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Abstract: The stochastic character of water consumption by consumers and the technical condition of
water supply systems are the main deterministic random factors influencing the observed changes in
flow rate and pressure. The implementation of Supervisory Control and Data Acquisition (SCADA)
systems resulted in the creation of dispersed data sets coming from the devices controlling the
operation of the water supply system. Thanks to the use of metadata and advanced computer systems
of analysis, data from various sources can be analyzed to detect the operating conditions of the water
supply system. The aim of the research was to analyze an empirical exponent, determined on the
basis of flow rate and pressure measurements for one of the District Metered Areas (DMAs). Modern
supervised and unsupervised machine learning systems were implemented to classify the obtained
results. The results of the research showed that on the basis of the established empirical exponent in
the systems in which the pressure is reduced at night, it is possible to qualify the operating conditions
of the water supply system in the DMA with accuracy of up to 90%. The conducted tests may be
implemented as a component of expert diagnostic systems in water companies.

Keywords: district metered area (DMA); empirical exponent; machine learning; monitoring; water
supply systems

1. Introduction

The conditions of operation for water supply systems depend on many deterministic random
factors influencing the observed changes in flow rate and pressure. The theory of exploitation of technical
systems distinguishes technical and operational conditions of technical objects. The operational
condition of a system, facility or technical device is a momentary phase of exploitation, described by the
results of measurements of physical quantities characterizing the functional features of a water supply
system [1]. The flow rate and pressure are the parameters of the operating condition of the water supply
system. The distribution of these parameters is most strongly influenced by the stochastic character of
water consumption by consumers. Water consumption by consumers using the water supply system
shows quantitative changes both in time and in the space supported by a given water supply system.
The random character of water consumption in particular points of the water supply system causes the
recorded time series of instantaneous flow rate and hydrostatic pressure to be treated as a stochastic
process. Recognition of the stochastic process of demand is of particular importance for developing
control of the operation of equipment for water intake, treatment and distribution. The stochastic
character of water demand causes the analysis of the results of flow and pressure variability in selected
points of the water supply system to not allow for their simple use in the assessment of its technical
condition and prediction of emergency status.

The technical condition of a system (facility) is understood as a matrix of features describing the
physical properties of system components, taking into account the level of risk for loss of technical
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performance under the influence of operating time or external factors. Experience has shown that the
quality of water and the physical and chemical processes taking place on the internal and external
surfaces of water pipes determine the speed of their ageing [2,3]. Changes in technical condition are
reflected in an increase in the number of failures, increased costs of pumping water and real losses
during its distribution to customers. The technical condition is closely related to the age of the pipes,
the material from which they are made, the water pressure in the pipelines, the composition of the
water supply system and other factors having a direct or indirect impact on the change in the strength
and hydraulic parameters of the water supply pipes. The analysis of data from Polish water supply
companies showed that in the years 2004–2013 the network failure rate decreased three times [4].
The failure rate of the Polish water supply system (excluding house connection pipes) in 2010 was
0.61 failure/km/year and in 2014 it decreased to 0.40 failure/km/year (according to The Polish Waterworks
Chamber of Commerce). However, these values are much higher than the failure rates of water supply
systems in other European countries, ranging from 0.10 to 0.30 failure/km/year. The decrease in the
failure rate of the water supply system observed in Poland is a result of popularization of charges for
water supply system, which resulted in implementation of the principles of operation of water supply
systems based on economic calculation and translated into increased care for their technical condition.

The implementation of Supervisory Control and Data Acquisition (SCADA) systems in water
supply companies resulted in the creation of multidimensional, disperse data sets coming from devices
controlling the operation of the water supply system. Thanks to the use of metadata and advanced
IT systems of collection analysis, data from various sources can be analyzed in order to detect the
phenomena important for decision making in water companies [5]. At the turn of the 20th and 21st
centuries, it was pointed out that data from continuous monitoring of industrial processes, necessary
for supervision and automatic control, can also be used to detect failure situations using numerical
diagnostic tools [6,7]. Initially, procedures were introduced to control the correctness of measuring
devices and then to detect unusual states of operation of technical devices [8,9]. Quick detection and
diagnosis of malfunctions of measuring devices and the operation of the controlled technical system
result not only from economic considerations, but also from the need of limiting environmental effects
by reducing the risk of failure [10]. The monitoring of the state of operation of the water supply system
should not be considered only in the aspect of emergency situations. For rational operation of water
supply systems, the parameters of their operating status should also be recognized during unusual
water consumptions, e.g., during holidays, public holidays, during popular or very interesting TV
programs and in academic cities, taking into account the academic year. Depending on the purpose of
the analyses: failure detection, assessment of the condition of the water supply system or location,
a number of specialized methods of digital processing of the parameters of the water supply system
conditions are implemented.

Among the methods of detecting the working conditions of the water supply network currently
used in practice, one can distinguish hardware and software methods [11]. In hardware methods,
which can also be called instrumental methods, diagnosis is performed mainly by using specialized
equipment or test and diagnostic apparatus. In software methods, computer systems for data collection
are used to diagnose, and using specialized calculation algorithms, the occurrence of phenomena that
may affect the safety or operating costs of the water supply system is assessed. Software methods
include analysis of water consumption, flow rate and pressure in selected points of the system in
order to detect unusual situations and search for causes of their occurrence, including failure and
pre-failures states.

