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Abstract: Agriculture and crop production is the sector with the highest water demand, and because of
water shortages and an unbalanced distribution of natural resources in China, improving the efficiency
of agricultural water use is essential. In this study, we quantified the total water footprint (WF) of
major crop products in Northwest China using the Penman–Monteith formula. The logarithmic mean
divisor index (LMDI) was used to explain the four factors driving the spatial and temporal differences
in the WFs of the major crops in five provinces and regions in Northwest China. The results showed
that from 2006 to 2015, the total WF of the major crops was increasing overall. From a temporal
perspective, the crop area and yield effects, which were the factors driving the overall increase in
the WF, positively impacted the overall change in the WF of the major crops in Northwest China.
The effects of the virtual water content (VWC) and crop structure were both volatile. The effect of the
crop structure made a relatively small contribution, while the effect of the VWC played a significant
role in changing the overall WF. From a spatial perspective, the changes in the VWC and crop structure
negatively inhibited the increase of the WF, widening the difference between these provinces and
regions and Shanxi. The increased yields in Xinjiang most clearly increased the WF, followed by those
in Ningxia, Qinghai, and Gansu. In comparison with Shanxi, in all the provinces and regions except
Xinjiang, the change in cultivated area was less effective in promoting the WF. Therefore, scientific
planting plans should be developed for adapting to climate change, considering the differences in
natural features among various provinces and regions. Water conservation and advanced agricultural
technology should be promoted to enhance the sustainability of agricultural development.
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1. Introduction

Water is the most essential natural resource, playing a vital role in environmental and ecosystem
services. As a traditional agricultural country with a large population, China is facing many water
problems. Water shortages have become an important bottleneck restricting the economic and social
development of Northern China, as the distribution of water resources in China is uneven in time and
space [1], with an adequate distribution in the south and a low distribution in the north. Therefore,
to guarantee the food security of China’s 1.4 billion people with minimal environmental costs, efficiently
evaluating and managing water resource consumption is essential [2]. Although the worldwide water
demand from the industrial and household sectors has increased, the agriculture sector still intensely
consumes the largest share of water [3,4], accounting for approximately 70% of the total global water
demand. For the sustainable use of water resources, we need to effectively alleviate the pressure on
water resources due to agricultural production.
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Under the trend of increasing consumption and climate deterioration, water use efficiency must
be enhanced in a way that adapts to nature rather than challenges nature [5]. The concept of the water
footprint (WF) was first proposed in 2002 by Hoekstra and is considered a means by which to address
water crises in severely water-scarce regions. A WF is defined as the total volume of water used, directly
or indirectly, to produce the goods and services consumed by the inhabitants of a certain geographical
region [6]. Instead of measuring the volume of agricultural water used, which traditionally only includes
irrigation water, the WF is an indicator measuring the volume of water used during the whole growing
cycle at the point of production. It quantifies the impact of natural endowment and climate factors on the
agricultural water use efficiency, including natural factors, such as the latitude and longitude, soil types,
climate factors like precipitation, maximum and minimum temperatures, etc.

A growing body of literature focuses on the agricultural water use efficiencies of different countries
from the WF perspective [7–12]. The index decomposition method has been used to study the factors
affecting the water consumption or water intensity of actual water bodies. Bruneau decomposed the water
intake intensities of Canada from 1981 to 1996 into separate composition and technique effects [13]. Zhi et al.
divided the factors driving water production changes in Beijing from 1987 to 2010 into the population,
consumption pattern, and per capita consumption volume through improved input-output structural
decomposition analysis (IO-SDA) [14]. In terms of virtual water, researchers have deconstructed the factors
affecting China’s overall WF to evaluate how humans use water resources [15]. A bottom-up approach
has been used in some specific studies focusing on the water use efficiency in the agriculture and crop
production sectors, starting from the smallest unit feasible for assessing the WF and aggregating each unit
to the desired scale and period [16]. Chunfu and Bin analyzed the forces driving changes in the Chinese
agricultural WF from 1990 to 2009 by applying a logarithmic mean divisor index (LMDI) to deconstruct the
forces into diet structure effects, efficiency effects, economic activity effects, and population effects [17].
Zhao et al. calculated the green and blue water contents of the main food crops in Suzhou and used the
LMDI to study the forces driving changes in the WF during 2001–2010. The drivers were designed to
reflect factors related to farmland, such as the yield and crop area [18]. Xu et al. estimated the total water
consumption of crop production in Beijing and used the LMDI to quantitatively analyze five driving factors
(water-saving technology, plantation structure, production scale, urbanization, and population) of changes
in the WF from 1978 to 2012 [19]. Deng et al. quantified the provincial food production water footprint
(WF) in China during 1997–2011 and then analyzed its change trends by the LMDI method [20].

