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Abstract: Multiple discs coated with hierarchically-organized TiO2 anatase nanotubes served
as photoelectrodes in a novel annular photoelectrocatalytic reactor. Electrochemical characterization
showed light irradiation enhanced the current response due to photogeneration of charge
carriers. The pharmaceutical acetaminophen was used as a representative water micropollutant.
The photoelectrocatalysis pseudo-first-order rate constant for acetaminophen was seven orders
of magnitude greater than electrocatalytic treatment. Compared against photocatalysis alone,
our photoelectrocatalytic reactor at <8 V reduced by two fold, the electric energy per order (EEO;
kWh m−3 order−1 for 90% pollutant degradation). Applying a cell potential higher than 8 V
detrimentally increased EEO. Acetaminophen was degraded across a range of initial concentrations,
but absorbance at higher concentration diminished photon transport, resulting in higher EEO.
Extended photoelectrocatalytic reactor operation degraded acetaminophen, which was accompanied
by 53% mineralization based upon total organic carbon measurements. This proof of concept for
our photoelectrocatalytic reactor demonstrated a strategy to increase photo-active surface area in
annular reactors.

Keywords: electrochemical advanced oxidation processes; water treatment; hydroxyl radical;
persistent organic pollutant; titanium dioxide nanotubes

1. Introduction

The advanced oxidation processes (AOPs) are used in drinking water and both municipal
and industrial wastewater purification to transform organic pollutants into less toxic by-products [1].
Among many AOPs, photoelectrocatalysis is an emerging and promising hybrid AOP [2]. This technology
provides synergistic benefits from the interaction between photocatalytic and electrocatalytic processes [3,4].
Similar to photocatalysis, photoelectrocatalysis relies on semiconductor materials to photo-generate charge
carriers according to Equation (1); applying a constant voltage across semiconductors supported on solid
surfaces prevents recombination within the material [5,6]. The photoexcitation of electrons from the filled
semiconductor valence band to the empty conduction band generates charge carriers when irradiated
with photons of energy superior to the band gap (Eg) [7,8]. Electron (ecb

−) photoexcitation also generates
a vacancy at the valence band (hvb

+). The hvb
+ are highly–oxidizing species that can mineralize organic
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compounds or yield reactive oxygen species (ROS), such as hydroxyl radicals (•OH), from water oxidation
according to Equation (2) [9–11].

Semiconductor + hν→ hvb
+ + ecb

− (1)

hvb
+ + H2O→ •OH + H+ (2)

Charge carriers are unstable due to their excited state and tend to recombine according to Equation (3),
which may drastically diminish the availability of oxidants on the semiconductor surface [12,13]. The main
contribution of the electrochemically-driven component in the photoelectrocatalytic process is to diminish
the extent and even avoid recombination [14,15]. This is achieved by imposing a difference of potential
during photoexcitation to induce separation of photogenerated charge carriers [2,16].

hvb
+ + ecb

−
→ heat (3)

Pollutant degradation in water dramatically increases when semiconductors are employed
as photoanodes [2,17,18]. Unlike in slurry reactors, photocatalysts must be mounted on electrically-
conducting surfaces. Therefore, a major barrier for photoelectrocatalytic reactors is the surface area
of electrodes that can be coated with photocatalysts [19,20]. Previous approaches have considered
irradiation outside the cell through transparent conductive glass electrodes of indium tin oxide
and fluorine-doped tin oxide (ITO/FTO) coated with semiconductor photocatalysts. However, this
approach faces (i) electrode stability problems associated with leaching of the coatings and (ii) photon
transport losses due to the absorption by glass [21–23]. Herein, a promising alternative reactor design is
presented that uses a desirable parallel electrode arrangement in a single annular reactor compartment
to promote a homogeneous current distribution [20,24]. Illustrated in Figure 1, multiple disc-shaped
photoanodes and cathodes were aligned perpendicular to an annular ultraviolet (UV) lamp placed in
the middle of the reactor. This novel reactor design aims to reconcile the needs of electrochemical systems
that ensure homogeneous distribution of current density by using parallel electrodes and enabling
photoexcitation through efficient light delivery. Removal and mineralization of acetaminophen,
a commonly occurring pharmaceutical in treated municipal wastewater [25–27], was evaluated
in the reactor. This reactor uses electrical energy per order (EEO, kWh m−3 order−1), to assess
performance. EEO is the energy required for 90% pollutant degradation and includes energy for both
the photon-driven and electrically-driven processes used in this reactor. Oxidation by-products were
identified by high-performance liquid chromatography (HPLC), total organic carbon, and total nitrogen
analyses. Comparing photocatalytic to photoelectrocatalytic performance at different applied currents
and initial acetaminophen concentrations showed that performance depended on light intensity
reaching the electrode surfaces.