The software methods include a number of solutions based on water balance and analysis of
Minimum Night Flow (MNF) between 02:00–04:00 [12]. The water balance is used in the implementation
of good water supply practices aimed at rational, economically justified exploitation of water supply
systems, based on the minimization of actual water losses [13]. Silva et al. [14] have demonstrated that
a significant drawback of balance for diagnostic purposes methods is that too little data is available
and that the reliability of the data is poor. In order to improve balance based diagnosis, the methods



Water 2019, 11, 2452 3 of 18

used include the High-Density Regions (HDR) probability distribution method [14]. More advanced
software solutions have implemented Multi-Criteria Decision Analysis (MCDA), which supports
water supply system management and abnormal state detection [15]. The authors of these studies
implemented a fuzzy, multi-criteria method of hierarchical analysis of decision-making problems,
i.e., Analytic Hierarchy Process (AHP) and a method of linear ordering of the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) objects. Both methods support decision-making
processes and their implementation consists in assigning significance to particular activities undertaken
to reduce water losses and the number of failures, taking into account the condition of the water
supply system. The analyses have shown that the most important impact on the number of failures
is related to the way of pressure management in the water supply system and implementation of
water balance methods in District Metered Areas (DMAs). The Fixed and Variable Area Discharges
(FAVAD) solution is one of the software methods. The FAVAD method is known as the Pressure
and Leakage Management strategy (PLM) [16]. Reducing the water pressure in the DMA at night
to the level resulting from the size of the water demand and the required geometric lifting height
and hydraulic losses contributes to reducing the actual water losses. As part of the FAVAD pressure
management strategy, during minimum night-time flows in the DMA water supply pipeline, the
pressure in the system is reduced by using Pressure Reducing Valve (PRV). The idea of the FAVAD
solution determines the dependence of the amount of failure discharge on the Average Zone Pressure
(AZP) [17,18]. The effect of pressure on the flow rate through the orifice considers the relationship
between the initial and final flow rates, depending on the prevailing operating pressure.

Advanced methods of flow rate and pressure analysis, registered on active water supply systems
with SCADA systems have not been widely used so far due to the complexity of calculation procedures.
For this reason, technical infrastructure diagnostics is a young and constantly evolving field. Apart
from basic analyses of the parameters of water supply system operation, data mining techniques and
learning systems, which are the basis for data mining, are seeing increasingly frequent use to detect
abnormal situations. It is customary to divide the learning systems into learning solutions with the
so-called supervision and without supervision. The classification of operating states of the water
supply system, based on the analysis of flow rate and pressure parameters, includes cluster analysis
using hierarchical trees, Support Vector Machine (SVM) and Decision Trees (DC). So far, most of the
research results aimed at the recognition of the possibility of using data mining methods have not been
implemented in many countries, including Poland, in the creation of advisory systems for services
supervising the operation of complex water supply systems. One of the reasons for this situation is the
lack of research conducted on real water supply systems. Most of the studies conducted so far are
limited to laboratory conditions or a semi-technical scale [19,20]. The analysis of operation conditions
(flow rate and pressure) is used to assess the condition of water supply systems. Review of the subject
literature shows that analytical tools, such as support vector machine (SVM) and the k-nearest neighbor
algorithm are used to detect operation status of water supply networks [21]. The cited research
indicates that the highest accuracy of water supply operation status based on pressure parameter
(94.8%) in case of failure detection had a naïve Bayes classifier. The lowest accuracy (78.51%) used a
k-nearest neighbor algorithm. Neural networks [22] and decision trees [23] were also used to detect
operation status of water supply systems.

Water supply infrastructure diagnostics have many limitations. Barriers to the implementation
of diagnostic tools in water and sewage companies are high costs and a lack of qualified diagnostic
staff who understand the essence of phenomena occurring in water supply networks and who know
modern IT methods of signal analysis, including artificial intelligence methods necessary to classify
phenomena based on signals from the monitoring of the water supply system. Measurements of
the water supply network have caused a situation where a huge number of measurement results
exceed the perceptive abilities of network dispatchers and operators, and there is a misconception
about the non-interpretability of data sets generated by extensive SCADA systems. Attention is also
drawn to restrictions on the ability to register and manage large databases, mainly due to the lack
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of implemented signal processing procedures at the place of their creation [19]. As far as extended
water supply systems are concerned, time synchronisation of measurement data coming from different
control points is also a problem [24]. One of the most frequently mentioned barriers to the detection
of water supply operation status is a limited number of field studies. Because of this, most of the
diagnostic methods presented in the literature have limited scope of application [25].

