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Abstract: By examining the variations in the dimensions of a horseshoe vortex system in front of
a pier, the present study proposes a new length scale, called pier hydraulic radius, for the scaling
of the maximum scour depth at a bridge pier. It is shown that, in comparison with other length
scales, the pier hydraulic radius is more effective for quantifying combined effects of pier width and
flow depth on the local scour for both low and high flow conditions. A theoretical formula is finally
derived, which agrees well with experimental data reported in the literature.
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1. Introduction

Scour has been long recognized as the most common cause of bridge failures [1], among which
some notorious failure cases were recently documented by Hong et al. [2,3]. The local scour at a bridge
pier is affected by several factors, including approach flow depth and velocity, sediment grain size
and gradation, and pier width, shape and alignment. Among these factors, flow depth effect has been
investigated extensively by Raudkivi and Ettema [4], Chiew [5], Melville and Coleman [6], Oliveto
and Hager [7], Ettema, et al. [8], and Guo [9]. These studies show that maximum scour depth varies
at different scales under different flow depth conditions. For deep flows, if the ratio of flow depth
h to pier width b is greater than four, i.e., h/b > 4, the flow depth effect is negligible, and the scour
depth increases as the pier width increases. In comparison, for shallow flows (e.g., h/b < 0.2), the scour
depth is proportional to the flow depth, but independent of the pier width. For intermediate flows,
the scour depth varies with both flow depth and pier width. Such variations could be associated with
the interaction between the near-bed horseshoe vortex and the surface roller [4].

Given the complex mechanism of the three-dimensional flow around a pier, it is almost impossible
to conduct an analytical evaluation of the flow depth effect on the maximum scour depth [4]. Recently,
Manes and Brocchini [10] proposed a theoretical framework, including all the non-dimensional
parameters controlling the scouring process. In their study, the flow depth effect was implicitly
incorporated in the drag coefficient of the pier and the shallow flow effect was intentionally discarded.
On empirical grounds, many experimental and numerical observations have been performed for the
last few decades, e.g., [6,11–18], which have collectively shown that the large-scale flow structure
(i.e., the horseshoe vortex system) forming at a bridge pier acts as the principal agent that causes the
local scour. The large-scale vortex appears to be much stronger than the eddies generated by the sweep
and ejection events, as observed in turbulent flows over a smooth or rough channel bed [19]. For deep
flows, the strength of a horseshoe vortex is only related to the pier width, and thus the scour depth
is not affected by flow depth; while, for shallow flows, the development of the horseshoe vortex is
limited by the flow depth, which affects the scour depth. It should be noted that the focus of this study
is limited to the case of uniform current flow where the downward flow-induced horseshoe vortex is
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the leading cause for the scouring action. In comparison, wave-induced scouring is mainly dominated
by the lee-wake flow [20,21], which is beyond the scope of this paper.

By noting the significant role of the horseshoe vortex in the local scour, the flow depth effect could
be evaluated alternatively by investigating how the flow depth influences the size of the horseshoe
vortex even at the beginning of scour. Such an effort is made in the present study. In the following, the
characteristics of the horseshoe vortex are briefly described. Then, the concept of hydraulic radius
is applied to quantify the dimension of the horseshoe vortex. Finally, the result is compared with
experimental data published in the literature. To facilitate the relevant analysis, it is assumed that:
(1) the viscous effect is negligible; (2) the sediment is uniform, with the grain size much smaller than
the pier width; (3) the approach flow is close to the threshold condition for incipient sediment motion;
and (4) the pier is circular.

2. Characteristics of Horseshoe Vortex

The presence of a bridge pier obstructs the approach flow and causes the boundary layer separation,
which yields two rollers around the pier, a surface roller, like bow wave to a boat, and a base roller or
horseshoe vortex system [4]. The two rollers rotate in opposite directions, which are connected by the
downflow in front of the pier, as sketched in Figure 1.
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depth affects how much flow goes through the horseshoe vortex system. Typically, the horseshoe 
vortex system causes significant increases in the bed shear stress and turbulence intensity. For 
example, Baker [14] reported that within the horseshoe vortex system, the turbulence intensity (the 
ratio of the streamwise velocity fluctuation to the local time-mean velocity) was approximately three 

Figure 1. Schematic of the horseshoe vortex at a circular pier before scour.