The objects of the above studies were countries or regions, and the studies did not consider
spatial comparisons. To manage local water demands, further identifying the water use efficiencies of
different major grain-producing areas and conducting spatial-temporal analyses are necessary. Thus,
the object of this study was five provinces and regions in Northwest China: the Shanxi, Gansu, Qinghai,
Ningxia, and Xinjiang regions. There is a prominent contradiction between agricultural production
and irrigation water use. These areas are located in a typical water-deficient area in China (Figure 1).
This area spans the Guanzhong Plain, with an average annual precipitation of 800 mm, and the Tarim
Basin, with annual precipitation of less than 50 mm. The terrain structure is complex, with minimal
precipitation with an unbalanced distribution in time and space. Regarding the WF, the proportion of
green water relative to precipitation in the northwest region is greater than 70%, which is extremely
high [21]. Paradoxically, agriculture accounts for a high proportion of the area’s total production
value. Therefore, allocating water resources and improving the water use efficiency of the agricultural
and grain production sectors are necessary for the five northwestern provinces and regions. Thus,
we calculated the overall WF values of rice, wheat, and maize (the three main staple foods in China)
in the five northwestern provinces and regions from 2006 to 2015 using the Penman–Monteith (PM)
formula in CROPWAT 8.0. The LMDI method was used to temporally and spatially study the forces
driving changes in the crop WFs of the five northwestern provinces and regions during the study
period. The drivers included the virtual water content (VWC) effect, yield effect, crop structure effect,
and crop area effect.



Water 2019, 11, 2457 3 of 15

Figure 1. Land cover map of the research area.

2. Materials and Methods

2.1. Quantification of the Water Footprint (WF) of Crop Production

The WF concept was first proposed by Hoekstra in 2002 and subsequently elaborated upon by
Hoekstra and Chapagain [22,23]. After continuous improvements, the WF concept is now interpreted
as the volume of freshwater used during a production process, providing a framework for analyzing
the link between human consumption and the appropriation of the world’s freshwater. The total WF
consists of the blue WF (the volume of surface and groundwater consumed (evaporated) as a result of
the production of a good), green WF (the rainwater consumed), and grey WF (the volume of freshwater
required to assimilate the load of pollutants based on existing ambient water quality standards) [24].
In this study, we excluded the estimation of the grey WF since the aim of this paper was to study the
volume of agricultural water used at the point of production, while the grey WF is an index describing
the number of water resources needed to dilute pollutants discharged from agricultural production to
meet local environmental discharge standards and not the actual amount of water consumed in crop
production. Additionally, the methods by which to quantify the grey WF are still under debate [25,26].

Water use efficiency studies are an important area in agricultural research, and a variety of methods
have been adopted to quantify WFs [25]. In this study, WF accounting was a bottom-up approach
based on the method initiated in “The WF assessment manual: setting the global standard” [27], which
is applicable to the agricultural cropping patterns in Northern China. The WF of crops is calculated in
detail as follows:

WF = WFG + WFB (1)

WFG =
CWUG × p

Y
=

10ETG × p
Y

(2)

WFB =
CWUB × p

Y
=

10ETB × p
Y

(3)

where WF, WFG, and WFB refer to the total, green, and blue WF of the crops, respectively; CWUG
and CWUB are the volumes of green and blue water (m3/hm2), respectively, used by the crop during
the growing season; p is the production of a certain area in a certain year (kg); Y is the crop yield per
unit of crop (kg/hm2) during the same period; and the number 10 is used to convert mm to m3/ha.
ETG and ETB are the actual evapotranspiration from effective precipitation and irrigation, respectively,
during the growing season (mm), which can be calculated as:

ETG = min(ETC, Pe) (4)

ETB = max(0, ETC − Pe) (5)
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where ETC refers to the crop evapotranspiration (mm), and Pe refers to the effective precipitation
during the crop growth period. We used the PM combination method, a well-known method for
calculating crop water requirements, as a standard to estimate the crop evapotranspiration.