2. Materials and Methods

2.1. Electrochemical Cell and Photoelectrode Synthesis

Figure 1 shows the custom-made photoelectrocatalytic reactor configuration used to treat 1 L
solutions containing 5 to 50 mg L−1 of acetaminophen. Eight donut-shaped electrode discs were aligned
perpendicular to a 14 W UV lamp GPH287T5L/4 (λ = 275 nm; emission spectra shown in Figure 2)
encased in a quartz tube (YUP, China). The electrodes were operated potentiostatically using a Tenma
72-8340A potentiostat/galvanostat (Tenma, US). A Masterflex L/S peristaltic pump (Cole-Parmer, US)
circulated the solution at 180 mL min−1 to provide mixing and to overcome mass transport limitations
of acetaminophen to the reactive surfaces on the donut-shaped disc electrodes.

As depicted in Figure 1b, the donut-shaped discs used as photo-anodes had a total diameter
of 71 mm with a defined surface area of 32 cm2 per side. The position of the electrodes ensured
homogeneous current distribution while ensuring light delivery. Note that the architecture of the system
defines hydraulic channels for homogeneous distribution of the solution, whereas the incidence of
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photons emitted from the immersed light source induces photoexcitation to generate charge carriers.
The titanium discs were anodized to produce TiO2 nanotubes on the surface using previously described
methods [28]. Four separate, non-treated, 66 mm in diameter titanium discs were used as cathodes
(30 cm2 surface area per side). Monopolar connection was attained by using titanium foil (99.99%)
as a connector bridge between plates of identical polarity. As shown in the sectional view of
the cell (Figure 1d), the electrode configuration allowed a hydraulic pathway during recirculation that
maximized solution contact with the electrodes.Water 2019, 11, x FOR PEER REVIEW 3 of 15 
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Figure 1. (a) Photoelectrocatalytic reactor schematic, (b) photo-anode discs dimensions, (c) cathode
discs dimensions, and (d) reactor sectional view.

Kinetic analysis of acetaminophen degradation followed pseudo-first-order kinetics to determine
rate constants (k1, s−1). Experiments were conducted in triplicate and showed excellent reproducibility.
As shown in Equation (4), the rate constant was used to calculate EEO [29], which is a figure of merit
defined by the International Union of Pure and Applied Chemistry (IUPAC) to benchmark AOPs
as water treatment technologies in terms of their energy requirements to diminish a pollutant’s content
by one order of magnitude (i.e., 90% pollutant removal):

EEO

(
kWh·m−3

·order−1
)
=

6.39× 10−4
×

(
Plamp + Pcell

)
VS × k1

(4)

where the 6.39 × 10−4 constant accounts for conversion factor (1 h/3600 s/0.4343); Plamp and Pcell are
the rated power of the lamp and the electrochemical cell (W), respectively; VS is the solution volume
(L); and k1 is the rate constant (s−1).

Photoanode preparation involved polishing Ti discs with sandpaper of grain sizes P600, P1200,
and P2000. Discs were degreased under ultrasonication with three polar solvents for 10 min each:
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(i) methanol, (ii) isopropyl alcohol, and (iii) acetone. Nanotubes were grown on both sides of
the electrode by conducting anodization with two Ti disc cathodes of identical dimensions placed
at each side of the anode with 1 cm of interelectrode gap. Anodization was conducted potentiostatically
by applying 40 V for 2 h in a solution of ethylene glycol containing 0.3% NH4F and 2 vol. % of
water [28]. The grown nanotubes were thermally annealed at 450 ◦C for 2 h with a heating ramp
of 10 ◦C min−1 in the muffle furnace Tuve Furnace 21100 (SentroTech, US). Thermal treatment at 450 ◦C
leads to anatase structure formation [30]. Synthesized photoanodes were then implemented in
the photoelectrocatalytic cell.
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Figure 2. Mercury lamp emission depicting a maximum emission at 253 nm (solid blue line), and 
molar absorptivity coefficient of acetaminophen at different wavelengths (dashed red line). 