The formation of the horseshoe vortex can be linked to both streamwise and transverse pressure
gradient of the flow around a pier [12]. The streamwise adverse pressure gradient causes the approach
boundary layer to separate and then give rise to multiple horseshoe vortices or a horseshoe vortex
system, while the transverse pressure gradient directs the flow to move around the pier, stretching
the horseshoe vortices towards downstream. The number of vortices may increase with increasing
Reynolds number, but the dimension of the vortex system is independent of Reynolds number and
primarily determined by the pier diameter [22].

Baker [14] stated that the horseshoe vortex system functions as a sink, which drains away the
fluid that flows into the vortex upstream of the pier. For a bridge pier with a given width, the flow
depth affects how much flow goes through the horseshoe vortex system. Typically, the horseshoe
vortex system causes significant increases in the bed shear stress and turbulence intensity. For example,
Baker [14] reported that within the horseshoe vortex system, the turbulence intensity (the ratio of the
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streamwise velocity fluctuation to the local time-mean velocity) was approximately three times higher
than that for the undisturbed boundary layer. Sumer and Fredsøe [23] observed that the maximum
bed shear stress appeared at the midway from the front to the side edge of a pier, which was at least
five times higher than that for the undisturbed approach flow. Likewise, Li et al. [24] experimentally
measured the flow characteristics in front of a cylinder, showing that both the mean and fluctuations
of bed shear stress are significantly augmented due to the formation of turbulent horseshoe vortex.
The large amplification of the turbulence intensity and bed shear stress, which greatly enhances the
flow capability to entrain and transport sediment particles [19], substantiates the central role of the
horseshoe vortex system in initiating the local scour and thus generates the potential maximum scour
depth. Therefore, it is rational to assume that scour depth is closely related to the size of the horseshoe
vortex before scour. In the following, the size of the horseshoe vortex is quantified by applying the
concept of hydraulic radius.

3. Pier Hydraulic Radius

In open channel flows, the hydraulic radius is traditionally defined as the ratio of the area of a
cross-section to its wetted perimeter. It can be used for computing the average boundary shear stress at
a cross-section under uniform flow conditions. On the other hand, the hydraulic radius also provides a
reasonable measurement of the dimension of the large-scale flow structures. As sketched in Figure 2,
it can be approximated as the flow depth h for a wide channel and one half of the channel width B for a
narrow channel [25]. Mathematically, the hydraulic radius R is expressed as:

1
R

=
1
h
+

1
0.5B

(1)
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Figure 2. Schematic vortex structures in (a) wide channel and (b) narrow channel.

Similar to the large-scale flow structure identified in the cross-section of an open channel flow,
the horseshoe vortex system is also confined by the two parameters, i.e., flow depth h and pier width b.
This suggests that the concept of hydraulic radius is applicable for quantifying the size of the horseshoe
vortex, as detailed subsequently.

The horseshoe vortex is highly three-dimensional. However, only the leading part of the vortex,
as observed in front of a pier before the scour, is considered in this study. This is because it predefines
the maximum scour depth in spite of the fact that its size and structure evolve as the local scour
develops. In the symmetry plane of the pier, the streamwise or vertical dimension of the horseshoe
vortex could be quantified using the flow depth. In the vertical direction, the size of the horseshoe
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vortex may be limited up to the flow depth, if the flow is shallow. The streamwise dimension of the
vortex, if assumed to be comparable to its vertical dimension [26], is also in the order of the flow
depth. Laterally, the vortex size would be in the order of the pier width, provided that the pier is
not wide in comparison with the flow depth. Therefore, in the initial stage of the local scour at a
pier, the horseshoe vortex is confined by the two length scales, flow depth h and pier width b, which,
respectively, characterize the scale of energy-containing eddies in channel flow and pier-associated
flow [10]. This is similar to the large-scale flow structure confined by the cross-section of an open
channel flow. Consequently, as a first approximation, it is proposed here to apply the concept of
hydraulic radius in the determination of the horseshoe vortex size.