ETC = kc × ETO (6)

ETO =
0.408∆(Rn −G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(7)

In Equation (7), ETO denotes the reference evapotranspiration (mm/day), Rn refers to the net
radiation at the crop surface (MJ/m2

·day), G is the soil heat flux density (MJ/m2
·day), T is the mean

daily air temperature at 2 m height (◦C), u2 is the wind speed at a 2 m height (m/s), es refers to the
saturation vapor pressure (k Pa), ea refers to the actual vapor pressure (k Pa), es − ea represents the
saturation vapor pressure deficit (k Pa), ∆ denotes the slope vapor pressure curve (kPa/◦C), and γ
denotes the psychrometric constant (k Pa/◦C).

CROPWAT 8.0 is an established software developed by Joss Swennenhuis for the Water Resources
Development and Management Service of the Food and Agriculture Organization (FAO), which is
widely used in the field of virtual water. It can help calculate evapotranspiration and irrigation
water demands in a standard way, which can better reflect the impact of water deficits on crop yields.
We used this model to calculate the crop water requirements of rice, wheat, and maize during the
period from 2006 to 2015. In this model, the effective precipitation (Pe) during the crop growth period
could be calculated using precipitation data per month, while the actual evapotranspiration from
effective precipitation (ETG) and the actual evapotranspiration from irrigation (ETB) could be obtained
by inputting the latitude and longitude, soil type, climate factors like precipitation, maximum and
minimum temperatures, etc.

2.2. LMDI Methodology

The LMDI methodology was developed by Ang in 1998, and it has been widely employed to
analyze the driving forces behind changes in CO2 emissions [28,29]. Compared to other decomposition
methods, the LMDI method does not leave a residual term and is especially suitable for models with
time-series data, so it has been recommended for general use [30]. In recent years, research on water
resources has been conducted using the LMDI model, and a few studies have applied it to analyze the
WF of agriculture [31–35]. In this study, we used this method to decompose the WF of crops into eight
major grain-producing areas in Northwest China.

Based on the LMDI methodology, the total WF of crops can be expressed with the four driving
forces as follows:

WF(t) =
∑

i

∑
j

[Vi j(t)·Yi j(t)·Si j (t)·A j(t)] (8)

where WF(t) is the total WF of wheat, rice and maize; Vi j(t), Yi j(t), Si j (t), and A j(t) represent the VWC,
yield, crop structure, and crop area, respectively, for crop i in province j in year t, where i = 1, 2, and 3
denote rice, maize, and wheat, respectively, and j = 1, 2, . . . 5 denote Shanxi, Gansu, Qinghai, Ningxia,
and Xinjiang, respectively. These four effects reflect the interrelationships between the volume of
agricultural water used and a complex of artificial selection, natural endowment, and weather factors
at the point of production. Among them, the virtual water content (VWC) is the volume of water used
to produce a unit of each crop. The yield is the production of a certain area. The crop structure is the
proportion of a specific crop area relative to the total planting area of all crops, and the crop area is the
total planting area of all crops chosen.

The formula can also be written as follows:
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WF(t) =
∑

i

∑
j

[WFi j (t)

Pi j (t)

Pi j(t)

Ai j (t)

Ai j (t)

A j (t)
A j (t)

]
(9)

where WFi j (t) is the WF of crop i in province j in year t, Pi j (t) refers to the production volume of crop
i in province j in year t, Ai j (t) is the crop area of crop i in province j in year t, and A j (t) represents
the total planting area in province j in year t.

According to the additive decomposition method, the variation in WF from year 0 to year t can
be decomposed into four parts: the variation in the WF caused by the change in the VWC (WFv),
the variation in the WF related to the change in the yield (WFy), the variation in the WF due to the
change in the planting structure of province j (WFs), and the variation in the WF caused by the change
in the total planting area of province j (WFa), which represent the VWC effect, yield effect, crop structure
effect, and crop area effect, respectively. The decomposition step of the time series is shown as follows:

∆WF = WF(t) −WF(0) = ∆WFv + ∆WFy + ∆WFs + ∆WFa (10)

