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Abstract: The paper refers to a study on droughts in a small Portuguese Atlantic island, namely
Madeira. The study aimed at addressing the problem of dependent drought events and at
developing a copula-based bivariate cumulative distribution function for coupling drought duration
and magnitude. The droughts were identified based on the Standardized Precipitation Index
(SPI) computed at three and six-month timescales at 41 rain gauges distributed over the island
and with rainfall data from January 1937 to December 2016. To remove the spurious and short
duration-dependent droughts a moving average filter (MA) was used. The run theory was applied
to the smoothed SPI series to extract the drought duration, magnitude, and interarrival time for
each drought category. The smoothed series were also used to identify homogeneous regions based
on principal components analysis (PCA). The study showed that MA is necessary for an improved
probabilistic interpretation of drought analysis in Madeira. It also showed that despite the small
area of the island, three distinct regions with different drought temporal patterns can be identified.
The copulas approach proved that the return period of droughts events can differ significantly
depending on the way the relationship between drought duration and magnitude is accounted for.

Keywords: Standardized Precipitation Index; drought; Madeira; moving average; principal
components analysis; copulas

1. Introduction

Droughts, perceived as prolonged and regionally extensive occurrences of below average natural
water availability, are among the most destructive hazards and can arise virtually everywhere on the
planet [1]. In island environments, where freshwater is often a limiting factor and people strongly rely
on precipitation to refill the surface and underground water reservoirs and to support activities, such as
rain-fed agriculture, droughts have frequently led to water insecurity—ranging from chronic water
scarcity, lack of access to safe drinking water and sanitation services, to hydrological uncertainty [2–4].
As stated by the Intergovernmental Panel on Climate Change, IPCC, in its periodical assessment
reports [5–7], compared to continental areas, islands are specifically more vulnerable to natural
hazards due to their lower adaptive capacity, and are more often affected by extreme hydrological

Water 2019, 11, 2489; doi:10.3390/w11122489 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0003-0059-3953
https://orcid.org/0000-0002-5221-1139
https://orcid.org/0000-0003-1756-0429
https://orcid.org/0000-0001-9317-3645
https://orcid.org/0000-0002-4671-9884
http://www.mdpi.com/2073-4441/11/12/2489?type=check_update&version=1
http://dx.doi.org/10.3390/w11122489
http://www.mdpi.com/journal/water


Water 2019, 11, 2489 2 of 27

events (e.g., floods and droughts) and climate change, especially the so-called small islands with areas
between 100 km2 and 5000 km2 [8]. Although small islands are not a homogeneous group, they share
many common features that distinguish them from larger islands [9], which make more challenging
their adaptation to the projected climate change risks—such as the increase in the probability of
drought and rainfall deficits [10].

The pronounced hydrological temporal but also spatial variability in some of the small islands
makes drought complex to analyze and simultaneously a poorly understood extreme hydrological
events (e.g., compared to floods) [1]. Examples are Madeira with a very pronounced wet season and
with notable differences in rainfall between northern and southern slopes; the nearby Porto Santo
Island, with some signs of aridity and relatively low rainfall concentrated in a few days [11]; the Azores
archipelago with very wet high regions and drier coastal areas [12]; and the Canary Islands, located in a
dry belt with very low rainfall near the coast, especially in the flat islands [8]. These particular features
have contributed to the absence of comprehensive drought assessment methods for small islands.

From a hydrological perspective, droughts are mainly characterized into three major types,
with their own specific spatiotemporal characteristics [13], according to their duration and type of
freshwater reservoir they affect: meteorological, agricultural, and hydrological droughts [14–16].
Meteorological droughts are characterized by a prolonged deficit of rainfall from its long-term average.
Triggered by longer rainfall deficits, agricultural droughts are characterized by reduced soil moisture.
Hydrological droughts are related to the impacts of persistent shortage of rainfall on lakes and
reservoirs, rivers, surface water, and groundwater. Droughts can develop from over short periods
(a few months) to longer periods (seasons, years, or even decades) [15,17].

The monitoring of drought employs widely used drought indices, such as the Palmer Drought
Severity Index (PDSI) [18,19], the Standardized Precipitation Evapotranspiration Index (SPEI) [20,21],
or the Standardized Precipitation Index (SPI) [22]. The PDSI uses precipitation and temperature
data in a water balance model to compare meteorological and hydrological droughts across space
and time, the SPEI considers precipitation and potential evapotranspiration, whereas the SPI only
uses precipitation as state variable. Different authors have recommended that droughts should
be studied within a regional context [17], because the results of individual case studies may not
be comparable [23]. To make the drought analyses results comparable, regardless of the studied
region, the drought indexes should be standardized [14] which is precisely one of the most important
characteristics of the Standardized Precipitation Index. The SPI is likely to be the most frequently used
drought indicator worldwide, because it is applicable in all climate regimes [14,24–26].

At given location, the SPI quantifies the observed rainfall as a standardized departure from
a selected probability distribution function that models the raw rainfall data for the timescale of
interest, from 1 to 48-month or longer (1, 3, 6, 9, and 12-month are the most common timescales [27]).
The rainfall data are fitted to a probability distribution function, which is then transformed into a
normal distribution so that the mean SPI for the location and desired timescale is zero [22]. Negative
SPI values represent rainfall deficit, whereas positive SPI values indicate rainfall surplus.

By applying the run theory [28] to the SPI series at a given timescale, the following characteristics
of the droughts can be determined (Figure 1): drought duration (Dd), during which the SPI is
continuously below an adopted critical level or threshold (u); magnitude (Dm) indicating the
cumulative absolute deficit due to a drought event below the threshold; drought maximum intensity
(Dmi) indicating the minimum value of the drought index below the critical level, and interarrival
time (L), which is the time range between the initiation of two consequent drought events.
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Figure 1. Run theory and definition of drought characteristics—Dd, Dm, Dmi, L for SPI values below
an adopted threshold, u. Adapted from Santos et al. [29].

However, drought characterization based on SPI requires particular attention, due to the possible
presence of minor droughts and of mutually dependent droughts [30,31]. In fact, it is possible that a
long SPI run below the threshold u turns out to be split into several shorter events due to the occurrence
of sporadic and anomalous rainfalls [32] either for very short periods and with little hydrological
importance, or for longer periods but unable to counterbalance the rainfall deficit. These smaller
drought events cannot be considered mutually independent, and it is advisable to group them into
a single large event to capture the true severity of the longer drought they portrait [30]. Filtering
techniques can be applied for this purpose [33].

Another specific feature of the droughts is that although they are regional phenomena, the data
required to characterize them are measurements acquired at discrete networks. Therefore, special
clustering techniques need to be applied to enable a regional characterization based on pointwise data.
Multivariate and geostatistical techniques are commonly used to analyze the spatial and temporal
variability of climate variables—such as rainfall, temperature, and air relative humidity [34]. Principal
components analysis (PCA) is a multivariate technique that has been relevant in these types of analyses,
especially in climate regionalization [35–38]. It allows a field to be decomposed into spatial-temporal
terms, such as in the analysis of the spatial and temporal variability of droughts characterized based
on the SPI [25,26,39,40].

The last challenge when addressing the droughts relates to the capability of the models to describe
the dependency among their different characteristics, which, as in many other hydrological phenomena,
are presumably highly correlated and should be addressed from a multivariate perspective [41].
However, droughts have been traditionally studied in a univariate context [42], mostly aiming at
recognizing their occurrences. Since a univariate approach ignores the dependence structure among
the drought characteristics, it may result in a poorer representation of the phenomenon. The analysis
of the association among those characteristics based on multivariate approaches although relevant, is
still an insufficiently studied issue, namely in small islands.

In the scope briefly mentioned, this paper aims at presenting a pioneering study, particularly in
its application to a small island, on drought characterization. For that purpose, Madeira (741 km2)
was selected as case study and the SPI at different timescales was computed based on 80 years of the
monthly rainfalls at a large set of rain gauges distributed over the island. The mutually dependent
droughts were assessed based on a digital filter, namely the moving average, MA, with different
running lengths. By applying principal component analysis, PCA, to the original unfiltered SPI series,
but also to the smoothed SPI series given by the MA, homogeneous regions were identified regarding
the temporal pattern of the droughts. For each region, representative unsmoothed and smoothed
regionalized SPI series were obtained and compared aiming at understanding the effect of the MA
and at identifying the running length that should be adopted. Bivariate copulas were then applied
to model the dependency structure between some of the drought characteristics extracted from the
regionalized smoothed SPI series, namely drought duration, Dd, and drought magnitude, Dm. Finally,
different return periods (univariate, bivariate and conditional) were assigned to the drought events.
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The study provides a continuous and comprehensive temporal, but also spatial, characterization
of the droughts in Madeira enabling an understanding of the susceptibility of the different regions to
the phenomenon, as well as how it has changed along time.