Similar to Equation (1), the dimension of the horseshoe vortex Rv can be expressed as:

1
Rv

=
1
h
+

1
0.5b

(2)

where Rv may be referred to as the pier hydraulic radius. It is noted that Rv, as a combination of b
and h, provides a length scale that describes the typical size of the horseshoe vortex. In the following,
Equation (2) is compared with laboratory measurements available in the literature.

Experimentally, the dimension of the horseshoe vortex has been measured using different
approaches in previous studies. Baker [14] and Sumer and Fredsøe [23] measured the distance from
the separation point of the boundary layer to the pier center. Through flow visualization in a wind
tunnel, Baker [14] showed that the separation distance is proportional to the pier height for submerged
cylinders, and proportional to the pier width for long cylinders. As discussed subsequently, the effect
of the cylinder height on the formation of the horseshoe vortex in the wind tunnel is comparable to
that of the flow depth in an open channel. Alternatively, Kothyari et al. [26] quantified the vortex size
as the vertical distance from the channel bed to the point where the fluid flows downward along the
front surface of the pier.

Figure 3 shows the comparison of Equation (2) with the data from Sumer and Fredsøe [23] and
Kothyari et al. [26]. Since Kothyari et al. [26] presented that narrow channels induced significant
variations in the vortex size, only the dataset with the ratio of the channel to pier width greater than 10
is used here for comparison. From Figure 3, it can be seen that Equation (2) agrees well with the two
sets of data, without involving any adjustable coefficient.
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Figure 3. Comparison of vortex dimension given by Equation (2) and experimental data.

Additionally, Equation (2) is also compared in Figure 4 with another set of data reported by
Baker [14], who measured the separation distance of the horseshoe vortex in front of a cylinder with
different heights. For this comparison, the flow depth h in Equation (2) is simply replaced with the
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cylinder height. As shown in Figure 4, all the measured separation distances are approximately equal
to 80% of Rv calculated using Equation (2). It should be noted that Baker [14] measured two sets of
separation distances, and indicated that due to the experiment setup, the set of measurements for the
separation point closer to the leading edge of the cylinder was more accurate, which are used here for
the comparison.
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Both Figures 3 and 4 show that the length scale, Rv, defined in Equation (2), can be used to quantify
the size of the horseshoe vortex. If assuming that the scour depth is comparable to the dimension of
the horseshoe vortex, then Rv, as a length scale, can be further used to describe the combined effect of
flow depth and pier width on the scour depth. This will help simplify the dimensional analysis, as
demonstrated in the next section.

4. Dimensional Analysis

For a bridge pier simulated using a circular cylinder mounted vertically at a sediment bed in a
wide channel, the maximum scour depth ds generally depends on the following nine parameters:

ds = f
(
b, h, U, d50, σg,ρ,ρs, g, ν

)
(3)

where b is the pier width or cylinder diameter, h is the approach flow depth, U is the approach flow
velocity, d50 is the median sediment grain diameter, σg is the geometrical standard deviation, ρ is the
fluid density, ρs is the grain density, g is the gravitational acceleration, and ν is the kinematic viscosity
of fluid. If assuming that (1) both the viscous effect and sediment non-uniformity are negligible, (2) the
reduced gravitational effect for submerged sediment grains is described using g′(= (ρs/ρ− 1)g), and
(3) the scour depth scales with the hydraulic pier radius Rv, a combination of b and h, Equation (3) can
be reduced to

ds = f (Rv, U, d50, g′) (4)

Choosing Rv and g′ as repeating variables, Equation (4) can be rewritten in the dimensionless
form as

ds

Rv
= f

(
Fd,

d50

Rv

)
(5)

where Fd is the densimetric Froude number,

Fd =
U√
g′d50

(6)



Water 2019, 11, 2458 6 of 8

When ignoring the viscous effect, the settling velocity w of a sediment particle is proportional
to

√
g′d50. Therefore, Fd measures the relative intensity of the approach flow in comparison to the

gravitational effect of sediment particles. The ratio of d50/Rv serves as a description of the relative
roughness height of the sediment bed. On a side note, a notable contribution to improve the underlying
physics of local scouring process is due to the work of Manes and Brocchini [10], who proposed a
theoretical expression of the equilibrium scour depth as a function of the kinetic head of the undisturbed
approach flow, specific gravity of the sediment, drag coefficient, and relative coarseness. Note that
Manes and Brocchini’s [10] deviation was based on the perception that the equilibrium scour depth
scales with the size of fully developed vortex that buried in the equilibrium scour hole, whereas the
concept of Rv developed in this study characterizes the initial size of the vortex generated at the onset
of the scouring.