∆WFv =
∑

i

∑
j

WFt
i j −WF0

i j

lnWFt
i j − lnWF0

i j

× ln

V
t
i j

V0
i j

 (11)

∆WFy =
∑

i

∑
j

WFt
i j −WF0

i j

lnWFt
i j − lnWF0

i j

× ln

Y
t
i j

Y0
i j

 (12)

∆WFs =
∑

i

∑
j

WFt
i j −WF0

i j

lnWFt
i j − lnWF0

i j

× ln

S
t
i j

S0
i j

 (13)

∆WFa =
∑

i

∑
j

WFt
i j −WF0

i j

lnWFt
i j − lnWF0

i j

× ln

At
j

A0
j

 (14)

where ∆WFv is the effect when the sign of the variation in a factor is positive, and then, there is
a positive effect on the change in the total WF; otherwise, there is a negative effect.

Similarly, the decomposition step of the spatial series can be expressed as follows:

∆WF′ = WF j −WFu = ∆WFv
′ + ∆WFy

′ + ∆WFs
′ + ∆WFa

′ (15)

∆WFv
′ =
∑

i

WF1
i −WF0

i

lnWF1
i − lnWF0

i

× ln

V1
i

V0
i

 (16)

∆WFy
′ =
∑

i

WF1
i −WF0

i

lnWF1
i − lnWF0

i

× ln

Y1
i

Y0
i

 (17)

∆WFs
′ =
∑

i

WF1
i −WF0

i

lnWF1
i − lnWF0

i

× ln

S1
i

S0
i

 (18)

∆WFa
′ =
∑

j

WF1
i −WF0

i

lnWF1
i − lnWF0

i

× ln

A
1
j

A0
j

 (19)

where ∆WF′ represents the variation in the total WF of the crops between province j and province i.

2.3. Data Collection

For the calculation of ETc, the CROPWAT 8.0 software requires various climate-related, crop, and
soil parameters to calculate the crop water requirements of rice, wheat, and maize. The climate-related



Water 2019, 11, 2457 6 of 15

parameters include the average maximum and minimum air temperature, relative humidity, wind
speed, sunlight, duration, monthly rain, and radiation, all of which were obtained from the National
Meteorological Information Center (http://data.cma.cn). The crop and soil parameters were extracted
from the default values provided by the FAO. The spatial unit of the above-mentioned data is every
weather station in the regions studied. We input the data into CROPWAT 8.0 after calculating the
average value of every month from 2006 to 2015 of each region from the values of all weather stations
in the region. In addition, the agricultural data related to the LMDI model, including the crop yield
and sown area, were extracted from the National Bureau of Statistics of China (http://data.stats.gov.cn).

3. Results and Discussion

3.1. Water Footprint (WF) Accounting

As shown in Figure 2, the total WF of crops in Northwest China experienced a general increasing
trend from 2006 to 2015. The total WF increased from 30,506.41 (106 m3) in 2006 to 39,521.64 (106 m3) in
2015, with an average annual growth rate of 2.84%. Specifically, the composition of the total WF of the
three staple foods also changed significantly. In 2006, the WF of maize accounted for 40.30% of the
total WF; however, this value rose to a peak of 48.96% in 2014. At the same time, the proportion of the
WF attributed to wheat decreased gradually during the study period, from 53% in 2006 to 45.50% in
2014. Since rice is not a major crop in these five northwestern provinces and regions, in comparison
to those of the other two crops, the WF of rice has always been low, and it changed imperceptibly,
with an average proportion of 5.87%.

Figure 2. Total WF (water footprint) of crops and its composition in Northwest China (2006–2015).

3.2. Decomposition Analysis from the Perspective of Time

We decomposed the changes of the total WF of crops in the five northwestern provinces and
regions from 2006 to 2015 into four effects: the VWC effect, yield effect, crop structure effect, and crop
area effect, or WFv, WFy, WFs, and WFa, respectively. As shown in Figure 3, the crop area and yield
effects were positive effects that led to an increase in the overall WF of the crops from 2006 to 2015.
During the study period, the crop area effect in absolute terms was always positive, while the yield
effect was also mainly positive, with 8 out of 9 years showing positive values. The VWC effects changed
from positive factors that contributed to the overall increase to negative factors that inhibited such an
increase with high volatility, and the VWC effects had negative values in 5 years, totaling −9208.55
(106 m3), and positive values in 4 years, totaling 5862.79 (106 m3). The overall effect of the VWC from