2. Study Region and Data

Madeira is a volcanic island located in the North Atlantic Ocean with an area of 741 km2, a length
of 57 km and a maximum width of 22 km. Centered at 32◦ 44.34′ N and 16◦ 57.91′ W, approximately
600 km northwest of the Western African coast, Madeira has a steep topography consisting of an
enormous central E-W oriented mountainous system (Pico Ruivo, the highest peak with 1862 m.a.s.l.;
Pico do Areeiro, in the island’s eastern part with 1818 m.a.s.l.; and Paúl da Serra region above
1400 m.a.s.l. on the west) which divides the island mainly into north and south from an orographical
perspective. According to the Koppen’s classification [43], the climate is predominantly temperate
with dry and warm to hot summers as approaching the coastal zones of Madeira.

Due to the strong topography influence, the rainfall falls predominantly in the north facing slope
because of the prevailing N-E trade winds [11]. The rainfall regime, which is remarkably variable
between the northern and southern slopes, is not only affected by the local circulation, but also by
synoptic systems which are typical in mid-latitudes, such as fronts and extratropical cyclones, and the
Azores Anticyclone in the summer season [44]. Rainfall in Madeira is concentrated in the period
from October to mid-April, while in summer (from June to August) the rainfalls are very low [43].
The average annual rainfall in Madeira presents a very uneven distribution—Figure 2 and Table 1.
The highest average annual values, exceeding 2200.0 mm, are observed in the northern slope and
especially in the central highland region of the island (e.g., the rain gauges of M01 with 2592.2 mm,
and M02 in the Paúl da Serra region with 2605.7 mm), which is the critical one for the island’s
water security because it is where most of the natural groundwater recharge areas are located [45,46].
The smallest rainfalls, less than 650.0 mm, occur in the lowland areas of the southern slope (e.g., the rain
gauge of M05 in the city of Funchal with only 608.4 mm).

Figure 2. Location of the 41 rain gauges of Table 1 over the surface of the average rainfall referred to
the hydrological year, HDY. Adapted from Espinosa et al. [47].

The drought characterization in Madeira used the daily rainfalls, from January 1937 to December
2016 (80 years), at the 41 rain gauges of Figure 2 and Table 1. The records were provided by the
Portuguese Institute for the Ocean and Atmosphere (IPMA), which has high data quality standards
and is one of the main sources of Portuguese hydrometeorological data. The series had a few missing
values that were filled in using a gap-filling procedure tested for Madeira, namely the Multiple
Imputation by Chained Equations (MICE) [47,48]. The monthly and annual rainfall series were
obtained from the complete daily series.
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Table 1. The 41 rain gauges adopted in the study. Identification (code and name), WGSM84 coordinates,
elevation, average annual rainfalls from October 1937 to September 2016 (hydrological years) (HDY),
areal influence (ATP) according to the Thiessen polygons method, and homogeneous regions (RG1,
RG2, RG3) to which they belong. Adapted from Espinosa et al. [47].

Code Name Lat-N Lon-W Elev. (m.a.s.l.) HDY (mm) ATP (km2) Region

M01 Areeiro 32.7200 −16.9170 1610.00 2592.20 13.67 RG3
M02 Bica da Cana 32.7562 −17.0554 1560.00 2605.70 22.06 RG3
M03 Camacha-Valparaiso 32.6763 −16.8421 675.00 1406.80 28.58 RG2
M04 Encumeada de São Vicente 32.7503 −17.0169 900.00 2410.50 1.12 RG3
M05 Funchal Observatório 32.6476 −16.8924 58.00 608.40 7.08 RG2
M06 Lugar de Baixo 32.6790 −17.0832 15.00 597.70 10.94 RG2
M07 Ponta Delgada 32.8213 −16.9920 123.00 1070.20 17.27 RG1
M08 Sanatório 32.6687 −16.9006 384.00 809.70 11.76 RG2
M09 Santana 32.7220 −16.7742 80.00 1338.90 16.47 RG1
M10 Canhas 32.6942 −17.1098 400.00 779.20 25.20 RG2
M11 Caniçal 32.7374 −16.7387 15.00 674.60 11.35 RG1
M12 Caramujo 32.7694 −17.0585 1214.00 2653.00 30.43 RG3
M13 Curral das Freiras 32.7456 −16.9599 787.00 1754.70 20.09 RG3
M14 Loural 32.7727 −17.0292 368.00 1600.60 19.38 RG3
M16 Montado do Pereiro 32.7019 −16.8839 1260.00 2080.40 6.54 RG3
M18 Ponta do Pargo 32.8108 −17.2589 339.00 817.80 40.68 RG1
M19 Porto do Moniz 32.8492 −17.1628 64.00 1234.20 52.22 RG1
M20 Queimadas 32.7831 −16.9022 881.00 2207.30 34.68 RG1
M21 Rabaçal 32.7585 −17.1311 1233.00 2005.30 88.95 RG2
M22 Ribeira Brava 32.6740 −17.0630 25.00 703.10 24.14 RG2
M23 Ribeiro Frio 32.7309 −16.8830 1167.00 2276.10 19.08 RG3
M24 Santo António 32.6768 −16.9459 525.00 929.80 10.83 RG2
M25 Santo da Serra 32.7260 −16.8170 660.00 1790.10 36.10 RG1
M26 Bom Sucesso 32.6620 −16.8960 291.00 719.60 6.98 RG2
M27 Santa Catarina 32.6936 −16.7731 49.00 660.30 7.75 RG2
M28 Cascalho 32.8290 −16.9250 430.00 1537.80 1.83 RG1
M29 Poiso e Posto Florestal 32.7130 −16.8870 1360.00 2134.50 4.60 RG3
M30 Vale da Lapa 32.8270 −16.9280 346.00 1882.30 5.32 RG1
M32 Lapa Branca-Curral das Freiras 32.7190 −16.9650 610.00 1360.00 22.46 RG2
M34 Serra de Água 32.7420 −17.0200 573.00 1971.00 24.35 RG3
M35 Chão dos Louros E. 32.7570 −17.0180 895.00 2509.70 9.55 RG3
M37 Lombo Furão 32.7490 −16.9110 994.00 2416.20 13.62 RG3
M43 Meia Serra 32.7020 −16.8700 115.00 2444.00 12.48 RG3
M44 Covão ETA 32.6750 −16.9630 510.00 930.30 22.46 RG2
M45 Encumeadas Casa EEM 32.7540 −17.0210 1010.00 2202.40 2.32 RG3
M46 Santa Quitéria ETA 32.6610 −16.9510 320.00 726.50 9.20 RG2
M48 ETA São Jorge 32.8160 −16.9260 500.00 2093.70 10.43 RG1
M49 Fajã Penedo 32.7920 −16.9600 620.00 2378.80 23.84 RG3
M50 Cabeço do Meio-Nogueira 32.7357 −16.8987 995.00 2477.90 4.08 RG3
M51 Ponta de São Jorge 32.8337 −16.9067 266.00 779.30 6.15 RG1
M53 Lido-Cais do Carvão 32.6366 −16.9365 20.00 340.10 4.99 RG2

3. Methods

3.1. Standardized Precipitation Index (SPI) Calculation and Drought Recognition

As previously mentioned, the drought characterization used the SPI, developed by McKee et al. [22],
and described in detail by Edwards and McKee [49]. Such index measures the rainfall anomalies at a
given location, based on the comparison of the rainfall for a timescale of interest, with the average
rainfall in the same period. The historic records are fitted to a probability distribution, which is then
transformed into a normal distribution such that the mean SPI value for that location and timescale
is zero. The Pearson Type III distribution with parameters given by the L-moments was applied to
describe both the monthly rainfalls and the cumulative rainfalls at Madeira [26,47].

The drought events were assessed based on the SPI computed at 3 (SPI3) and 6 (SPI6) months
for the period of 80 years (960 months of rainfall data) and for the 41 selected rain gauges. These
two timescales are usually related to meteorological and agricultural droughts [50], and, the latter,
also to early signs of streamflow shortfalls [27]. Such sustained shortfalls are very important for the
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management of water resources in Madeira due to its high dependence on rainfall for groundwater
recharge—which is the main source of freshwater on the island [46,47]. The drought categories for
SPI were those proposed by Agnew [51], presented in Table 2. According to this classification, there
is a drought whenever the SPI falls below the threshold u < −0.84. Furthermore, the droughts were
characterized based on run theory as depicted in Figure 1. It is noteworthy that drought duration (Dd)
and magnitude (Dm) are necessarily mutually dependent, because the longer Dd is, the higher Dm
should be.

Table 2. Drought categories and associated non-exceedance probability based on SPI. Adapted from
Agnew [51].