2.2. Chemicals 

Acetaminophen (99% pure neat powder) and other carboxylic acid standards were purchased 
from Sigma-Aldrich. Figure 2 shows the UV–vis spectrum of acetaminophen. Sodium nitrate and 
ammonium chloride were used as ionic chromatography standards, and sodium sulfate was used as 
a supporting electrolyte. Analytical grade sulfuric acid and/or sodium hydroxide from Fisher 
Chemical were employed to adjust the pH. HPLC-grade acetonitrile was purchased from Sigma-
Aldrich. Solutions and mobile phases were prepared with nano-pure water obtained from a Millipore 
Milli-Q system with resistivity >18.2 MΩ cm at 25 °C. 

2.3. Analytical Procedures  

Scanning electron microscopy (SEM) images of the synthesized TiO2 nanotubes were recorded 
using a Jeol JSM-6510LV series (JEOL, US). The Raman spectra was recorded using a SENTERRA II 
Compact Raman Microscope (Bruker, US) with a laser radiation at 532 nm. Photon irradiance, 
expressed in μW cm−2, was measured with a radiometer Avantes AvaSpec 2048 (Avantes, US) 
spectrometer with a cosine corrector. Linear sweep voltammetry analyses with 100 mV s−1 scan rates 
were conducted in a three-electrode, one-compartment cell using a PGSTAT302n potentiostat-
galvanostat from Metrohm controlled by Autolab Nova 2.1 software (Metrohm, US). The TiO2 
nanotube anode was the working electrode, Pt wire was the counter electrode, and an Ag/AgCl was 
used as reference electrode.  

The pH of the solutions was measured using a Thermo Scientific Orion Star A221 pH meter 
(Thermo, US). Aliquots were withdrawn during experiments and analyzed. Chromatographic 

Figure 2. Mercury lamp emission depicting a maximum emission at 253 nm (solid blue line), and molar
absorptivity coefficient of acetaminophen at different wavelengths (dashed red line).

2.2. Chemicals

Acetaminophen (99% pure neat powder) and other carboxylic acid standards were purchased from
Sigma-Aldrich. Figure 2 shows the UV–vis spectrum of acetaminophen. Sodium nitrate and ammonium
chloride were used as ionic chromatography standards, and sodium sulfate was used as a supporting
electrolyte. Analytical grade sulfuric acid and/or sodium hydroxide from Fisher Chemical were
employed to adjust the pH. HPLC-grade acetonitrile was purchased from Sigma-Aldrich. Solutions
and mobile phases were prepared with nano-pure water obtained from a Millipore Milli-Q system
with resistivity >18.2 MΩ cm at 25 ◦C.

2.3. Analytical Procedures

Scanning electron microscopy (SEM) images of the synthesized TiO2 nanotubes were recorded
using a Jeol JSM-6510LV series (JEOL, US). The Raman spectra was recorded using a SENTERRA II
Compact Raman Microscope (Bruker, US) with a laser radiation at 532 nm. Photon irradiance, expressed
in µW cm−2, was measured with a radiometer Avantes AvaSpec 2048 (Avantes, US) spectrometer with
a cosine corrector. Linear sweep voltammetry analyses with 100 mV s−1 scan rates were conducted in
a three-electrode, one-compartment cell using a PGSTAT302n potentiostat-galvanostat from Metrohm
controlled by Autolab Nova 2.1 software (Metrohm, US). The TiO2 nanotube anode was the working
electrode, Pt wire was the counter electrode, and an Ag/AgCl was used as reference electrode.

The pH of the solutions was measured using a Thermo Scientific Orion Star A221 pH meter
(Thermo, US). Aliquots were withdrawn during experiments and analyzed. Chromatographic analysis
of 25 µL of sample allowed identification and quantification of acetaminophen and by-products
(e.g., carboxylic acids, nitrate, and ammonium). Acetaminophen decay was followed by reversed-phase
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chromatography using a Waters 2695 HPLC coupled to a Waters 2996 Photodiode Array detector, fitted
with a Waters LiChrosorb®10 µm RP18 (100 mm × 4.6 mm) column at 25 ◦C and a LiChroCART®4-4
guard column (Waters, US). Chromatograph was operated at isocratic flow using a 35:65 (v/v)
acetonitrile/water mixture at 0.6 ml min−1 as mobile phase.