The main goal of the research presented in this article was to assess the possibility of using
the modified assumptions of the FAVAD method to diagnose the operating conditions of the actual
water supply system. The analyses were carried out on the basis of time series of pressure and flow
rate changes. On the basis of the values of these parameters and the assumptions of the FAVAD
approach, an empirical exponent α was determined. The research included verification as to whether
the controlled, step change of pressure during the MNF allows to qualify the states of operation of
the water supply network in the DMA. An additional aim of the research was to check whether the
empirical values of α exponents, determined for the phases of pressure reduction and increase, can
be used as an element of classification of operating states of water supply systems. In the research
conducted so far, the FAVAD method was used to determine the amount of unexpected leakages of
water as a result of failure at variable pressure. The new approach presented in the paper allows to
consider the determination of the exponent linking the flow rate–pressure relationship, which is an
analytical problem that has not yet been addressed in the context of water supply network diagnostics.

The paper is organized in four Sections. In Section 2 the operating parameters of the water supply
system are described. The same Section outlines measurement events proposed for analysis, FAVAD
method assumptions and its modifications that lead to the calculation of the empirical exponent αk−n
and methods used to assess the accuracy of classifiers. Research results presented in Section 3 are
thematically organised into two parts. In the first, the values of exponents αk−n for both the pressure
reduction and growth phases are analyzed. The second part contains the results of the classification of
the empirical exponent αk−n with the use of supervised and unsupervised learning systems as well as
the assessment of accuracy of classifiers. The final conclusions are provided in Section 4.

2. Materials and Methods

2.1. Monitoring of Hydraulic Parameters and Study Area

The recording of the operating parameters of the water supply system—flow rate and
pressure—was carried out on a main pipeline with a nominal diameter of 800 mm. Water is supplied
through the pipeline to a separate water supply of the DMA, which is under the management of
Municipal Water and Sewage Company S.A. in Wroclaw (Poland). The selected region is inhabited by
about 22,400 people and the DMA daily receives 4000 m3 of water. The night-time pressure reduction
procedure is carried out by a zone water pumping station, in which three pump sets are operated,
each consisting of four single-stage centrifugal pumps with a power of 18.5 kW. The total capacity of
the pump sets is 2184 m3/h and the head is 35 mH2O. In each pump set, one pump unit cooperates
with a variable frequency drive and the others are equipped with soft-start devices and a soft-braking
controller, which prevents excessive pressure amplitudes.

Changes in pressure and flow rate in the experimental facility were recorded from April 2017 to
January 2018. Flow rate measurements were taken from a permanently installed electromagnetic flow
meter with a measurement accuracy of ±0.25%. The measurement interval in the period considered
was 1 min and the momentary value of the signal was measured at a given interval. Pressure value
measurements were performed with a portable electronic set to measure and record data. The pressure
sensor used in the device was characterized by a measurement error of±0.05%. The time step of pressure
recording was equal to 1 s for the daytime period and 0.01 s for the night-time pressure reduction.

Figure 1 shows examples of pressure and flow rate changes at the pumping station located before
the selected DMA. For this area, a FAVAD strategy was implemented to reduce the actual night-time
water losses. The step-by-step pressure function forces a controlled change in the operating parameters
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of the water supply system in the DMA. It should be noted that the controlled pressure change is a
deterministic action, as opposed to pressure changes caused by random factors during the traditional
operation of water supply systems. After a sudden change in pressure, the observed changes in this
parameter are the result of random factors connected with dynamic changes in water consumption
by consumers. For the purposes of the research, a definition of a water supply day was introduced,
calculated from 15:00 on the current day to 15:00 the following day. During the day, a constant pressure
at the level of about 450 kPa (phases I and V) was maintained. From 00:00 to 05:00, the pressure was
reduced by applying a two-stage pressure reduction from approximately 450 kPa to approximately
420 kPa (phase II) and then 340 kPa (phase III). The pressure was increased in the reverse order
(phases IV and V in turn). The pressure changes between the individual phases lasted about 2 min.
The duration of phases II and IV was 50 min, and phase III lasted 3 h and 50 min. The duration of
50 min for transition phases II and IV was caused by the necessity of avoiding too rapid pressure
reductions and increases that could lead to water hammers, which, in turn, contribute to pipe failures.
Phase III is a period of almost steady-state water supply operation conditions during the minimum
night flow.
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metered area (DMA).

2.2. Modification of the FAVAD Method

The possibilities of the FAVAD method, in which the dependence of the magnitude of the leakage
on the pressure is shown, was a prerequisite for undertaking the original tests. The original assumptions
of the FAVAD method can be described as Equation (1):

L1 = L0 ×

(
P1

P0

)α∗
, (1)

where:

L1 leak flow rate at adjusted pressure P1, m3/h;
L0 initial leak flow rate at pressure P0, m3/h;
P1 adjusted average zone pressure at leak flow rate L1, Pa;
P0 initial average zone pressure at leak flow rate L0, Pa;
α* leakage exponent, -.