Category Probability SPI

No drought 0.60 ≥−0.84 and <0.84
Moderate drought 0.20 <−0.84

Severe drought 0.10 <−1.28
Extreme drought 0.05 <−1.65

3.2. Moving Average Filter (MA)

Relatively few studies have addressed the run theory applied to the recognition of the drought
characteristics (Figure 1) to cope with the possible dependence of the periods under drought
conditions. Van Loon et al. [16], Fleig et al. [31], Tallaksen et al. [52] have applied moving average
(MA), with different running lengths and at different SPI timescales, to smooth out short-term
fluctuations and highlight possible longer drought events. Similar procedures have been carried
out by López-Moreno et al. [30], although applied to drought analysis based on streamflow series,
Zelenhasić and Salvai [53], Byzedi and Saghafian [54], Li et al. [55], Shin et al. [56]. However, criteria
about the running length to adopt, also taking into account the different timescales of SPI, are missing.

The moving average (MA) is the most common filter in digital signal processing, mainly because
it is the easiest to understand and use [33]. The MA is a convolution using a very simple filter kernel.
This makes it the premier filter for encoded signals in the time domain in which samples are usually
created by sampling at regular intervals of time containing information that is interpretable without
reference to any other sample [57]. In the present paper, the MA operates by averaging several points
from the input signal symmetrically chosen around each point in the output signal, according to:

yi =
1
M

(M−1)/2

∑
j=−(M−1)/2

xi+j (1)

where xi is the input signal, yi is the output signal, and M is the number of points in the average
(running length). For M = 1, the output coincides with the original or unsmoothed series.

For the smoothing of SPI3 and SPI6 at the adopted 41 rain gauges, Equation (1) was applied
aiming at reducing the random noise, i.e., the spurious short droughts and drought interruptions,
while maintaining a sharp step response (e.g., Dm, Dmi). Different M were tested and assessed for
each SPI timescale, namely for SPI3, 2 and 3, and for SPI6, 3 and 5. The SPI output series for M equal
to 1, have obviously the same values as the input series and were also analyzed for both timescales
(unsmoothed series). Symmetrical averaging usually requires that M be an odd number. However,
for the case of SPI3, because only two values could be adopted for M, they were both tested, despite
one being an even number. It is acknowledged that the higher M, the greater the noise reduction,
but also the greater the possibility that the signal would be distorted by the smoothing operation. A key
issue in SPI series smoothing is the choice of M. In the Madeira case study, the selection of its value for
each timescale was assessed based on the regionalized SPI series derived from the unsmoothed and
smoothed SPI series at the 41 rain for different values of M, as discussed in Section 4.1.
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3.3. Regionalized SPI Series Based on Principal Components Analysis (PCA)

Principal components analysis is a statistical procedure that transforms several (possibly)
correlated variables into a (smaller) number of uncorrelated variables called principal components
(PC) [58]. When applied to the SPI values from a set of rain gauges, it allows their regrouping and
consequently, the delimitation of climatic regions in relation to synoptic situations, i.e., a regionalized
SPI series—such as the three distinct areas with coherent climatic variability identified by
Bonaccorso et al. [59] in Sicily from 1926 to 1996, the three homogeneous regions adopted for the
drought characterization in mainland Portugal (which is approximately 120 times the size of Madeira)
Santos et al. [29], or the two climatic sub-regions in the western Iran by Raziei et al. [60], all of them
based on the SPI field. In the case of Madeira, the PCA was applied to the unsmoothed and smoothed
(with different M) SPI time series at the timescales of 3 and 6 months.

The PCA consists of computing the covariance matrix of the SPI series with the corresponding
eigenvalues (λ) and eigenvectors (v). The main applications of the PCA, specifically the principal factor
analysis (PFA), are: (1) to reduce the number of variables; (2) to detect structures in the relationship
between variables; (3) to reduce the system’s information entropy, i.e., the information not directly
available about a system due to the uncertainty or randomness of data flow [61,62]; and (4) to combine
correlated variables into factors [63]. As for Madeira, the variables are the SPI series at the rain gauges
and the factors, the regionalized SPI. Henceforth, the term factor analysis will be used generically to
encompass both PCA and PFA.

The determination of the number of components or factors to retain was based on the Kaiser’s
rule [63], according to which the factors whose eigenvalues are greater than 1 must be retained.
The spatial patterns of the eigenvectors (factor loadings) represent the correlation between the original
data and the corresponding factor time series. More localized patterns are obtained by applying the
Varimax rotation technique to selected factor loadings [64]. The projection of the SPI fields onto the
orthonormal eigenfunctions provides the factor score time series [65]. Factor scores are estimates of the
actual values of individual cases (observations). For instance, the estimated factor score (regionalized
SPI) on factor j for observation, or month, i, Fji, can be represented as follows:

Fji = wj1zi1 + wj2zi2 + ... + wjkzik (2)

where wj is the regression weight, multidimensional value referred to as factor score coefficient; and
zi is the variable, i.e., the SPI series at a single rain gauge. For any single common factor, an infinite
number of sets of scores can be derived that would be consistent with the same factor loadings [66].
The factor scores are particularly useful to perform further regional analyses that have been identified
in the factor analysis, such as fitting drought characteristics with copulas, as will be mentioned in the
next subsections.

3.4. Univariate Analysis of Drought Duration and Magnitude; Selection of Probability Distribution Functions

The univariate analysis of drought duration, Dd, and magnitude, Dm, has not yet established a
consensus on the marginal distribution to be used. Shiau [42] suggested the use of Exponential and
Gamma distributions to model separately Dd and Dm, respectively. The advisable practice, however, is to
test different families to achieve the best-fitted model for each region and drought characteristic [67,68]. Thus,
in this study, Exponential, Gamma, Logistic, Log-Normal, Normal, and Weibull were inspected—based
on the most relevant factor scores for the smoothed regionalized SPI3 and SPI6 series—to determine
the most suitable distribution function for drought duration and magnitude values. The Akaike
Information Criterion (AIC) was used as a goodness-of-fit test to define the best-fitted distribution and
the parameters were estimated using the Maximum Likelihood Estimation (MLE) [69].
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3.5. Bivariate Analysis of Drought Duration and Magnitude

Few researchers have been devoted to the multivariate modeling of extreme events due to the
considerably more data requirements, sophisticated mathematical treatment and models required,
and complex interpretation of the outputs. A bivariate probabilistic distribution is thus more common,
provided it proves to be able to account for the relevant correlations under analysis, mostly because it is
easier to apply. One of the drawbacks of using bivariate distributions is that the same family is needed
for each marginal distribution (e.g., [70–72]). Several methods have been proposed to investigate the
bivariate characteristic of droughts, such as the product of the conditional distribution of drought
severity for a given drought duration and the marginal distribution of drought duration to construct
the joint distribution of drought duration and magnitude used by Salas et al. [73] and González and
Valdés [74], with complex mathematical derivation involved. Nevertheless, multivariate distributions
using copulas, whose applications in hydrology have been increasing in recent years with several and
different uses [67,75–80], can overcome such issues.

Copulas, introduced by Sklar [81], are functions that can be used to separate the marginal
distributions from the dependency structure of a given multivariate distribution. According to
Nelsen [82], to model n random correlated variables (x1, x2, ..., xn) with respective marginal
distributions F1(x1), F2(x2), ..., Fn(xn), the joint distribution function H(x1, x2, ..., xn) is given by the
copula function C(u1, u2, ..., un) according to Equation (3):

H(x1, x2, ..., xn) = C[F1(x1), F2(x2), ..., Fn(xn)] = C(u1, u2, ..., un) (3)

where Fk(xk) = uk for k = 1, ..., n, with uk ∼ u(0, 1). The two major classes of copula families are
the Meta-elliptic copulas and Archimedean copulas. Meta-elliptic copulas are directly obtained by
inverting Sklar’s Theorem [81].

Given a bivariate distribution function F with invertible margins F1 and F2, a bivariate copula
C(u1, u2) for u1, u2 ∈ [0, 1] is given by Equation (4). Meta-elliptic copulas are symmetric and hence
lower and upper tail dependence coefficients are the same.

C(u1, u2) = F(F−1
1 (u1), F−1

2 (u2)) (4)

The Archimedean copulas are more flexible than Meta-elliptic and can present lower or upper tail
dependence. They are defined by Equation (5):

(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)) (5)

where ϕ is the generator function of the copula C and ϕ[0, 1] → [0, ∞] is a continuous and factually
reducing function. The Meta-elliptic Gaussian and t-Student, and the Archimedean Clayton, Frank,
and Gumbel, were tested to verify best fit. Table 3 presents the formulations of the candidate copula
families. When the Archimedean copula is rotated 180◦ it is called survival copula and can invert the
predefined tail dependence to best fit the data.