Carboxylic acids yielded during acetaminophen aromatic moiety breakage were identified
and quantified by ion-exclusion chromatography using the instrument described above fitted with
a Bio-Rad Amnex HPX87H (300× 7.8 mm) column at 35 ◦C with a 4.0 mM H2SO4 mobile phase at 0.6 mL
min−1(Bio-Rad, US). Nitrogenized organic ion formation was quantified by ionic chromatography using
a Thermo Dionex ICS-5000DC coupled to a conductivity detector AERS 500 (Thermo, US). Anionic
species nitrite and nitrate were quantified using a high capacity hydroxide-selective anion-exchange
column Dionex Ionpac AS18 (2 × 250 mm) flowing 30 mM KOH solution as the mobile phase at 0.25 mL
min−1 (Thermo, US). Ammonium was quantified using an ammonia TNT plus Vial Test from Hach
with 0.015 to 2.00 mg L−1 NH3-N quantification range.

Mineralization of organics load in treated solutions was evaluated through dissolved organic
carbon (DOC) abatement determined with a Shimadzu VCSN total organic carbon (TOC) analyzer.
Total nitrogen was measured with a Shimadzu TNM-1 module coupled to the above TOC analyzer.

3. Results and Discussion

3.1. TiO2 Nanotube Photoelectrode Discs’ Characterization

Figure 3a shows the SEM image of hierarchically organized TiO2 nanotubes after anodization of
pure Ti discs. Homogeneous and well-distributed TiO2 nanotubes of length 1.8–2.0 µm and diameter ≈
80 nm were perpendicular to the Ti surface. Raman spectroscopy (Figure 3b) revealed peaks at 146 cm−1,
396 cm−1, 517 cm−1, and 637 cm−1, which is characteristic of anatase nanotubes [31]. Anatase formation
by the thermal treatment at 450 ◦C is consistent with literature [30,32]. The diffractogram of the anodized
TiO2 (see Figure 3c) also depicts the characteristic diffraction peaks associated to anatase crystalline
phase, which is in agreement with the conclusion obtained from the Raman spectroscopic analysis.
The band gap of 3.2 eV determined is coincident with those previously reported in literature for
anatase [33,34].
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Figure 3. (a) Scanning electron microscopy image of TiO2 nanotubes formed during electrochemical
anodization. (b) Raman spectra depicting the characteristic anatase peaks formed after annealing TiO2

nanotubes at 450 ◦C. (c) X-ray diffractogram spectra indicating main peaks associated to anatase (A)
and rutile (R) crystalline phases. (d) Linear sweep voltammetry of TiO2 nanotube electrode in 0.02 M
of Na2SO4 and scan rate 100 mV s−1. Conditions: (1) in the dark in absence of acetaminophen, (2) in
the dark with 10 mg L−1 of acetaminophen, and (3) under light irradiation at λ = 275 nm and with
10 mg L−1 of acetaminophen.

Voltammetric analysis shows an increased current response of the TiO2 nanotube discs when
the photoanode is irradiated (Figure 3), which is associated with photogeneration of charge
carriers [35–37]. Photons delivered from the UV light source to the TiO2 photoanode surface provide
the energy required to overcome the band gap (Eg = 3.2 eV) [38,39]. The small overpotential of
oxygen evolution with an onset potential of 1.65 V vs Ag/AgCl suggests a low capability for •OH
electrogeneration from water oxidation (Equation (5)). Therefore, the acetaminophen does not undergo
oxidation by direct charge transfer processes within the electrochemical window of TiO2 anodes.
Indeed, the higher TiO2 oxidation states stabilize ROS as chemisorbed reactive oxides that may induce
electrochemical transformation of acetaminophen, but further mineralization is unlikely due to lower
oxidation power of chemisorbed •OH [40]. The behavior we observed is characteristic of active anode
materials according to Comninellis classification [41]. These results prove the photoelectrocatalytic
activity of the anodes employed in the multi-electrode multi-disc reactor under a monopolar connection
(see Figure 1).