The leakage exponent α*, which is usually calculated under laboratory conditions during
steady-state water flows and with no water demand, is affected by the type of leakage, the size of
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the pipe crack, the material of which the pipeline is made, the flow conditions (laminar, turbulent)
and the type of ground in which the pipe is placed. Leak areas vary with pressure depending on
the pipe material’s behavior [26]. The purpose of the base approach is to present how the leakage
volume changes for a given value of the empirical exponent due to failure during various pressure
conditions. Methodological meaning was inverted in the research presented in the article. The aim
was to calculate the empirical exponent based on a known flow rate and pressure. It has been shown
that in the conditions of the actual water supply network, when the empirical exponent α differs from
the laboratory values, it is necessary to monitor the leakage exponent parameter, which is additionally
affected by the dynamic and random character of water consumption. Its calculation and analysis
during the operation of a real water supply system becomes, therefore, a multi-faceted task, because not
only the emergency status of the water supply network is taken into account, but also the operational
status variability. In the presented research, an attempt was made to analyze the empirical exponent in
the context of assessing the condition of a single pipe with known and invariable material and soil
properties and variable operating status of the water supply (failure, holiday events, working days).
Due to the labor needed and time-consuming nature of the chosen method in the future, its automation
will allow to develop tests taking into account other pipes made of different materials and different
locations of the DMA zones.

Within the framework of these tests, the original assumptions of the FAVAD method have been
modified. In order to link the values of average flows with the average values of pressure, recorded in
each of the five phases of the water supply day, an empirical relationship analogous to Equation (1) in
the form of Equation (2) was proposed:

Qk = Qn ×

(
Pk

Pn

)αk−n

, (2)

where:

Qk average flow rate in the k-th phase of the experiment, m3/s;
Qn average flow rate in the n-th phase of the experiment, m3/s;
Pk average pressure at k-th phase of the experiment, Pa;
Pn average pressure in the n-th phase of the experiment, Pa;
αk−n empirical exponent binding the average values of pressure and average values of flow rate in

the k and n phases of the experiment, -.

The final form of the empirical exponent αk−n between the different phases of the experiment was
determined with Equation (3):

αk−n = log (
Qk

Qn
)/ log (

Pk

Pn
) (3)

Equation (3) has no theoretical justification, but it allows to determine the empirical relationship
between the data sets recorded in the time domain for each phase of the system’s operation.
The calculation of exponent values αk−n is simple to analyze, so it can be implemented to detect
the operating status of the water supply system, being a specific characteristic of a selected DMA,
combining the parameters of flow rate, depending on the demand for water, and pressure.

2.3. Database

The database consists of 30 measurement events which were selected for analysis. They were
recorded in the period from 26 April 2017 to 14 January 2018 (Table 1). Most of them were selected
randomly, but the following public holidays were purposefully analyzed: 15 August 2017 (in Poland it
is the church holiday of the Blessed Virgin Mary), 25–26 December 2017 (Christmas Day), 31 December
2017 to 1 January 2018 (New Year’s Eve) and holidays (weekends). During the measurement period,
there was a serious failure of the water mains (7 May 2017), which resulted in the lack of water in many
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places in Wroclaw and, practically in the whole city, a reduced pressure in the network was observed.
This event was also included in the input database. In Table 1, holidays are marked in blue, events
analyzed in the context of an accident in red and weekends in green (Saturday–Sunday). Events on the
26–27 April 2017 and 5–6 May 2017 were analyzed with reference to the days preceding the failure
occurring on 7 May 2017, while events from the 09–10 May 2017 were analyzed 24 h after the failure.

Table 1. Summary of the measurement days included in the analysis (blue: holidays, red: pre-failure,
after and failure days, green: weekends, black: working days).

Event
Number

Start
Time

End
Time

Event
Number Start Time End Time Event

Number Start Time End Time

1 9 May
2017

10 May
2017 11 14 August

2017
15 August

2017 21 1 December
2017

2 December
2017

2 20 May
2017

21 May
2017 12 30 August

2017
31 August

2017 22
14

December
2017

15
December

2017

3 23 May
2017

24 May
2017 13

8
September

2017

9
September

2017
23

25
December

2017

26
December

2017

4 2 June
2017

3 June
2017 14

16
September

2017

17
September

2017
24

31
December

2017

1 January
2018

5 22 June
2017

23 June
2017 15

22
September

2017

23
September

2017
25 7 January

2017
8 January

2018

6 28 June
2017

29 June
2017 16 3 October

2017
04 October

2017 26 10 January
2018

11 January
2018

7 3 July
2017

4 July
2017 17 18 October

2017
19 October

2017 27 13 January
2018

14 January
2018

8 14 July
2017

15 July
2017 18

2
November

2017

3
November

2017
28 26 April

2017
27 April

2017

9 23 July
2017

24 July
2017 19

15
November

2017

16
November

2017
29 5 May 2017 6 May 2017

10
8

August
2017

9
August

2017
20

27
November

2017

28
November

2017
30 7 May 2017 8 May 2017

Each water supply day was divided, according to the chosen methodology, into five phases of the
experiment (see Figure 1). This procedure was applied both to mean values of flow rate and pressure.
Finally, 150 time series of pressure and 150 flow rates were obtained for the analyses, on the basis
of which empirical coefficients were determined. αk−n for experimental phase relationships during
pressure reduction: II–I (αII−I), III–I (αIII−I) and III–II (αIII−II) and also during its morning increase for
phases: IV–III (αIV−III), V–III (αV−III) and V–IV (αV−IV).