http://data.cma.cn
http://data.stats.gov.cn
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2006 to 2015 was −3345.77 (106 m3), indicating that it inhibited the overall increase of the WF. On the
other hand, the impact of the crop structure effect was relatively small, fluctuating sharply between
2006 and 2010, but tended to be stable between 2010 and 2015, producing a gradually weakening
inhibition impact on the overall increase. Therefore, in general, the WF reduction due to the VWC and
planting structure did not offset the increase in the WF originating from the effects of the crop area and
yield. Therefore, the total WF of crops in five northwestern provinces and regions in China showed an
increasing trend during the study period.

Figure 3. Driving forces of the total WF for the crops during the study period of 2006–2015.

3.2.1. Virtual Water Content Effect

Figures 3 and 4 show that the VWC effect played a significant role in changing the overall WF of
the crops in the five northwestern provinces and regions. Wheat, as the main food crop in Northwest
China, had the highest contribution, and its total VWC effect reached −1896.21 (106 m3), accounting
for 56.68% of the three staple foods. Maize had the next-highest contribution, with a total effect of
1309.5 (106 m3), accounting for 39.14% of the three staple foods. The contribution of the rice VWC effect
was the lowest because rice is relatively water-intensive, so it is not suitable for planting in the five
northwestern provinces and regions in China. In addition, Figure 3 further illustrates the significant
impact of the VWC on the WF, as climatic factors (such as temperature, sunlight and sunshine, and
precipitation) and natural features (latitude, longitude, and altitude) changed the crop yield and
associated water consumption during the study period. For example, in a study of rice in Sri Lanka,
Silva et al. concluded that climate change impacts the demand for irrigation water and the water
balance in Sri Lanka [36]. Therefore, calculating the WF using the multi-year average VWC of crops in
the past, such as in the study conducted by Liu et al. [37], would lead to calculation bias and affect the
research results.

Figure 4. The cumulative contribution of the virtual water content to the WF change.
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3.2.2. Crop Area Effect

Figure 5 shows that the cumulative contribution of the crop area effect to the WF steadily increased,
contributing the most to the overall increase, and its curve was consistent with the curve of the overall WF
for crops. From 2006 to 2009, the WF increased sharply with the crop area effect, but in 2010, due to the
inhibition effect of the VWC, the WF decreased from 38,020.78 (106 m3) to 35,362.31 (106 m3). Since 2011,
the WF has risen modestly under the significant influence of the crop area effect. The above changes were
correlated with changes in the planting areas of various crops in Northwest China. Between 2006 and
2010, the planting area of the five northwestern provinces and regions showed a steady and moderate
upward trend, from 13.45 million ha in 2006 to 16.09 million ha in 2015, with an average annual growth
rate of 2.02%, which stimulated the increased WF. As shown in Figure 4, the crop area effect of wheat had
the highest contribution to the overall increased WF among the three staple crops, followed by maize and
rice, which was consistent with the planting structure of the five northwestern provinces and regions.

Figure 5. The cumulative contribution of crop area to WF change.

3.2.3. Crop Structure Effect

In general, compared with the contribution of the VWC effect and crop area effect to WF, the overall
effect of the planting structure on the crop WF was small during the study period, the cumulative
contribution of which only accounted for 8.05% of the total effect. Specifically, as shown in Figure 6,
the proportion of wheat planting area among the major crop areas decreased between 2006 and 2015,
from an average planting rate of 24.97% in 2006 to 18.22% in 2015. The area proportion of maize
increased from 14.38% to 19.27%. This change was particularly evident in Gansu, Qinghai, and
Ningxia. As a result, the decreasing crop area proportion of wheat inhibited the increased WF, while
the increasing crop area proportion of maize contributed to the increased WF, which led to a canceling
effect between the positive and negative values.

Figure 6. The cumulative contribution of the crop structure to the WF change.
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3.2.4. Yield Effect

From 2006 to 2015, the WF in the five northwestern provinces and regions generally increased with
increased yields of crops. The yield effects in absolute terms were positive except in 2007, 2009, and
2013, and in general, the WF showed a change in volatility from a decrease to an increase. As shown in
Figure 7, the yield effect of wheat contributed the most to the change in the WF, from 7740.39 (kg/ha) in
2006 to 4098.92 (kg/ha) in 2015, with an average annual increase of 1.02%, driving the WF to increase
to 2709.95 (106 m3); corn had the second-greatest contribution, driving the WF to increase to 2320.16
(106 m3), while the contribution of rice was the smallest, driving the WF to increase to 238.50 (106 m3).