H2O→ •OH + H+ + e− (5)

3.2. Acetaminophen Degradation by Photocatalysis, Electrocatalysis, and Photoelectrocatalysis

Figure 4 illustrates the acetaminophen loss kinetics under different reactor operational modes.
Direct photolysis of acetaminophen (i.e., without disc electrodes) resulted in negligible degradation
after 5 h of UV irradiation. Acetaminophen has a very low quantum yield (Φ253 = 0.006) and is known
to be photostable [42]. Electrocatalytic oxidation of acetaminophen in the dark under constant cell
potential of 8.0 V attained only 3% removal by heterogeneous reactions.

Figure 4 shows that photocatalysis with TiO2 nanotubes abated 72% acetaminophen after 5 h.
This proves that perpendicular alignment of the discs to the lamp supports photocatalysis.
The acetaminophen photocatalytic abatement was well fit by first-order kinetics, and yielded a rate
constant (k1) of 6.88 × 10−5 s−1 (R2 = 0.998). As well demonstrated in literature, acetaminophen
degradation in the TiO2 photoelectrocatalytic system is mediated by the oxidation capability of
photogenerated hvb

+ and •OH by reactions seen in Equations (1) and (2) [7,8], respectively.
The rate constant for acetaminophen removal in photoelectrocatalytic operational mode (k1 of

1.42 × 10−4 s−1) was nearly 3× higher than in photocatalytic mode. Greater than 95% acetaminophen
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abatement was attained after 5 h under photoelectrocatalytic treatment at Ecell = 8.0 V (Figure 4).
The photoelectrocatalysis k1 was over seven orders of magnitude greater than for electrocatalytic treatment
alone. Applying a bias potential enhances the charge carrier separation and diminishes the extent of
recombination (Equation (3)) [2,43], which increases the half-life of the oxidants photogenerated on
the photoanode surface [13,44]. Moreover, the evolution of O2 on the anode surface may contribute to
selective scavenging ecb

− through Equation (6), which yields superoxide radical (O2
•−) [16,45]. Yielded

O2
•− is a weaker oxidant with E◦ = 0.94 V versus a standard hydrogen electrode (SHE) [46], which may

contribute to the acetaminophen degradation by (i) selective oxidation of organics and (ii) enhances charge
carriers’ stability. Note that the consumption of ecb

− by Equation (7) avoids the risk of recombination
Equation (3). The interaction of photocatalytically and electrochemically-driven processes considerably
enhances the photoelectrocatalytic treatment performance.

2 H2O→ O2 + 4 H+ + 4 e− (6)

ecb
− + O2→ O2

•− (7)

The higher efficiency of the photoelectrocatalytic system is not only reflected from rate
constants but also on energy requirements. Accounting for both lamp and cell power requirements
(Equation (4)), EEO requirement for photocatalysis alone is 130 kWh m−3 order−1 compared with 67
kWh m−3 order−1 for photoelectrocatalytic treatment, indicating a reduction by two times in energy
requirement. Thus, applying a small bias potential is a promising alternative to increase performance
of supported photocatalysts.
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Na2SO4 under different processes: (�) direct photolysis, (�) photocatalysis with TiO2 nanotube discs,
(�) electrocatalysis at 8.0 V of Ecell with TiO2 nanotube discs, and (N) photoelectrocatalysis at 8.0 V of
Ecell with TiO2 nanotube discs.

3.3. Influence of Applied Cell Potential on Reactor Performance.

As supported by above findings, applying a difference of potential synergistically enhanced
performance. The hvb

+ lifetime on the photoanode surface increases because recombination is inhibited
(equation (3)) [19,39]. Applying a constant cell potential (Ecell) promotes extraction of photo-excited
ecb
− through an external electrical circuit in an electrochemically-driven process [2]. The Ecell

defines the efficient transport and consequent charge carrier separation in the photoelectrocatalytic
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system [16,47]. Thus, impacts on photoelectrocatalytic k1 were studied by varying applied Ecell while
maintaining a constant photon flux.