After the stage of determining the size of empirical exponents, machine learning was used to
classify the operating states of the water supply network of a selected DMA on the basis of αk−n.
Cluster Analysis (CA) with the use of hierarchical trees was used as a method of unsupervised learning.
CA included grouping algorithms based on Euclidean distance measurement separately for the process
of pressure reduction and increase. Euclidean distance is understood as a measure expressed in a
straight line between measuring points located in a two-dimensional system of coordinates. It can be
expressed by means of Equation (4):

d (x, y) =

√∑n

i=1
(xi − yi)

2, (4)

where:

x,y vectors of values of properties of compared objects in space;
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n number of variables.

STATISTICA 13.1 was used to perform cluster analysis. Supervised machine learning was
implemented using the Classification Learner library of MATLAB R2019a. Calculations were made
using automatic classification based on SVM, algorithm k-kNN (k-Nearest Neighbours), Quadratic
Discriminant. Measuring events were divided into three categories: pre-failure and failure condition,
working days as a reflection of typical conditions and non-working days, which included holidays
and weekends (i.e., Saturday–Sunday). Within these groups, empirical exponents αk−n between
experimental phases were analyzed: II–I, III–I, III–II, IV–III, V–III and V–IV. Receiver Operating
Characteristic (ROC) curves and Area Under Curve (AUC) were used to assess the accuracy of
classifiers. The percentage of proper matching in the three groups of water supply system states was
determined on the basis of error matrix and positive matching rates for particular real and predictive
classes, known in the literature under the acronym True Positive Rates (TPR), percentage of False
Negative Rate (FNR), Positive Predictive Value (PPV) and percentage of False Discovery Rate (FDR).

A schematic representation of the research stages is presented in Figure 2.

Water 2019, 11, x FOR PEER REVIEW 8 of 18 

 

working days as a reflection of typical conditions and non-working days, which included holidays 
and weekends (i.e., Saturday–Sunday). Within these groups, empirical exponents α  between 
experimental phases were analyzed: II–I, III–I, III–II, IV–III, V–III and V–IV. Receiver Operating 
Characteristic (ROC) curves and Area Under Curve (AUC) were used to assess the accuracy of 
classifiers. The percentage of proper matching in the three groups of water supply system states was 
determined on the basis of error matrix and positive matching rates for particular real and predictive 
classes, known in the literature under the acronym True Positive Rates (TPR), percentage of False 
Negative Rate (FNR), Positive Predictive Value (PPV) and percentage of False Discovery Rate (FDR). 

A schematic representation of the research stages is presented in Figure 2. 

 
Figure 2. Research methodology scheme. 

3. Results and Discussion. 

3.1. Tests on the Value of Empirical Exponents 𝛼  for Pressure Reduction and Increase 

In accordance with the adopted methodology, the exponent sizes of α  were determined for 
the pressure reduction and pressure increase phases and the calculation results are shown in Figure 
3 and in Table 2. 

The values of exponents α  for the pressure reduction phase are shown in Figure 3 by green 
markers, while the growth is shown by blue markers. The dispersion of the value of rate α  
indicates the existence of a close relationship between its size and the time of the water supply system 
day. It can be seen that the smallest values of the exponent α  during the reduction of pressure, 
network status parameters III and II, are achieved, i.e., when there are minimal night flows. The 

Figure 2. Research methodology scheme.

3. Results and Discussion.

3.1. Tests on the Value of Empirical Exponents αk−n for Pressure Reduction and Increase

In accordance with the adopted methodology, the exponent sizes of αk−n were determined for the
pressure reduction and pressure increase phases and the calculation results are shown in Figure 3 and
in Table 2.
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The values of exponents αk−n for the pressure reduction phase are shown in Figure 3 by green
markers, while the growth is shown by blue markers. The dispersion of the value of rate αk−n indicates
the existence of a close relationship between its size and the time of the water supply system day. It can
be seen that the smallest values of the exponent αk−n during the reduction of pressure, network status
parameters III and II, are achieved, i.e., when there are minimal night flows. The greatest fluctuations
are observed between the second and the first stage, which is the result of the impact of the random
nature of water consumption by system users.