Figure 7. The cumulative contribution of the yield effect to the WF change.

3.3. Total Water Footprint (WF) in Different Provinces and Regions

As shown in Figure 8, from 2006 to 2015, the overall WF of the crops in the five northwestern
provinces and regions showed an increasing trend but remarkable spatial disparity. The WF in Shanxi
was always the greatest, and the WF in Qinghai was the lowest. Compared with the WF in 2006,
the WF values in 2010 in Shaanxi, Gansu, and Xinjiang increased, among which Xinjiang had the most
significant increase, reaching 5397.14 (106 m3) and accounting for 61.71% of the total increase in these
five provinces and regions. This result further indicated a trend exceeding that of Shaanxi. Qinghai’s
and Ningxia’s WF declined gently, which had little effect on the overall WF, accounting for only −1.73%
and −3.65%, respectively. In general, the change in the WF in the five northwestern provinces and
regions showed a trend of “high-low-high” from west to east in the study period. The grain production
statuses of Xinjiang and Shaanxi further improved, while the statuses of Ningxia and Qinghai in the
central region declined.
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Figure 8. The total WF of crops and its changes from 2006 to 2015. (a) Total WF of crops in 2006; (b)
Total WF of crops in 2010; (c) Total WF of crops in 2015; (d) Change in WF during 2006–2015.

3.4. Decomposition Analysis from the Perspective of Space

During the study period, the WF in Shaanxi was the largest among the five northwestern provinces
and regions with relatively high growth rates. Therefore, we considered the WF in Shaanxi as the
control group and the WFs in other smaller provinces and regions as the comparison group. Then, we
compared the WFs among the provinces and regions. According to Equations (15)–(19), we calculated
the driving effects and contribution rates for the spatial differences in the WFs in Northwest China
from 2006 to 2015, as shown in Table 1.

Table 1. Driving effects and contribution rates of the spatial differences in the WFs in Northwest China
from 2006 to 2015 (106 m3).

Provinces Year WFv WFy WFs WFa Total Effect

Gansu-Shanxi

2006 730.47 −814.39 −3909.69 −762.83 −4756.43
−15.36% 17.12% 82.20% 16.04% 100.00%

2010 −1934.19 −836.72 −3447.40 −484.64 −6702.94
28.86% 12.48% 51.43% 7.23% 100.00%

2015 −3488.75 211.43 −2963.61 −139.80 −6380.74
54.68% −3.31% 46.45% 2.19% 100.00%

2006 −1457.79 832.38 −3608.23 −6111.72 −10,345.35
14.09% −8.05% 34.88% 59.08% 100.00%

Qinghai-Shanxi 2010 −2468.22 1011.40 −4321.00 −7138.93 −12,916.74
19.11% −7.83% 33.45% 55.27% 100.00%

2015 −2154.16 421.56 −3775.10 −7540.45 −13,048.15
16.51% −3.23% 28.93% 57.79% 100.00%

2006 −796.04 1710.96 −1493.70 −8105.45 −8684.23
9.17% −19.70% 17.20% 93.34% 100.00%

Ningxia-Shanxi 2010 −2531.45 1596.71 −2283.03 −8303.18 −11,520.94
21.97% −13.86% 19.82% 72.07% 100.00%

2015 −2141.53 1115.56 −2305.43 −8393.83 −11,725.23
18.26% −9.51% 19.66% 71.59% 100.00%

2006 −2721.68 4994.13 −6321.59 464.77 −3584.37
75.93% −139.33% 176.37% −12.97% 100.00%

Xinjiang-Shanxi 2010 −5141.07 4949.70 −5178.35 1560.27 −3809.45
134.96% −129.93% 135.93% −40.96% 100.00%

2015 −5207.30 4996.13 −4819.70 4122.10 −908.76
573.01% −549.77% 530.36% −453.60% 100.00%

WFv, WFy, WFs, and WFa represent the VWC effect, yield effect, crop structure effect, and crop area effect respectively.
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3.4.1. Gansu-Shanxi