Figure 5 shows increasing degradation kinetics with higher Ecell. Increasing photoelectrocatalytic
k1 values of 6.80 × 10−5 s−1 (R2 = 0.998), 1.09 × 10−4 s−1 (R2 = 0.995), 1.42 × 10−4 s−1 (R2 = 0.995),
1.57 × 10−4 s−1 (R2 = 0.998), 1.68 × 10−4 s−1 (R2 = 0.997), and 1.70 × 10−4 s−1 (R2 = 0.995) were
determined for Ecell at 0, 4.0, 8.0, 16.0, 32.0, and 62.0 V, respectively. Applying a small Ecell difference of
4.0 V resulted in a 1.6-fold increase in k1 compared with the pure photocatalytic treatment. Further
increases in Ecell provided only minor improvements in acetaminophen abatement. Thus, a maximum
separation of charge carriers was attained at a certain applied Ecell, and further increases from this
optimum potential did not improve performance.

The above changes in Ecell correspond with EEO values decreasing from 130 kWh m−3 order−1

without a current down to 83 kWh m−3 order−1 at 4.0 V and 67 kWh m−3 order−1 at 8.0 V. Stabilization
of oxidant species on the photoanode surface favors reactions that degrade acetaminophen [2,48].
However, additional increase in Ecell reduces the energy efficiency of the system, skyrocketing the energy
requirements by an order of magnitude to 330 kWh m−3 order−1 at 62.0 V. This high EEO can be
explained by the concomitant acceleration of parasitic reactions induced by the increase of potential
and current circulated during the electrochemically-driven process [49,50]. The excess energy is
then consumed on the evolution of oxygen from water oxidation according to Equation (8) and/or
dimerization of •OH from Equation (9). Effects on the electrode characteristics and its morphology
were not observed.

2 H2O→ O2 + 4 H+ + 4 e− (8)

2•OH→ H2O2 (9)
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Na2SO4 during photoelectrocatalysis under different applied cell potentials: (�) 0 V (photocatalysis),
(�) 4.0 V, (�) 8.0 V, (N) 16.0 V, (H) 32.0 V, and (#) 62.0 V. Inset panel shows the corresponding kinetic
analysis considering a pseudo-first-order decay.

3.4. Effect of Acetaminophen Concentration on Photoelectrocatalytic Degradation

Initial pollutant concentrations may affect photoelectrocatalytic treatment performance by
competing for surface sites [2,12] or absorbing light in solution, which prevents activation of
the semiconductor TiO2 nanotubes. Figure 6 depicts the degradation kinetics for initial acetaminophen
concentrations ranging from 5 mg L−1 to 50 mg L−1 in the photoelectrocatalytic operational mode.
Kinetics analyses resulted in photoelectrocatalytic k1 values of 2.05 × 10−4 s−1 for 5 mg L−1 (R2 = 0.996),
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1.42 × 10−4 s−1 for 10 mg L−1 (R2 = 0.995), 6.66 × 10−5 s−1 for 25 mg L−1 (R2 = 0.999), 3.18 × 10−5 s−1 for
35 mg L−1 (R2 = 0.999), and 2.86 × 10−5 s−1 for 50 mg L−1 (R2 = 0.998).

Although acetaminophen has a low quantum yield (Φ253 = 0.006), direct absorption of photons by
acetaminophen in solution can explain the slower removal observed at higher pollutant concentration
(Figure 6) [29,39]. Absorption diminishes photon transport efficiency and limits the amount of light
reaching the photoelectrode [23,29]. Photon flux is directly related to the efficient generation of charge
carriers by Equation (1); consequently, reducing the photon delivery will also reduce the oxidants
photogenerated [6,7]. Furthermore, a driving effect on the deceleration is the higher concentration of
organics in solution that compete for hvb

+ and •OH.
The decrease in photogeneration efficiency and the competition for surface sites increases the energy

costs required for operation. As initial concentration increased, so did EEO for the photoelectrocatalytic
treatment: 47 kWh m−3 order−1 for 5 mg L−1, 67 kWh m−3 order−1 for 10 mg L−1, 144 kWh m−3 order−1

for 25 mg L−1, 300 kWh m−3 order−1 for 30 mg L−1, and 334 kWh m−3 order−1 for 50 mg L−1. It may
be inferred that photoelectrocatalytic treatment would be better suited as a polishing step to reduce
the concentration of highly-persistent organic pollutants such as pharmaceuticals that may be found in
fine chemicals, manufacturing effluents, or hospital effluents. However, photoelectrocatalysis should
be conducted in water with high transmittance to allow UV light to reach the electrode surfaces.
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Figure 6. Acetaminophen abatement during the photoelectrocatalytic treatment at cell potential 8.0 V
for different initial concentrations of acetaminophen: (�) 5 mg L−1, (�) 10 mg L−1, (�) 20 mg L−1,
(N) 35 mg L−1, and (H) 50 mg L−1. Inset panel shows the corresponding kinetic analysis
considering pseudo-first-order.