Minimum extremes, which correspond to stage II–I and III–II during the emergency day, i.e., 07 May
2017, are noticeable. In addition, a smaller value of the exponent in relation to other measurement
events for all relations was obtained also for the holidays 25 December 2017 and New Year’s Day.
It was caused by a significant drop in household’s usage of water on these days, which generated
lower flow rate values. Analogously to the analyses of the exponent αk−n in the variant of pressure
reduction, its interpretation was made in the case of pressure increase for the phase relations IV–III,
V–III and V–IV. The lowest achieved values of the rate αk−n were obtained for ratios of network state
parameters for stages IV–III during the pressure increase. The highest were for the time corresponding
to the maximum flow rates, i.e., V–IV levels, covering the morning water demand. For degrees IV–III
and V–III, a clearly outstanding αk−n for 25 December 2017 and New Year was observed.
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Table 2 shows holidays in blue, events analyzed in the context of a failure in red and weekends
in green (Saturday–Sunday). The remaining events were analyzed in the context of typical states of
operation of the water supply system. For the relations of degree II–I, the lowest value of the rate αII−I

was observed during the failure: −1.59. It then became negative as a result of a drop in pressure and
had an almost zero flow rate during an anomaly. A negative value was only calculated for the phase
during which a failure took place, which results from the measured pressure values and flow rates
between individual phases of the research. Moreover, the public holidays 15 August 2017, 25 December
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2017 and New Year’s Day show values of the exponent lower than the average−13.48, 8.62 and 9.32
respectively. The biggest exponent, αII−I, was recorded on 26 April 2017, i.e., before the breakdown.
It is likely that this day could have been the moment of leakage, which eventually caused a widespread
failure on 07 May 2017.

Table 2. Values and statistics of the rate αk−n for selected measurement events during the reduction and
increase of pressure (blue: holidays, red: pre-failure, after and failure days, green: weekends, black:
working days).

Event
Number

Start Time End Time
Pressure Reduction Pressure Increase

αII−I αIII−I αIII−II αIV−III αV−III αV−IV

1 9 May 2017 10 May 2017 19.25 6.05 3.35 4.99 5.58 7.96
2 20 May 2017 21 May 2017 12.64 5.88 4.35 2.32 6.35 23.11
3 23 May 2017 24 May 2017 22.31 6.17 2.74 5.72 6.12 7.71
4 2 June 2017 3 June 2017 10.44 5.18 3.62 2.87 6.33 17.54
5 22 June 2017 23 June 2017 17.31 5.69 3.18 4.80 5.96 11.16
6 28 June 2017 29 June 2017 18.22 5.68 2.96 4.54 5.46 9.28
7 3 July 2017 4 July 17 17.74 5.37 2.70 4.06 5.09 9.18
8 14 July 2017 15 July 17 17.39 5.51 3.08 2.24 6.04 21.15
9 23 July 2017 24 July 17 16.15 6.30 3.74 1.36 5.65 23.30

10 8 August 2017 9 August 17 20.12 6.82 3.96 1.66 5.73 20.46
11 14 August 2017 15 August 2017 13.48 5.53 3.47 −0.20 5.27 26.55
12 30 August 2017 31 August 2017 21.12 6.13 2.88 1.88 5.75 20.89
13 8 September 2017 09 September 2017 16.16 5.52 3.08 1.81 6.30 25.18
14 16 September 2017 17 September 2017 15.49 5.69 3.44 1.34 6.60 28.75
15 22 September 2017 23 September 2017 15.99 5.62 3.32 2.43 6.68 25.71
16 3 October 2017 4 October 2017 20.05 6.63 3.87 1.80 6.05 23.73
17 18 October 2017 19 October 2017 20.75 7.01 3.88 2.00 5.86 20.85
18 2 November 2017 3 November 2017 20.05 6.20 3.11 1.56 6.05 24.90
19 15 November 2017 16 November 2017 19.9 6.53 3.60 1.55 5.62 22.80
20 27 November 2017 28 November 2017 20.77 6.36 3.32 2.08 5.95 21.61
21 1 December 2017 2 December 2017 17.05 5.51 3.11 1.30 6.05 27.33
22 14 December 2017 15 December 2017 16.79 6.04 3.51 1.98 6.31 23.66
23 25 December 2017 26 December 2017 8.62 4.75 3.74 −1.82 3.77 25.75
24 31 December 2017 1 January 2018 9.32 3.13 1.66 −2.38 1.50 17.04
25 07 January 2017 8 January 2018 19.84 6.43 3.47 1.75 5.79 21.50
26 10 January 2018 11 January 2018 18.17 6.56 3.87 1.29 5.50 22.48
27 13 January 2018 14 January 2018 12.33 5.12 3.30 0.14 5.14 25.62
28 26 April 2017 27 April 2017 27.40 6.77 2.99 6.16 6.58 8.12
29 5 May 2017 6 May 2017 15.31 6.60 4.67 2.00 6.61 26.32
30 7 May 2017 8 May 2017 −1.59 −4.30 2.76 5.57 6.25 9.36

Statistics

Minimum −1.59 −4.30 1.66 −2.38 1.50 7.71
Maximum 27.40 7.01 4.67 6.16 6.68 28.75
Average 16.62 5.55 3.36 2.23 5.73 19.97
Median 17.35 5.96 3.34 1.93 5.96 22.05