In 2006, 2010, and 2015, the WF in Gansu was 4756.43 (106 m3), 6702.94 (106 m3), and 6380.74
(106 m3), respectively, which was less than that in Shaanxi, and had an increasing trend, with the
overall increasing trend being Shaanxi was clearer. Specifically, the VWC effect in absolute terms was
positive in 2006 and negative in 2010 and 2015, indicating that the VWC effects on the WF increase
in Gansu were first stronger than that in Shaanxi and then weaker, and the gap gradually widened.
The yield effect was negative in 2006 and 2010 and positive in 2015, indicating that the contribution of
the yield effects to the WF increase in Gansu was stronger than that in Shaanxi. The structure effect
and land area effect in absolute terms were always negative, indicating that the contributions of these
effects to the WF increase in Gansu were weaker than those in Shaanxi but had a narrowed gap.

3.4.2. Qinghai-Shanxi

In 2006, 2010, and 2015, the WF in Qinghai was 10,345.35 (106 m3), 12,916.74 (106 m3), and 13,048.15
(106 m3), respectively, which was less than that in Shaanxi and showed a significant increasing trend.
The overall WF in Qinghai was the lowest among the WFs of the five provinces and regions during the
study period, and no rice was planted there. In addition, the planting area and yield of corn and wheat
were also small. Specifically, the VWC effect in absolute terms was always negative, indicating that the
VWC effects on the WF increase in Qinghai were weaker than those in Shaanxi, and the gap gradually
widened. The yield effects were always positive, indicating that the contribution of the yield effects to
the WF increase in Qinghai was stronger than that in Shaanxi but with great fluctuations. The structure
effect and land area effect in absolute terms were always negative with high values, indicating that the
contributions of these effects to the WF increase in Qinghai were weaker than those in Shanxi, but the
gap narrowed.

3.4.3. Ningxia-Shanxi

In 2006, 2010, and 2015, the WF in Ningxia was 8684.23 (106 m3), 11,520.94 (106 m3), and 11,725.23
(106 m3), respectively, which was less than that in Shaanxi and showed a significantly increasing trend.
The overall increasing trend of the WF in Shaanxi was clearer, and the planting areas of the three food
crops in Ningxia were also much smaller than those in Shaanxi. Specifically, the VWC effect in absolute
terms was always negative, indicating that the VWC effects on the WF increase in Ningxia were weaker
than those in Shaanxi, with a fluctuating increasing trend. The yield effect was positive, indicating that
the contribution of yield effects to the WF increase in Ningxia was stronger than that in Shaanxi, but the
gap gradually narrowed. The structural effect and the crop area effect were always negative, indicating
that the contributions of these effects to the WF increase in Ningxia were weaker than those in Shanxi,
which was the main driving factor causing the difference between the WF in Ningxia and Shaanxi.

3.4.4. Xinjiang-Shanxi

In 2006, 2010, and 2015, the WF in Xinjiang was 3584.37 (106 m3), 3805.45 (106 m3), and 908.76
(106 m3), respectively, which was less than that in Shaanxi and showed a decreasing trend. The growth
rate of the WF in Xinjiang gradually surpassed that in Shaanxi during the study period. Specifically,
the VWC effect in absolute terms was always negative, indicating that the VWC effects on the WF increase
in Xinjiang were weaker than those in Shaanxi, and the gap gradually widened. Additionally, the VWC
provided a good complement, offering further insights into the influence of regional differences and
climate change on the water demand [20]. The yield effect was positive, indicating that the contribution of
the yield effect to the WF increase in Xinjiang was stronger than that in Shaanxi and was the main driving
factor behind the growth of the WF in Xinjiang. The structural effect was always negative, indicating that
the contribution of this effect to the WF increase in Ningxia was weaker than that in Shanxi, but the gap
narrowed. The effect of the crop area was always positive and gradually increased, indicating that the
contribution of the crop area effect to the WF increase in Ningxia was weaker than that in Shanxi.
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4. Conclusions

4.1. Assessing the Ensemble Result of the Driving Effects

We set out to identify the drivers of the WF of grain crops, focusing on the VWC, yield,
crop structure, and crop area. The results can be described from two different perspectives, as follows:

From the perspective of the changes in the WF over time, the expansion of the cultivated land area
and increase of the unit yield were the major driving factors behind the increase in the WF in Northwest
China from 2006 to 2015, especially the increase in cultivated land area. Since the cultivated land area
increased steadily with an annual growth rate of 2.02% during the study period in Northwest China,
the WF increased consistently with the expansion of the cultivated land area. The change in the VWC
also played a significant role in the increased WF and changed from an effect that inhibited the WF
increase at the beginning of the study to the effect that contributed to the increase. This scenario occurred
because, during the study period, many policies related to water conservation were implemented to
lower the VWC per unit, while the contribution of the crop structure effect was less than those of other
effects to the WF. Although the food consumption pattern in China changed slightly over the study
period, crop, maize, and wheat are still the staple food crops in China. Therefore, there was only a minor
adjustment within the crop structure, which led to a canceling effect of the increase in the planting area
of maize and the decrease in the area of wheat.

From the perspective of the changes in the WF spatially, the WFs in the five northwestern provinces
and regions showed a trend of “high-low-high” from west to east from 2006 to 2015, with the largest
WF in Shanxi and the smallest in Qinghai. The VWC effects contributed significantly to increasing
the differences among the provinces and regions due to the unbalanced distribution of land, light,
and heat resources among these areas. The crop structure and crop area effect were also important
factors since the water requirement of wheat was the largest among the three crops, and an increase in
the production of wheat was a significant driving factor behind the increase in the WF. In addition,
the yield effect was the main driving factor promoting WF growth in Xinjiang due to the construction
of high-quality farmland, which led to significant growth of the yield in Xinjiang, indicating that the
WF in Xinjiang would gradually surpass that in Shaanxi.

4.2. Implications for Conserving Agricultural Water in Northwest China

Although China’s water use efficiency in the agricultural sector improved over the study period,
the water use efficiency is still low when compared with those of other industrialized countries due to
inappropriate irrigation management practices and lower investments in infrastructure construction [38].
However, our result doesn’t simply mean that the regions with a low WF should produce more to
increase the water use efficiency. The poor natural endowment will lead regions with less water to save
more, like improving the water use efficiency by changing irrigation methods, among implementing
other changes, so that the blue water footprint will be reduced. But for future consideration and
the sustainable use of water, it is not appropriate to arrange high production for regions with less
water, considering their natural endowment, since it will lower the environmental carrying capacity
eventually. Therefore, a different approach should be taken.

To date, China has gradually carried out campaigns to control water in agriculture sectors from
the perspective of supply through water resource reallocation, water pricing, etc. The fact that the
VWC values of rice, maize, and wheat were different in different years and the contribution of the crop
structure effect to the improved WF in Northwest China, as found in our study, justify the significance
of the VWC, we thought it is important to plan and arrange crop planting structures reasonably based
on science to control the total WF in Northwest China. In addition, virtual water trade, which allows
water-scarce areas to import water-intensive products from water-rich areas, should also be utilized
to further improve the efficiency of agricultural water use since this approach can alleviate water
shortages in the five northwestern provinces and regions to a certain extent [39]. The grain planting
structure, geographical environment, and climate in the five northwestern provinces and regions
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are similar. However, during the study period, there was a remarkable spatial disparity among the
provinces and regions in Northwest China. To achieve a spatial balance, home-grown and grass-roots
solutions are needed. For the provinces and regions with large WFs that are under conditions of
comparatively good light and heat, such as Shanxi and Xinjiang, it is time to reduce the water and
fertilizer application properly [40] and apply linear programming as opposed to simply expanding
the cultivated area [41]. In addition, Gansu experiences a challenge involving the shortage of water
resources and the high proportion of agriculture in its GDP. Therefore, it is necessary to reallocate the
structure of the food and animal husbandry sectors. Provinces and regions that lack water and have
a fragile ecological environment, such as Gansu, Ningxia, and Qinghai in Northwest China, are unable
to meet the needs for the growth of some crops. Therefore, it is time to abandon broad-scale expansion
and emphasize the quality of agricultural development. The yield effect of crops greatly contributes to
the changes in the WFs, so we should promote advanced agricultural science and skills to improve
the yield of each grain crop to lower the total WF in agricultural production. Furthermore, attention
should be paid to strengthening the construction of high-quality farmland.
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