Table 3. Copula candidate family and mathematical formulation.

Copula Family Mathematical Formulation

Meta-elliptic Gaussian φρ(φ−1(u1), φ−1(u2))

t-Student Tρ,v(T−1
v (u1), T−1

v (u2))

Clayton (u−θ
1 + u−θ

2 − 1)
−1
θ

Archimedean Frank −θ−1log
{

1 + (e θ u1−1)(e θ u2−1)
(e θ−1)

}
Gumbel exp(−[(−lnu1)

−θ + (−lnu2)
θ ]

1
θ )
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3.5.1. Copula Parameters Estimation

The parameters for the families of the candidate copula were estimated considering the maximum
likelihood MLE method, by choosing the Inference Functions from Margins (IFM) method [83]. The use
of IFM method requires previous fitting of marginal distributions functions to transform its values into
the (0, 1) interval.

3.5.2. Best-Fitted Copula

To compare the bivariate copula models from several families and choose the best-fitted model,
the fit statistic AIC was used. First, all the candidate copulas, Gaussian, t-Student, Clayton, Frank,
and Gumbel, are fitted using maximum likelihood estimation, MLE. Then the AIC is computed for
all copula families and the one with the minimum AIC is chosen. According to Brechmann and
Schepsmeier [84], for observations ui,j with i = 1, ..., N and j = 1, 2, the AIC of a bivariate copula
family c with θ parameter(s) is defined by Equation (6):

AIC = −2
N

∑
i=1

ln[c(ui,1, ui,2 | θ)] + 2k (6)

where one parameter copulas have k = 1 and the two-parameter t-student has k = 2.
The two-parameter copula is penalized in the minimization of AIC value to reduce overfitting
possibility due to parsimony principle.

3.6. Drought Return Periods

3.6.1. Univariate Return Period

A common approach used in hydraulic and hydrological design is based on frequency analysis of
the recurrence interval or return period (T) of a given hydrological event. Shiau and Shen [85] define the
return period as the average elapsed time between occurrences of the event with a certain magnitude or
greater. The highest the return period the more exceptional the event is. The univariate return period
of droughts, based on the concept of stochastic processes, is derived as follows. The return period
of drought duration (TDd) or magnitude (TDm), is described as function of the expected interarrival
time E(L) and of the cumulative distribution functions (CDF) of the drought characteristic marginal
distributions FDd(d) or FDm(m), as defined in Equations (7) and (8), where both return periods and
E(L) are expressed in years [71,85,86]. The E(L) is calculated by adjusting a distribution function to
interarrival time and deriving its mean value.

TDd =
E(L)

P(Dd ≥ d)
=

E(L)
1− FDd(d)

(7)

TDm =
E(L)

P(Dm ≥ m)
=

E(L)
1− FDm(m)

(8)

3.6.2. Bivariate Drought Return Periods

Due to the multivariate nature of droughts, Shiau [42] proposed a methodology that categorizes
the return periods of bivariate distributed hydrological events as joint and conditional return periods.
The joint drought duration and magnitude return periods can be defined in two cases: return period
for Dd ≥ d or Dm ≥ m and return period for Dd ≥ d and Dm ≥ m, as described by Equations (9) and
(10), respectively:

TDd or Dm =
E(L)

P(Dd ≥ d or Dm ≥ m)
=

E(L)
1− FDdDm(d, m)

=
E(L)

1− C(FDd(d), FDm(m))
(9)
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TDd & Dm =
E(L)

P(Dd ≥ d, Dm ≥ m)
=

E(L)
1− FDd(d)− FDm(m) + C(FDd(d), FDm(m))

(10)

where TDd or Dm is the return period for Dd ≥ d or Dm ≥ m; TDd & Dm is the return period for Dd ≥ d
and Dm ≥ m.

3.6.3. Conditional Drought Return Periods

Similarly, the conditional return periods can be defined for two cases: the return period of drought
duration given drought magnitude exceeding a certain threshold (TDd|Dm≥m), and the return period
of drought magnitude given drought duration exceeding a certain threshold (TDm|Dd≥d). These
conditional return periods are calculated by Equations (11) and (12):

TDd|Dm≥m =
TDm

P(Dd ≥ d, Dm ≥ m)
(11)

TDm|Dd≥d =
TDd

P(Dd ≥ d, Dm ≥ m)
(12)

Detailed discussions on the relationships between univariate, bivariate, and conditional return
periods can be found in Shiau [42] and have been applied worldwide [67–69,86–88].

4. Results

4.1. Smoothed Regionalized SPI3 and SPI6

At each of the 41 rain gauges, the SPI series were computed based on 80 years (960 months) of
rainfall data, as described in Section 3.1, and then smoothed by applying the MA technique, mentioned
in Section 3.2. The SPI series have different lengths according to the timescale and running length:
e.g., the length of the unsmoothed SPI3 is n = 960− 2 = 958 while for M = 3 is n = 960− 2− 2 = 956;
the unsmoothed SPI6 series has n = 960 − 5 = 955 elements, and the smoothed series with M
of 5, n = 960− 5− 4 = 951 elements. The smoothed SPI series were organized into matrices, X,
with different number of rows (cases or observations) but with the same number of columns (the 41
rain gauges, i.e., 41 variables), namely for SPI3, X958×41, X957×41, X956×41, for M equal to 1, 2 and 3,
respectively, and for SPI6, X955×41, X953×41, X951×41, for M equal to 1, 3 and 5, also respectively.

The factor analysis was applied to the data set to transform the 41 variables into the same number
of factors (F)—extracted by the PC method—by means of simple linear transformations. The first
factors are expected to account for meaningful amounts of variance. By using the eigenvalues (λ),
information about the number of F to retain and the contribution to the data variance of each F
(individually and cumulative) can be extracted. The Kaiser’s rule [63], with threshold of λ > 1.00,
was used as the criterion to choose the number of F to retain (Section 3.3). According to the results of
Table 4, this rule suggests a three-factor solution regardless the timescale of SPI and running length,
with explained cumulative variance (Σ%Var) higher than 80.00% (Tables 4 and 5 for the unrotated and
rotated cases, respectively).

By retaining the first three F, the cumulative %Var is in any case higher than 84.00% of the original
data set. Up from the fourth F (F4), the individually explained variance is relatively meaningless. Based
on the Kaiser rule, only the first three F were retained for a Varimax maximizing rotation (Varimax
normalized) of the original variable space. The rotation aims at best fitting the SPI series to the axes
that represent the factors, and redistributing the explained variance of each F in the most unequal way.
By this way, the original problem of 41 dimensions, was transformed into a three-dimensional problem.
The same number of F was retained in a previous study by Espinosa et al. [47] but with different factor
retention criteria—based on the scree plot and on some clustering techniques [58].
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Table 4. Eigenvalues (λ) of each factor (F) from the factor analysis associated with the unrotated solution for different timescale of SPI and running length (M). %Var
represents the explained variance calculated by dividing λ by the number of variables, i.e., 41.

Factor SPI3 Unsmoothed SPI3 with M = 2 SPI3 with M = 3 SPI6 Unsmoothed SPI6 with M = 3 SPI6 with M = 5
λ %Var Σ%Var λ %Var Σ%Var λ %Var Σ%Var λ %Var Σ%Var λ %Var Σ%Var λ %Var Σ%Var

1 31.47 76.76 76.76 31.48 76.77 76.77 31.28 76.29 76.29 31.69 77.30 77.30 31.40 76.58 76.58 31.00 75.62 75.62
2 2.42 5.91 82.67 2.41 5.87 82.64 2.39 5.84 82.13 2.23 5.43 82.73 2.26 5.51 82.09 2.30 5.61 81.23
3 1.06 2.59 85.26 1.07 2.61 85.25 1.10 2.69 84.82 1.13 2.77 85.50 1.18 2.89 84.98 1.24 3.02 84.25
4 0.65 1.59 86.85 0.68 1.67 86.92 0.74 1.80 86.62 0.81 1.97 87.47 0.90 2.19 87.17 1.00 2.43 86.68
5 0.58 1.42 88.27 0.59 1.45 88.37 0.60 1.47 88.09 0.63 1.54 89.01 0.66 1.61 88.78 0.72 1.75 88.43
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

39 0.02 0.05 85.17 0.02 0.04 85.18 0.02 0.04 84.76 0.02 0.05 85.42 0.01 0.02 84.94 0.01 0.02 84.22
40 0.02 0.05 85.22 0.02 0.04 85.22 0.01 0.03 84.80 0.01 0.02 85.47 0.01 0.02 84.96 0.01 0.02 84.24
41 0.02 0.04 85.26 0.01 0.03 85.25 0.01 0.02 84.82 0.01 0.02 85.49 0.01 0.01 84.97 0.00 0.01 84.25

Table 5. Factor loadings (correlation coefficients) from the factor analysis associated with the rotated solution for different timescales of SPI and running lengths (M).
Correlations equal or higher than 0.60 are marked with an asterisk (*). Smaller factor loadings were assumed to be uncorrelated with their respective F. The rain
gauges are sorted in terms of the proposed regionalization.