Between the experiment stages III–I, i.e., the minimum night flow MNF and the stage satisfying the
evening, maximum water demand, the lowest value of the exponent αIII−I, results were also negative,
recorded for the emergency 24 h as −4.30. On public holidays, αIII−I is much smaller than its average
value for the selected relationship of degrees of network state parameters. The highest value was
achieved for the day 18 October 2017, which is a derivative of the recorded mean value of the flow rate.
It remained at the level of 218.93 m3/h, whereas typically, for the first level, for all events the average
for all events was 184.88 m3/h. It is not possible to unequivocally identify the cause of this state of
affairs. Consultations with the network manager did not reveal any failures. This day is also a working
day (Wednesday), which suggests the influence of anthropogenic behavior.
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The lowest exponent values of αIII−II are achieved between III–II degree of analyzed parameters.
Exponent αIII−II on average amounts to 3.36 therefore, in relation to the research conducted by Thornton
and Lambert [27], it can be concluded that conditions in this period are close to those steady-state. Stage
III falls temporarily between 00:00 and 04:00, although according to literature reports, more precise
flow in water supply systems takes place between 02:00 and 04:00 [28]. The smallest exponent, αIII−II,
was obtained for the New Year′s Eve, i.e., 1.66. The largest (4.67) for the day preceding the failure,
which suggests that its current analysis could lead to earlier detection of a failure and prevent the total
destruction of the pipe. Equally, a high αIII−II was noted for nights during weekends on 20–21 May
2017 (i.e., Saturday–Sunday) and during public holidays 15 August 2017 and 25–26 December 2017.

Between phases of experiment IV and III, in which the MNF are contained, the smallest value of
the exponent αIV−III negative, was recorded for the New Year’s water supply day: −2.38. Negative
exponents αIV−III were also obtained in the case of the holiday of 25 December 2017 and 15 August
2017. Its greatest value was achieved for the water supply day 26 April 2017, analyzed in the context
of the breakdown of the preceding day and the day on which it occurred. The mean value of the
exponent αIV−III for relations IV–III degree is 2.23, which corresponds to its limits set by Thornton and
Lambert [27]. It can therefore be concluded that the conditions most relevant to those steady-state are
between stage IV and stage III.

For the relations of degree V–III, the lowest rate αV−III was observed during the New Year’s Eve:
1.50, which is almost four times lower than the average. In addition, the public holiday 25 December
2017 also shows αV−III value lower than mean: 3.77. The highest exponent αV−III was recorded during
the weekend 22 September 2017—6.68—and the day of failure—6.25. An equally high value of αV−III,
exceeding the mean value for V–III, was recorded for 15 August 2017.

The highest values of the αk−n exponent are achieved between V and IV degrees of the analyzed
parameters. At this stage of pressure changes, the value ofαk−n on average amounts to 19.97. The lowest
exponent αV−IV was recorded for the day after the failure, i.e., 9 May 2017 and 23 May 2017 and it was
7.96 and 7.71 respectively. The largest exponent αk−n amounting to 28.76 was set for weekend days
(16 September 2017 and 1 December 2017) and equally high for public holidays 15 August 2017 (26.55)
and 25 December 2017 (25.75).

Initial analysis of αk−n demonstrates its close relationship with the state of operation of the water
supply system, understood both in technical and operational terms. The dependence on the fact that
the exploitation condition is to the greatest extent caused by sociodemographic factors, resulting in
irregularity and randomness of water consumption becomes clearly visible. The results of the research
confirm the assumptions that the values of the exponents αk−n depend to the greatest extent on the
random nature of water consumption by consumers on the measuring day, thus reaching the lowest
values during the minimum night flow periods. Due to the fact that the obtained test results are
difficult to interpret as a point cloud, in the next stage of the study, the following systems of supervised
and unsupervised learning were implemented.

3.2. Classification of Operating Conditions of the Water Supply System with the Use of Unsupervised Learning

The analysis of the determined values of exponents αk−n used cluster analysis with hierarchical
trees. Figure 4 shows the dendrograms for the phase of pressure reduction and increase.

Both dendrograms show that the values of the exponents αk−n are associated with the day of the
week, holidays and their value is also affected by failure conditions. Better diagnostic properties of
failure states result from the analysis of values of exponents αk−n for the pressure reduction phase,
because in this case, greater Euclidean distances were obtained. In addition, the days off from work
constitute clusters with the largest Euclidean distances, especially for the pressure reduction process.
This suggests that more different habits in the use of tap water are observed as part of the evening
consumption than in the morning.
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The analytical work carried out showed that it is advisable to continue the research on the
multistage change of pressures during the night and to determine the values of exponents αk−n,
that provide information on the operating statuses of DMAs. It is also important to note that in the
phase of pressure reduction, the values of exponents αk−n allow to identify more accurately non-typical
operating states in DMA compared to the pressure rise phase.

The operator of the water supply network, at the signaling of unusual conditions during the
reduction of pressure in the night hours, has the possibility to make a detailed analysis of the results
obtained. From the observations of the Wroclaw water supply system, it appears that the failure usually
occurs during the pressure increase and the maximum daily demand. The information collected during
the pressure reduction phase is pre-emptive in relation to the period of failure occurrence, which is of
great diagnostic value.

3.3. Classification of Operating Conditions of a Water Supply System Using Supervised Learning Systems

A set of obtained results in the form of empirical exponentsαk−n was divided into three categories of
events: pre-failure and failure status, working days and non-working days (holidays). The classification
with the use of learning methods under supervision was conducted for all six relationships between
the various phases of the experiment (II–I, III–I, III–II, IV–III, V–III, V–IV).

