume to be substituted
with the average value zcg, a representing the COG; very small velocities in the volumes making the
square of the velocities negligible amount to the following:

.
Wsha f t,a = uCV,wρw

d
dt

∫
CV,w dV + ρwg d

dt

∫
CV,w zdV

+ρw

(
Pw
ρw

+ uw +
V2

w
2 + gzw

) ∫
CS,w dQ

+uCV,aρaw
d
dt

∫
CV,a dV + ρagzcg,a

d
dt

∫
CV,a dV

−ρa

(
Pa
ρa

+ ua +
V2

a
2 + gza

) ∫
CS,a dQ

(A3)

All integrals of differentials end up of being the discharge of air or water, hence

.
Wsha f t,a = uCV,wρw(−Qw,out) + ρwg d

dt

∫
CV,w zdV +

(
Pw
ρw

+ uw +
V2

w
2 + gzw

)
ρwQw,out

+uCV,aρaQa + ρagzcg,CV,aQa −

(
Pa
ρa

+ ua +
V2

a
2 + gza

)
ρaQa

(A4)

The lack of losses that practically make the inlet/outlet internal energies equal to the internal
energies inside the CVs implies that

.
Wsha f t,a = ρwg d

dt

∫
CV,w zdV +

(
Pw
ρw

+
V2

w
2 + gzw

)
ρwQw,out + ρagzcg,aQa

−

(
Pa
ρa

+
V2

a
2 + gza

)
ρaQa

(A5)

Using the Bernoulli equation [6] from the surface to the inlet and the outlet of air and water,
respectively, yields

Ps

ρw
+ gzs =

Pw

ρw
+

V2
w

2
+ gzw, (A6)

Ps

ρa
+ gzs =

Pa

ρa
+

V2
a

2
+ gza. (A7)

Substituting this back into Equation (A5) results in

.
Wsha f t,a = ρwg

d
dt

∫
CV,w

zdV +

(
Ps

ρw
+ gzs

)
ρwQw,out + ρagzcg,aQa −

(
Ps

ρa
+ gzs

)
ρaQa (A8)

which may be rewritten into the following expression:

.
Wsha f t,a = ρwg

d
dt

∫
CV,w

zdV + (Ps + ρwgzs)Qw,out + ρagzcg,aQa − (Ps + ρagzs)Qa. (A9)

Now, the remaining integral will be addressed. This integral accounts for the rate of change of the
potential energy of the water body. This energy is typically found by multiplying the mass with the
COG elevation, as is done for the air system in this example. However, the emptying and displacement
of water, as in this example, will potentially change the COG for the mass, as well as reducing the
mass. If the displacement of water is performed above the COG level of the water, the COG will be
pushed downwards. If the displacement of water is performed below the COG of the water, the COG
is pushed upwards. This will thus change the potential energy of the mass and must be considered.
This is done in the following.

Consider now the air volume filled with water. We can then find the potential energy of the
reservoir completely filled with water by adding the integrals for the two volumes of water together.
Since we know the shape of the reservoir volume, we also know the value of the COG elevation zcg,res

for this volume Vres:
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ρwg
∫

CV,w
zdV + ρwg

∫
CV,a

zdV = ρwg
∫

CV,res
zdV = ρwgzcg,resVres. (A10)

The integral that represents the part of the volume that contains water in our case is of particular
interest; thus, rearranging this, we get∫

CV,w
zdV = zcg,resVres −

∫
CV,a

zdV. (A11)

Using our assumption regarding the iso-directional expansion of the air system, we can rewrite
and obtain (as already done in from Equation (A3) to Equation (A4))∫

CV,w
zdV = zcg,resVres − zcg, a

∫
CV,a

dV = zcg,resVres − zcg,aVA. (A12)

We must now multiply with ρwg and differentiate with respect to time to get the correct term to
substitute into Equation (A9):

ρwg
d
dt

∫
CV,w

zdV = ρwg
d
dt

(
zcg,resVres − zcg,aVA

)
= −ρwgzcg,a

dVA
dt

= −ρwgzcg,aQA. (A13)

Substituting back into Equation (A9), we get

.
Wsha f t,a = −ρwgzcg, aQA + (Ps + ρwgzs)Qw,out + ρagzcg,aQa − (Ps + ρagzs)Qa, (A14)

which can be arranged to

.
Wsha f t,a = (Ps + ρwgzs)Qw,out + (ρa − ρw)gzcg,aQA − (Ps + ρagzs)Qa. (A15)

In our cases, we want the reservoir volume to be constant, so Qw,out = Qa:

.
Wsha f t,a =

(
ρwgzs + (ρa − ρw)gzcg,a − ρagzs

)
Qw,out, (A16)

which may be rewritten as
.

Wsha f t,a = g(ρw − ρa)
(
zs − zcg,a

)
Qw,out. (A17)
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