To single out the flow depth effect, some specific cases need to be considered so that both Fd and
d50/Rv in Equation (5) can be ignored. First, the effect of Fd can be discounted when Fd approaches
a constant, for example, when the approach flow is close to the threshold condition for incipient
sediment motion. This is because when the viscous effect is negligible, the critical flow velocity
Uc for incipient sediment motion is proportional to the settling velocity w and thus

√
g′d50, i.e.,

Uc ∼ w ∼
√

g′d50 [27,28]. Furthermore, it is noted that the effect of d50/Rv becomes important
only for relatively coarse sediment grains. For example, Chiew [5] showed that for the local scour in
deep flows, d50 appears to be a minor factor for d50 < 0.02b. With the above considerations, the flow
depth effect would be better examined for the pier scour at a sediment bed composing relatively fine
sediment grains (e.g., d50 < 0.02b for deep flows) under the threshold condition for sediment motion.
Such restrictions will be considered for the subsequent data comparison.

Without considering Fd and d50/Rv, Equation (5) is finally simplified to

ds

Rv
= constant (7)

Equation (7) implies that the scour depth is simply proportional to the pier hydraulic radius.
With Equation (2), Equation (7) can be rewritten as

ds

b
=

ch/b
1 + 2h/b

(8)

where c is a constant. Equation (7) or Equation (8) provide a simple theoretical description of the flow
depth effect on the pier scour.

5. Comparison with Previous Studies

Figure 5 presents a comparison of Equation (8) with the two series of data, one being summarized
by Melville and Coleman [6] for circular piers and the other reported by Basak et al. [29] for square
piers. It can be seen that Equation (8), with c = 4.6, depicts the trendline of the data used.
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5. Comparison with Previous Studies 

Figure 5 presents a comparison of Equation (8) with the two series of data, one being 
summarized by Melville and Coleman [6] for circular piers and the other reported by Basak et al. [29] 
for square piers. It can be seen that Equation (8), with 𝑐 = 4.6, depicts the trendline of the data used. 

 
Figure 5. Comparison of Equation (8) with experimental data. 

 

 

0.1

1

10

0.01 0.1 1 10

d s
/b

h/b

Basak et al. (1975)

Melville & Coleman (2002)

Eq. (8) with c = 4.6

Figure 5. Comparison of Equation (8) with experimental data.



Water 2019, 11, 2458 7 of 8

6. Discussion

The pier hydraulic radius proposed in this study provides a useful length scale for the scour depth.
It is noted that several other length scales have been employed in the previous studies to normalize the
scour depth at a pier. Examples are the commonly used pier width b and a combination of b and h,
such as h0.3b0.7 [30],

√
hb [9], and h1/3b2/3 [7]. Figure 6 compares the three different length scales (L),

√
hb, h1/3b2/3, and Rv, by plotting L/b against h/b. To facilitate the comparison, Rv is multiplied by

three so that the three curves meet at h/b = 1. From Figure 6, it can be seen that: (1) in the region of
h/b ≈ 1, the three length scales are close to each other; (2) for h/b < 1,

√
hb is close to 3Rv; and (3) for

large h/b, Rv approaches the limit of 0.5 (which is similar to the variation in the scour depth for large
h/b), but both

√
hb and h1/3b2/3 approach infinity, which is not practically acceptable.
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7. Conclusions

The present study demonstrates that the traditional concept of hydraulic radius can be applied to
describe combined effects of pier width and flow depth on the local scour at a bridge pier. The following
key points are drawn from the study:

• A new length scale, pier hydraulic radius, is developed based on the dimension of the large-scale
horseshoe vortex;

• It is shown that, in the scaling of the maximum pier scour depth, the pier hydraulic radius, which
applies for both shallow and deep flow conditions, performs much better than the other length
scales used in the previous studies;

• The derived theoretical formula represents the data published in the literature well.
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