Region Code SPI3 Unsmoothed SPI3 with M = 2 SPI3 with M = 3 SPI6 Unsmoothed SPI6 with M = 3 SPI6 with M = 5
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

RG1

M07 *0.75 0.41 0.39 *0.75 0.41 0.39 *0.74 0.40 0.41 *0.73 0.41 0.43 *0.71 0.40 0.45 *0.70 0.40 0.47
M09 *0.88 0.26 0.22 *0.88 0.26 0.22 *0.88 0.26 0.23 *0.87 0.27 0.24 *0.87 0.26 0.25 *0.87 0.25 0.27
M11 *0.65 0.54 0.28 *0.65 0.55 0.28 *0.64 0.55 0.29 *0.62 0.52 0.31 *0.60 0.53 0.32 *0.61 0.52 0.33
M18 *0.61 0.45 0.38 *0.60 0.44 0.39 *0.70 0.42 0.40 *0.62 0.34 0.45 *0.70 0.30 0.46 *0.60 0.27 0.48
M19 *0.61 0.38 0.39 *0.60 0.36 0.40 *0.63 0.35 0.42 *0.61 0.35 0.42 *0.61 0.34 0.44 *0.62 0.33 0.46
M20 *0.76 0.24 0.39 *0.75 0.24 0.40 *0.74 0.24 0.41 *0.72 0.24 0.40 *0.71 0.23 0.41 *0.69 0.22 0.42
M25 *0.70 0.31 0.40 *0.68 0.31 0.42 *0.67 0.31 0.43 *0.66 0.30 0.43 *0.64 0.30 0.43 *0.62 0.29 0.44
M28 *0.80 0.28 0.43 *0.79 0.28 0.44 *0.77 0.28 0.46 *0.77 0.30 0.46 *0.75 0.30 0.49 *0.72 0.30 0.51
M30 *0.76 0.32 0.49 *0.76 0.31 0.50 *0.74 0.31 0.51 *0.74 0.31 0.51 *0.72 0.30 0.53 *0.70 0.29 0.52
M48 *0.83 0.32 0.33 *0.82 0.33 0.34 *0.81 0.33 0.34 *0.80 0.35 0.33 *0.79 0.36 0.33 *0.78 0.37 0.33
M51 *0.80 0.41 0.19 *0.81 0.41 0.18 *0.81 0.41 0.17 *0.81 0.41 0.18 *0.82 0.40 0.17 *0.82 0.39 0.16
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Table 5. Cont.

Region Code SPI3 Unsmoothed SPI3 with M = 2 SPI3 with M = 3 SPI6 Unsmoothed SPI6 with M = 3 SPI6 with M = 5
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

RG2

M03 0.38 *0.65 0.48 0.37 *0.65 0.48 0.36 *0.64 0.48 0.38 *0.64 0.50 0.37 *0.64 0.49 0.37 *0.64 0.48
M05 0.35 *0.85 0.27 0.35 *0.85 0.28 0.35 *0.85 0.29 0.35 *0.84 0.33 0.33 *0.85 0.33 0.32 *0.85 0.33
M06 0.28 *0.84 0.27 0.28 *0.84 0.27 0.29 *0.84 0.28 0.30 *0.83 0.29 0.30 *0.83 0.29 0.30 *0.83 0.30
M08 0.36 *0.77 0.37 0.37 *0.77 0.37 0.36 *0.76 0.38 0.36 *0.76 0.40 0.35 *0.76 0.41 0.34 *0.76 0.41
M10 0.32 *0.81 0.38 0.32 *0.81 0.38 0.32 *0.81 0.38 0.33 *0.80 0.40 0.33 *0.80 0.40 0.33 *0.80 0.40
M21 0.39 *0.63 0.55 0.39 *0.64 0.56 0.39 *0.63 0.56 0.39 *0.64 0.52 0.39 *0.63 0.52 0.38 *0.62 0.52
M22 0.28 *0.85 0.30 0.27 *0.85 0.29 0.27 *0.86 0.29 0.29 *0.85 0.29 0.27 *0.86 0.28 0.25 *0.86 0.27
M24 0.27 *0.79 0.45 0.27 *0.79 0.45 0.26 *0.79 0.46 0.29 *0.78 0.49 0.27 *0.77 0.50 0.25 *0.77 0.50
M26 0.37 *0.80 0.36 0.37 *0.81 0.37 0.36 *0.81 0.38 0.35 *0.81 0.41 0.34 *0.81 0.42 0.33 *0.81 0.43
M27 0.54 *0.61 0.36 0.55 *0.60 0.36 0.55 *0.60 0.36 0.53 *0.62 0.40 0.52 *0.63 0.40 0.51 *0.64 0.40
M32 0.36 *0.68 0.46 0.36 *0.68 0.46 0.35 *0.68 0.47 0.34 *0.68 0.49 0.33 *0.68 0.50 0.31 *0.67 0.50
M44 0.31 *0.82 0.40 0.31 *0.82 0.40 0.31 *0.82 0.41 0.32 *0.81 0.44 0.31 *0.81 0.44 0.31 *0.81 0.44
M46 0.33 *0.86 0.32 0.32 *0.86 0.32 0.32 *0.86 0.32 0.33 *0.86 0.33 0.32 *0.87 0.33 0.31 *0.87 0.32
M53 0.38 *0.84 0.27 0.38 *0.85 0.27 0.37 *0.85 0.27 0.36 *0.86 0.28 0.35 *0.86 0.28 0.34 *0.87 0.28

RG3

M01 0.42 0.45 *0.68 0.41 0.44 *0.69 0.39 0.42 *0.71 0.39 0.38 *0.73 0.37 0.36 *0.75 0.34 0.34 *0.76
M02 0.44 0.37 *0.71 0.44 0.37 *0.71 0.42 0.37 *0.72 0.39 0.38 *0.73 0.37 0.37 *0.75 0.35 0.37 *0.75
M04 0.47 0.50 *0.62 0.47 0.50 *0.63 0.46 0.50 *0.64 0.44 0.51 *0.65 0.43 0.51 *0.67 0.41 0.50 *0.69
M12 0.50 0.46 *0.62 0.50 0.46 *0.62 0.49 0.46 *0.62 0.47 0.46 *0.63 0.47 0.44 *0.63 0.46 0.43 *0.64
M13 0.30 0.53 *0.62 0.30 0.59 *0.62 0.29 0.52 *0.63 0.33 0.53 *0.68 0.33 0.53 *0.69 0.32 0.55 *0.70
M14 0.50 0.51 *0.61 0.51 0.51 *0.64 0.50 0.51 *0.66 0.52 0.50 *0.62 0.51 0.49 *0.62 0.50 0.49 *0.63
M16 0.46 0.50 *0.64 0.46 0.50 *0.64 0.45 0.50 *0.65 0.46 0.50 *0.66 0.44 0.49 *0.67 0.42 0.49 *0.68
M23 0.52 0.33 *0.63 0.54 0.32 *0.69 0.52 0.32 *0.70 0.51 0.36 *0.66 0.49 0.36 *0.60 0.46 0.36 *0.60
M29 0.48 0.41 *0.67 0.47 0.40 *0.68 0.45 0.38 *0.70 0.45 0.39 *0.70 0.42 0.38 *0.72 0.40 0.38 *0.74
M34 0.42 0.55 *0.61 0.42 0.55 *0.64 0.41 0.55 *0.67 0.40 0.53 *0.68 0.39 0.53 *0.68 0.38 0.53 *0.68
M35 0.44 0.47 *0.71 0.44 0.47 *0.71 0.43 0.46 *0.71 0.41 0.46 *0.73 0.40 0.45 *0.74 0.39 0.45 *0.75
M37 0.54 0.43 *0.64 0.54 0.44 *0.64 0.53 0.44 *0.64 0.52 0.47 *0.63 0.50 0.47 *0.64 0.48 0.48 *0.64
M43 0.46 0.47 *0.67 0.46 0.48 *0.67 0.44 0.47 *0.68 0.45 0.47 *0.69 0.43 0.47 *0.70 0.41 0.46 *0.71
M45 0.45 0.51 *0.65 0.45 0.51 *0.65 0.44 0.50 *0.66 0.43 0.51 *0.68 0.42 0.51 *0.68 0.41 0.51 *0.68
M49 0.57 0.40 *0.64 0.57 0.41 *0.64 0.58 0.41 *0.63 0.52 0.42 *0.61 0.55 0.43 *0.62 0.53 0.43 *0.62
M50 0.55 0.49 *0.60 0.55 0.49 *0.61 0.53 0.49 *0.63 0.54 0.49 *0.62 0.53 0.49 *0.63 0.51 0.49 *0.64

Rotated λ = 11.48 13.48 9.99 11.38 13.49 10.09 11.00 13.37 10.42 10.82 13.33 10.90 10.40 13.22 11.22 9.83 13.15 11.56
Σ%Var = 85.26 85.25 84.82 85.49 84.97 84.25
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Factor loadings are part of the output from factor analysis. They explain the correlations between
the observed variables and the underlying factors. According to the three-dimensional solution (after
Varimax maximizing rotation), for the first factor (F1) and regardless of the timescale and M, there are
relatively strong factor loadings (correlation coefficients of 0.56 or higher) on the SPI series at the 11
rain gauges located in the northern slope of Madeira and small loadings at the rain gauges located in
the southern slope and in central region, as reported in Table 5.