3.5. Photoelectrocatalytic Mineralization and Time-Course of Yielded Byproducts.

Acetaminophen was slowly mineralized during photoelectrocatalytic treatment. Figure 7a shows
the treated solution attained 53% mineralization at the point when >95% parent compound removal
occurred. The remaining TOC suggests that organic by-products are accumulated. Oxidation reactions
mediated by hvb

+ and •OH lead to the aromatic moiety opening and yield short-linear aliphatic
carboxylic acids [2]. Ion-exclusion chromatography was used to measure formic, oxamic, and oxalic
acids. These highly recalcitrant species are the ultimate products released during AOPs mediated by
•OH prior to the complete mineralization of organics to CO2. Figure 8 shows that these carboxylic
acids accumulated in solution and reached final concentrations of 33.4 µM formic acid, 2.4 µM oxalic
acid, and 0.6 µM oxamic acid. After their formation, the carboxylic acids remained in solution because
they are very slowly degraded. This result agrees with previous reports that carboxylic acids are hardly
oxidized by hvb

+ and •OH but are biodegradable [16,40].
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As a result of oxidizing the amide functional group, acetaminophen degradation is accompanied
by inorganic nitrogen species formation (see Figure 7b inset). Anionic chromatography identified NO3

−

release at maximum concentration of 0.005 mM. Nitrite formation was not observed, which is a common
trend of AOPs where the high oxidative media of ROS favors complete oxidation towards NO3

− [51,52].
Ammonium was continuously released from the breakage of the amide bond and reached a maximum
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concentration of 0.021 mM. To better understand the fate of the initial N-organic content, a complete
mass balance was conducted (Figure 7b). Compared with the 53% mineralization and volatilization of
carbon, only 46% volatilization of nitrogen occurred as the likely result of producing volatile species such
as N2 and NOx [53–55]. The remaining nitrogen in solution was associated to remaining acetaminophen
(0.005 mM), yielded oxamic acid (0.61 µM), and dissolved inorganic nitrogen (0.026 mM); inorganic
nitrogen represented 75% of total dissolved nitrogen in solution after photoelectrocatalytic treatment.

4. Conclusions

A monopolar, multiple-disc composite photoelectrocatalytic reactor was constructed to overcome
limitations of light transport in photoelectrocatalytic reactors. The parallel arrangement of disc
photoanodes and cathodes defined a hydraulic pathway for the recirculated solution while providing
the requirements for homogeneous current distribution in electrolytic reactors and light delivery for
charge carriers’ photogeneration. This novel reactor system can provide an alternative framework
when considering the scaling-up of photoelectrocatalytic water treatment.

Negligible acetaminophen removal was observed by direct photolysis or electrocatalysis.
Photoelectrocatalytic treatment was more energy efficient than photocatalysis alone because applying
a bias cell potential prevented recombination of ROS on photocatalytic nanotubes’ surfaces. Therefore,
EEO was reduced two fold from 130 kWh m−3 order−1 for pure photocatalytic treatment down
to 67 kWh m−3 order−1 for photoelectrocatalytic treatment.

Applying Ecell improved charge separation and stabilized ROS on the electrode surface. However,
when more than 8.0 V was delivered, the electrical current was consumed in parasitic reactions,
increasing EEO. Further increases in Ecell did not improve reactor performance and would have
a detrimental impact operational cost.

Pollutant concentration diminished the light transport efficiency, which reduced photon delivery
to the photoelectrode surface and reduced charge carrier generation. Even though high concentrations
of acetaminophen may be treated in the photoelectrocatalytic reactor, EEO would increase due to
a reduction in treatment performance.

These results demonstrated that scaling-up reactor designs for photoelectrocatalytic treatments
must fulfill the needs of light-driven and electrochemically-driven processes to retain performance with
respect to efficient energy usage and pollutant removal. The use of multiple, concentric, monopolar discs
appears to be a feasible approach. This initial proof of concept provides opportunity for additional
photoelectrocatalytic reactor design research. Future work must evaluate ways to improve light transport,
which may have been limited by the perpendicular orientation of the electrodes in this design.
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