It is clear from Table 5 that the rain gauges with SPI series with the strongest association with the
underlying latent variable factor 2 (F2), are the 14 located in the southern slope, with factor loadings
of 0.60 or higher. The SPI series at the 16 rain gauges of the central highlands region are associated
with factor 3 (F3)—factor loadings of 0.61 or higher. The foregoing suggests that individual factors
are modeled by different individual SPI series (provided they are relevant). Please note that among
comparable unrotated and rotated solutions, the %Var of each F changes but the Σ%Var remains
constant (Tables 4 and 5). Factor loadings smaller than 0.60 were assumed to be uncorrelated with
their respective F. Table 5 shows that the cumulative variance, Σ%Var, decreases as the running length
increases, but this is just an effect of the decreasing length of the series.

Figure 3 depicts the spatial distribution of the rotated factor loadings over Madeira, suggesting
that the island encompasses three distinct regions characterized by different SPI temporal variability.
The factor loading patterns for all the SPI timescales and running lengths are similar, delineating three
regions that include all the rain gauges, nearly cover the whole study area and do not overlap, namely:
the northern slope or RG1 (11 rain gauges), the southern slope or RG2 (14 rain gauges), and the central
region or RG3 (16 rain gauges) (column Region of Table 1). Each map of the figure was obtained by
cropping and joining the three regions with factor loadings approximately higher than 0.6. Each one of
these regions was delimited by applying the inverse distance weighting (IDW) with an exponent of
2 [89] to the corresponding factor loadings. The regions are related to the regionalized SPI, i.e., to the
factor scores of F1, F2, and F3—SPI-RG1, SPI-RG2 and SPI-RG3, respectively—as shown in Figure 4.
The similar spatial (Figure 3) and temporal (Figure 4) patterns suggests that the application of MA did
not influence the drought regionalization.

Figure 3. Spatial distribution of the homogeneous regions based on the factor loadings (correlation
coefficients) higher than 0.60. The regions RG1, RG2, and RG3, are related to F1, F2, and F3, respectively.
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Figure 4. January 1937 to December 2016. F1 (RG1-northern slope), F2 (RG2-southern slope) and F3
(RG3-central region) from the series of SPI3 (left figures with unsmoothed series and with running
lengths, M, of 2 and 3) and of SPI6 (right figures with also unsmoothed series and with M of 3 and 5).

However, the factor loadings shown in Table 5 give rise to some considerations that support the
choice of the M values. In any region and SPI timescale, when selecting a value for M it is important
to ensure that the corresponding factor loadings for the rain gauges there located are the highest,
i.e., for that M, those rain gauges should be highly positively correlated with the F of the region but
uncorrelated, as much as possible, to the F of the other regions.

Due to the importance of the central region, RG3, on the availability and management of Madeira
freshwater resources, special attention was given to the same when applying the previous criteria.
Accordingly, based on the values of Table 5, M = 3 was selected for SPI3, and of M = 5 for SPI6.
These running lengths are also valid for RG2 while for RG1 there are not preferable ones. However,
in any region the highest correlations for different M are always very close and do not compromise the
chosen M values.

For the central region, RG3, Figure 5 presents the temporal evolution for the period from 2000
to 2016, adopted as example, of the regionalized SPI (SPI-RG3) from the factor analysis based on the
unsmoothed and smoothed series with different running lengths. The figure shows that the application
of MA to the original SPI series prior to the factor analysis, eliminates spurious and short duration
events for both regionalized SPI3 and SPI6, and that the value of the running length determines the
smoothness of the factor score time series. Although the SPI series with M of 2, 3, and 5, are smoother
than those computed based on the unsmoothed data, the general pattern for the different time series is
the same.

Figure 5. January 2000 to December 2016. F3 (RG3-central region) from the SPI3 (left for unsmoothed
series and M of 2 and 3) and the SPI6 series (right for unsmoothed series and M of 3 and 5).

To support the choice of the values of the running lengths, the yearly number of months under
moderate or worse drought conditions (Table 2) given by SPI3-RG3 and SPI6-RG3, for the last
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16 years with data, were obtained as a function of M, as shown in Figure 6. According to the
figure, the regionalized unsmoothed SPI3 indicates 65 months with u < −0.84, whereas for M = 2,
and M = 3, there are 68, and 72 months, respectively. The equivalent numbers for SPI6 are 77, 88,
and 94 for the unsmoothed and for the smoothed series with M = 3, M = 5, respectively. The number
of months with moderate or worse droughts from the unsmoothed and smoothed SPI3 series is similar.
For the SPI6 series it increases, especially due to the increase in the number of months with severe and
extreme droughts (e.g., the year of 2011 or 2015).

Figure 6. Number of months under drought conditions from January 2000 to December 2016 for the
regionalized SPI3 (left figures) and SPI6 (right figures) at the central region.

Also, for RG3, Figure 7 enables a closer look at the drought characteristics. For both SPI timescales,
it shows that for the unsmoothed SPI series there is a higher number of 1-month droughts; however
with smaller magnitude which can make the drought analysis biased and, therefore, less representative.
As the running length increases, the number of drought events decreases, while Dd and Dm increase.
The smoothed regionalized series always allow the recognition of the more severe droughts with
longer duration and higher magnitude. On the basis of these findings and of those from the factor
analysis, the smoothed SPI series, whether at the rain gauges (non-regionalized) or regionalized based
on M = 3, for SPI3, and on M = 5, for SPI6, have been selected in pursuing the study based on copulas.

Figure 7. Dd and Dm of the drought events for the regionalized unsmoothed and smoothed series with
different running lengths for SPI3 (left figures) and SPI6 (right figures) series in the central region (RG3).

4.2. Estimation of Drought Characteristics and Univariate Analysis

The understanding of the relationship among drought duration and magnitude is essential to
better comprehend the phenomenon and its impacts. For this purpose, the Dd and Dm values were
obtained for the 80-year period by applying the run theory (Section 3.1) to the smoothed SPI3 and SPI6
series (M = 3 and M = 5, respectively), as shown in Figure 8. The resulting descriptive statistics are
presented in Table 6.
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Figure 8. Scatter plots between Dd and Dm obtained from the regionalized SPI3 (with M = 3) and
SPI6 (with M = 5) series, for the different regions.

The number of events that occurred in the different regions of Madeira from 1937–2016 ranged
from 58 to 65, for SPI3, and from 29 to 35, for SPI6. Despite the smaller number of events for SPI6
comparatively to SPI3 (which resulted in larger interarrival times), the Dd and Dm values indicate
worse drought conditions. The Kendall’s τ correlation coefficient presents very high values (higher
than 0.80) which are in accordance with dependence visible in the scatter plots of Figure 8. However,
such coefficient measures only the overall strength of the association between Dd and Dm, but does not
give information about how such association varies across the distribution [90]. The higher Kendall’s τ

for SPI6 denotes a stronger correlation between Dd and Dm. The mean values of Dd and Dm suggest,
for SPI3, regions with similar characteristics, while for SPI6, the values for RG3 are higher. However,
these findings are quite vague because they are based on a univariate appraisal which justifies a
copula-based characterization of the dependency structure between Dd and Dm, presented in the
next sections.

Table 6. For each region, drought events statistics for u < −0.84 based on the regionalized SPI3 (with
M = 3) and SPI6 (with M = 5). E(L) is the expected drought interarrival time. Kendall’s τ is the
correlation between Dd (in month) and Dm.

Time
Series

No.
Events

Average E(L) Kendall’s
τ

Dd (Month) Dm

(Month) (Year) Mean Max SD CV Mean Max SD CV

SPI3-RG1 63 15.17 1.26 0.83 3.00 11 1.89 0.63 4.06 20.85 3.29 0.81
SPI3-RG2 58 16.48 1.37 0.89 3.07 11 1.88 0.61 4.43 18.57 3.78 0.85
SPI3-RG3 65 14.71 1.23 0.87 2.95 11 2.06 0.70 3.98 19.33 3.57 0.90

SPI6-RG1 35 27.17 2.26 0.91 5.63 27 5.55 0.99 7.87 39.49 9.07 1.15
SPI6-RG2 32 29.72 2.48 0.93 5.53 16 3.77 0.68 7.95 24.93 7.18 0.90
SPI6-RG3 29 32.79 2.73 0.92 6.52 20 5.15 0.79 9.00 34.90 9.39 1.04

4.3. Estimation of Bivariate Joint Distributions

The bivariate copulas of Table 7 were used to determine the best-fitted copula for modeling
bivariate joint distribution between drought duration and magnitude aiming at obtaining the
corresponding joint return periods, which are essential for evaluating and predicting the regional
drought risks. According to Sections 3.4 and 3.5, one copula function was selected for each
homogeneous region and timescale. The estimated parameters and values of the goodness-of-fit
test (AIC) for the best-fitted copula are listed in the same table. For SPI3, for example, the Survival
Gumbel was chosen for all the three regions. On the other hand, for SPI6, a specific copula family
was assigned to each region, meaning that the drought characteristics and their dependence are more
distinct among regions.
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Table 7. Selected copula families, Kendall tau (τ), marginal distributions and parameters of the models.
Par stands for the copula parameter and Par1 and Par2 for the marginal distribution parameters.

Time
Series

Copula Drought Duration, Dd Magnitude, Dm

Selected Family Par Kendall’s τ AIC Marginal Par1 Par2 AIC Marginal Par1 Par2 AIC

SPI3-RG1 Survival Gumbel 5.78 0.82 −166.77 log-normal 0.91 0.62 238.06 log-normal 1.12 0.77 290.57
SPI3-RG2 Survival Gumbel 6.67 0.85 −171.54 log-normal 0.96 0.58 216.12 log-normal 1.18 0.79 278.28
SPI3-RG3 Survival Gumbel 7.57 0.86 −210.22 log-normal 0.88 0.62 242.15 log-normal 1.06 0.80 296.83

SPI6-RG1 Survival Gumbel 12.40 0.91 −143.60 log-normal 1.34 0.88 188.58 log-normal 1.50 1.09 214.26
SPI6-RG2 Clayton 16.47 0.89 −121.63 Gamma 2.22 0.40 168.00 log-normal 1.66 0.96 197.97
SPI6-RG3 Gaussian 0.98 0.89 −104.17 log-normal 1.60 0.76 163.02 log-normal 1.78 0.91 184.06

Figure 9 presents the copulas that best describe the observed dependence patterns between
normalized values of Dd and Dm. The normalization was performed to allow direct comparisons
among multivariate normal shapes and to bring out specific features, such as sharp corners indicating
tail dependence [84]. Only SPI6 in region RG3 (SPI6-RG3) presented a copula without tail dependence,
i.e., a Gaussian one. On the other hand, SPI6-RG2 presented the greatest lower tail dependence.
This result indicates that with the increase in drought duration and magnitude values, the linear
correlation between the variables tends to decrease. Although the copulas for SPI6-RG1 and SPI6-RG2
are of the same class (Archimedean copulas, Table 3), the dependence structure of the former is closer
to SPI6-RG3 (Meta-elliptic copula). This result indicates the existence of a lower tail dependence for
SPI6-RG1 less pronounced than the one for SPI6-RG2.

Figure 9. Joint cumulative distribution functions of the best-fitted copula of normalized drought
duration and magnitude for each region and timescale of SPI.

4.4. Regional Bivariate Return Period of Drought Events

Since various Dd and Dm combinations can result in the same return period, the joint return
periods defined by Equations (9) and (10) (TDd or Dm and TDd & Dm, respectively) were obtained and
represented in the form of the contours lines shown in Figure 10. Different patterns can be observed.
In fact, for TDd or Dm there are not bounds (meaning that the contour lines do not cross the axes) while
the contour lines for TDd & Dm are bounded by the axes. Based on the figure and as an example,
a combination of Dd = 20 months and Dm = 10 for SPI6 results in TDd or Dm = 10 years for all the
three regions, while for TDd & Dm equals to 74, 588 and 84 years, in RG1, RG2, RG3 respectively.

For each region and SPI timescale, Table 8 identifies the five drought events with the highest
return periods according to the different approaches. Just for the sake of systematizing, the start dates
of the droughts were identified based on the events to which correspond the return periods TDd & Dm.

A numerical example shows that for SPI6-RG1, regardless the approach, the worst drought,
with Dd = 27 months and Dm = 39.49, occurred in June 2002. According to the univariate
approach (Equations (7) and (8)), the return periods are 167.5 and 99.7 years. As for the bivariate
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approach, the return periods TDd or Dm and TDd & Dm are 96.1 and 178.7 years (Equations (9) and (10)).
Finally, the conditional return periods are TDd|Dm≥m = 7867.7 years and TDm|Dd≥d = 13, 218.2 years
(Equations (11) and (12), respectively). The univariate return periods were computed based on the
best-fitted distribution for each region and drought characteristic (Section 3.4), and are also identified
in Table 7.

Table 8 shows that for RG1 and RG2 the ranking of the exceptionality of the drought events for
each SPI timescale seldom coincides. RG3 is an exception, with only the event beginning in September
2013, according to SPI3, out of order. This coherence among results may indicate a better performance
of the models due to the more homogeneous behavior of the region. The table also stresses that the
conditional return periods are always much higher because they are restricted to smaller sample spaces
due to the conditional constraints (drought magnitude or duration exceeding certain thresholds).

Figures 11 and 12 represent the conditional return periods although only for SPI6, in order to
shorten the paper, but also because the results for SPI3 are similar. Please note that due to the adopted
scale of the axes some of the more exceptional drought events of Table 8 are not represented.

Table 8. For each region and SPI timescale, start dates and characteristics of the five droughts with
the highest return period TDd & Dm and their corresponding univariate, bivariate, and conditional
return periods.

Time
Series

Start Date
TDd & Dm

Dd
(Month)

Dm Univariate (Year) Bivariate (Year) Conditional (Year)

TDd TDm TDd or Dm TDd & Dm TDd|Dm≥m TDm|Dd≥d

SPI3-RG1

Sep 1943 11 20.85 148.5 201.7 115.7 327.9 52,293.8 38,496.1
Aug 1963 8 9.64 41.5 18.7 17.8 47.0 694.3 1544.0
Feb 1937 3 12.14 3.3 34.6 3.3 34.7 948.8 90.6
Sep 2011 6 9.66 16.0 18.8 13.4 24.4 361.6 308.6
May 2004 6 9.25 16.0 16.9 12.8 22.8 303.5 288.6

SPI3-RG2

Jul 1947 11 14.63 215.5 47.7 47.0 230.8 8014.6 36,215.6
Jul 1950 8 18.57 52.5 98.8 48.0 119.9 8630.8 4582.3
Oct 2011 6 14.25 18.4 44.3 17.9 47.5 1531.7 637.7
Jul 1944 7 12.58 31.4 31.4 24.4 44.3 1011.6 1013.1
Sep 1982 6 10.89 18.4 21.6 15.8 27.0 424.6 361.9

SPI3-RG3

Sep 2013 10 19.33 106.3 144.6 89.0 196.4 23,167.7 17,033.1
Jan 2010 11 14.85 160.2 61.7 59.2 179.5 9034.1 23,459.4

Aug 2007 8 12.48 44.2 37.0 31.2 57.0 1721.7 2052.5
Feb 1998 8 11.79 44.2 31.6 28.2 53.4 1377.4 1922.3
Mar 2012 5 11.55 10.0 29.9 9.9 30.5 744.1 248.3

SPI6-RG1

Jun 2002 27 39.49 167.5 99.7 96.1 178.7 7867.7 13,218.2
Apr 1963 19 27.46 64.9 47.3 45.1 69.7 1456.5 1997.2
May 1943 12 30.54 23.1 58.3 23.1 58.5 1505.9 597.8
Dec 1993 14 21.46 31.9 30.2 27.2 36.1 481.6 508.4
May 1998 11 14.55 19.5 16.2 15.6 20.5 147.0 176.9

SPI6-RG2

Jun 1960 16 19.52 147.3 29.3 28.0 193.6 2290.6 11,515.8
Apr 1947 14 24.27 75.8 45.5 35.9 136.2 2500.7 4166.6
May 1950 11 24.93 29.0 48.2 24.6 68.4 1329.3 799.6
Apr 1982 11 19.66 29.0 29.7 21.4 46.4 556.2 542.7
Jun 2011 9 19.75 15.8 30.0 14.9 33.5 405.1 213.1

SPI6-RG3

Oct 2012 20 34.90 83.6 105.4 79.5 112.8 4353.9 3452.8
Nov 2010 19 34.57 72.0 102.9 70.2 106.8 4020.8 2814.0
Sep 2006 19 31.74 72.0 83.2 67.0 91.1 2772.6 2399.7
Nov 2014 13 17.43 26.9 23.2 22.1 28.5 241.3 280.6
Apr 1956 8 11.56 10.4 11.8 10.1 12.3 53.0 46.4
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Figure 10. Joint return periods, TDd or Dm, TDd & Dm for each region and SPI timescale. The drought
events that started between January 1937 and December 1999 are represented by grey circles, and those
with start from January 2000 on, by red circles.

Figure 11. Conditional return period TDd|Dm≥m for different drought magnitudes (denoted by m) for
SPI6 in the three regions.

Figure 12. Conditional return period TDm|Dd≥d for different drought duration (denoted by d) for SPI6
in the three regions.
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Figure 13 summarizes the results from the univariate and bivariate analysis based on the
representation of the return periods of all the drought events from 1937 to 2016. Although the return
period is a discontinuous variable, in the figure the different points were connected just to improve its
readability, thus allowing easy detection of the most exceptional drought events (i.e., with the highest
return periods) in Madeira Island.

The results for SPI3 show that the period from January 1937 to December 1999 has been
characterized by numerous drought events (represented by the black bullets) that were particularly
intense in RG1 and RG2 in the earlier years. In RG1, the first and long-term drought event took place
from September 1943 to July 1944 with TDd & Dm = 327.9 years (Table 8) (not depicted in Figure 13
due to the vertical scale adopted for improving the legibility of the figure.). Approximately three
years after its end (that is, in July 1947), two considerable events occurred, also spaced of three years
(TDd & Dm of 230.8 and 119.9 years), but this time in RG2. After the end of these events there were
not very exceptional droughts in any region until November 2003. From this year on, several events
with sustained high return periods took place, namely in RG3, the most important region in terms
of freshwater sources. As for SPI6, RG1 discloses a performance opposite to that of SPI3, with more
exceptional droughts in more recent years. The results for RG2 and RG3 are similar to those based on
SPI3, with a higher concentration of important droughts in the past and more considerable events in
recent times, respectively. These results are in line with the study about time-dependent occurrence
rates of droughts also in Madeira by Espinosa et al. [47].

Figure 13. Univariate, and bivariate return period (TDd, TDm, TDd or Dm, TDd & Dm) for SPI3 (left figures
with M = 3) and SPI6 (right figures with M = 5). The start date of each drought event is represented
by the location of the black bullet.

5. Discussion and Conclusions

This work presents a systematic analysis of the effect of the moving average filter on drought
assessment based on the SPI series (SPI3 and SPI6) from 1936 to 2016, and of the jointly modeling
of drought characteristics with bivariate copulas for Madeira. The factor loadings from the factor
analysis applied to unsmoothed and smoothed SPI series identified three distinct regions with different
temporal patterns of the droughts: northern slope (RG1), southern slope (RG2) and central region
(RG3). RG1 denotes exceptional droughts both in earlier years and at present, RG2 suffered the worst
droughts in the past, while RG3 has featured more exceptional drought events from 2000 onwards.
Special attention was given to this last region due to its relevance for the island’s water security,
as main region for the recharge of the groundwater reservoirs.
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Planning and management of water resources systems under drought conditions often require the
estimation of return periods of the exceptional drought events [59,85]. However, droughts are defined
by multiple characteristics, some of them, presumably highly correlated. Based on the regionalized SPI
series, two drought characteristics, namely drought duration (Dd) and magnitude (Dm) were analyzed
and bivariate copulas were implemented to construct their joint distributions aiming at estimating
return periods. The drought maximum intensity (Dmi, Figure 1) was not considered to avoid possible
redundant information, since it is already part of the Dm data, and also due to its poorly correlation
with Dd as stated by Sharma [91], Dracup et al. [92] and Chen et al. [87].

The bivariate approach enabled the generation of the joint return periods return periods between
Dd and Dm of Figure 10. The figure shows that the events that took place more recently, namely
after January 2000 (red circles), present higher or even the highest return periods, meaning that the
drought events they represent were more exceptional. This is particularly evident in RG3, regardless
the SPI timescale, but also in RG1, in this case only for SPI6. Table 8 also stresses the critical situation
of RG3. In fact, from the five more exceptional drought events, regardless the SPI timescale, four took
place after 2000 (more specifically after 2006). The table also shows the poorer performance of the
univariate approach: in fact, for a same region and SPI timescales, all the droughts with the same
duration would have the same return period, regardless the drought magnitude, and vice versa.

Aiming at discussing the information gained with the application of factor analysis and copulas,
the results presented in Figure 13 will be compared to those from a drought characterization considering
the 41 original SPI series. For that purpose, for the entire island and for each of the homogeneous
regions, the yearly areas affected by moderate, severe and extreme drought were computed, based on
the non-regionalized and unsmoothed SPI for wettest months of the rainy season and for the entire
season itself, SPI3Nov−Jan and SPI6Oct−Mar, respectively, as shown in Figures 14 and 15. The Thiessen
polygon method [93] was applied to assign an areal influence (ATP from Table 1) to each rain gauge.
The area attributed in each year to a specified drought category was given by the cumulative areas
of the rain gauges with values of SPI within the limits of that category (Table 2). The total areas
thus achieved for each year were made dimensionless by division by the Madeira area or by the area
assigned to each region, in this last case, computed based on the rain gauges located in the region.

Figures 14 and 15 show that generally, the island and each of its three regions have been similarly
affected in terms of percentage of the area under drought conditions. Most of the same driest spells
occurred in the three regions—such as exceptionally extreme droughts of 1947, 1995, and 2011 [11]—but
sometimes with different distribution of the areas assigned to the three drought categories. Figure 15
suggests that the distribution of the years with moderate, severe and extreme droughts is similar
among regions for SPI3Nov−Jan. However, in the case of SPI6Oct−Mar, regardless the affected area,
for RG1 and RG3 the concentration of years with severe and extreme droughts is higher in recent years
(2000–2016), whereas RG2 exhibits an opposite behavior, i.e., a higher concentration of years with
severe and extreme events in the past. Even though Figure 15 refers to annual series and Figure 13
to continuous series there is a certain similarity between sub-periods with more severe and extreme
droughts and with the highest return periods, denoting coherence among different characterizations.

Figure 14. SPI3Nov−Jan (left figure) and SPI6Oct−Mar (right figure) series. Yearly area of Madeira
affected by the different drought categories (740.63 km2—41 rain gauges).
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Figure 15. SPI3Nov−Jan (left figures) and SPI6Oct−Mar (right figures) series. For each region, yearly
area affected by the different drought categories (RG1 with 232.35 km2—11 rain gauges, RG2 with
281.18 km2—14 rain gauges, and RG3 with 227.10 km2—16 rain gauges).

Finally, the same copula approach was applied to the regionalized unsmoothed SPI. The results
for TDd & Dm based on SPI6-RG3 are presented in Figure 16 which also includes the ones from the
smoothed series with a running length of M = 5. The figure confirms that smoothing the SPI series
prior to factor analysis allows the elimination of the spurious drought events and/or their clustering,
thus improving the visibility of the more exceptional droughts, as it happened in November 2010
and October 2012. It should be stressed that the return periods that result from the unsmoothed SPI
series may be much higher than those from the smoothed series due to the higher temporal variability
of the unsmoothed SPI series. The less steep response of the smoothed series compared to the one
from the unsmoothed series may be because the MA filter has a good performance in the time domain
(as mentioned in Section 3.2), but has a poor performance in the frequency domain [33]. Since in the
present study, the response that describes how the information in the time domain (the SPI series)
is being modified by the system is the important parameter and the frequency response is of little
concern, this makes the MA filter applicable. In other fields of hydrology, such as in flood frequency
analysis Halbert et al. [94], Archer et al. [95], the response in the frequency domain is all important,
while the one in the time domain does not matter. Consequently, a frequency-domain filter may be
more appropriate, e.g., the Fourier transforms [96]. Therefore, the selection of a digital filter should
consider the features of the studied phenomenon.

Figure 16. The central region. The start of drought events and their associated bivariate return period
TDd & Dm for SPI6 series without smoothing (dashed line and red bullets) and with M = 5 (solid line
and black bullets).

Advances were made in the study of drought analysis based on regionalized smoothed series
including on the criteria to selected the running length, M, and on the consequences of different
M values. The copula approach showed that the drought events may have completely different
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return periods, depending on how the relationship between Dd and Dm is accounted for. In any case,
the univariate approach only provides part of the information, often underestimating the exceptionality
of the events. The use of bivariate approaches, namely based on copulas, can easily overcome
such constraint.
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