Table 3 presents the results of the classification carried out using the designated exponents αk−n
for the three classification methods for which the best match results were obtained for each data set.
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Table 3. Results of classification of water supply system operation states.

Phase of the Experiment Classification Method Accuracy of the Classifier (%)

II–I
Quadratic discriminant 90.0
Naive Bayes Classifier 90.0

Support Vector Machine 86.7

III–I
Support Vector Machine 76.7
Naive Bayes Classifier 76.7
Quadratic discriminant 76.7

III–II
Quadratic discriminant 73.3
Support Vector Machine 70.0

k-Nearest Neighbors algorithm 70.0

IV–III
Support Vector Machine 83.3
Naive Bayes Classifier 80.0
Quadratic discriminant 76.7

V–III
Linear discriminant 76.7
Ensemble Classifier 76.7

Support Vector Machine 70.0

V–IV
Support Vector Machine 70.0

k-Nearest Neighbors algorithm 70.0
Ensemble Classifier 70.0

The best classifier match (90.0%) was obtained for the II–I phase relation of the experiment by
Quadratic Discriminant and Naive Bayes Classifier during the pressure reduction process. At minimal
night-time MNF flows, the accuracy percentage was 73.3% for Quadratic Discriminant analysis.
This means that the best effects of diagnosing the state of the water supply system are obtained
by analyzing the values of the exponents αII−I and αIII−I during pressure lowering, which are
simultaneously determined for the phases with the highest water demand. The accuracy of 83.3% was
obtained for the phase IV–III relation between the minimum night flow and the morning pressure
increase for αIV−III. The lowest classifier value (70.0%) was determined for αV−IV.

The percentage of proper match in the three groups of states of operation of the water supply
system was determined on the basis of an error matrix. Table 4 shows the values of positive match
rates for each real and predictive class, known in the literature under the acronym TPR. Events from
the working day group were best matched. For almost all phases and their exponents, αk−n 100%
match to the appropriate category of condition of the water supply system was obtained. Within
the public holidays class, the best classification value of 83% was obtained for degrees II–I during
pressure reduction and IV–III during pressure increase (67%). The lowest match quality, i.e., only 17%,
was obtained for the group of non-working days for phase relations during minimum night flows.
Breakdowns and pre-failure states were correctly categorized in 67% for phase II–I pressure reduction.

Table 4. Values of true positive rates (TPR) for individual system operating states for individual phases
of the experiment.

Phase of the
Experiment Classification Method

Accuracy of the Classification (%)

Pre-Failure and
Failure Condition Working Days Holidays

II–I Quadratic discriminant 67 95 83
III–I Support Vector Machine 0 100 33
III–II Quadratic discriminant 0 100 17
IV–III Support Vector Machine 0 100 67
V–III Linear discriminant 0 100 33
V–IV Support Vector Machine 0 100 0
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Since the best accuracy of the classification process was obtained on the basis of an empirical
exponent αII−I, which is responsible for the experimental phases concerning the evening use of the
water supply system by users, further on, error matrices for the results obtained through Quadratic
Discriminant analyses were prepared. Figure 5a contains the percentage of correct positive predictions
of the aforementioned TPR, also known in the literature as sensitivity. The results are the same as in
Table 3. Moreover, the percentage of incorrect FNR was determined. It can be noted that within the
actual class for holidays, 17% of events were incorrectly predicted to be working days events. In the
actual class of failure and pre-failure events, 33% of events were incorrectly classified as working
days. Within the true class of working days, only 5% of events were incorrectly predicted to the group
characteristic for non-working days. Therefore, it can be concluded that the easiest time to distinguish
between the states of water supply system operation is during working days and holidays, while the
most difficult is to distinguish pre- and failure states from working days.

Positive Predictive Value (PPV) and False Discovery Rate (FDR) are shown in Figure 5b. PPV is
an indicator of the predictive quality of a test and is also called precision. Within the group of days off

work, 83% of positive predictions are confirmed with the actual state of affairs, within the group of
failure and pre-failure conditions this percentage is 100%, while within the group of working days,
91% of positive predictions are confirmed.
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Due to the fact that the process of classification of the states of operation of the water supply
system was most successful for empirical exponents αII−I, the accuracy of classifiers was evaluated
using ROC curves. The vertical axis of the ROC curve, which describes the values of the TPR match
factor, is called the “sensitivity” axis, while the horizontal axis determines the frequency of false alarms
of FPR and is called the “specificity”. The classification requires the determination of the optimal
cut-off point of the ROC curve, which indicates the balance between the sensitivity parameter and
the specificity of the classifier. The most optimal cut-off point coordinates are values equal to 0 for
specificity and 1 for sensitivity, i.e., coordinates (0,1) [29,30]. A very important parameter in classifier
accuracy assessment is the area under the ROC curve, the so called area under ROC curve. The closer
the AUC is to 1, the better is the matching accuracy of the classifier. It is assumed that the AUC in the
range 0.9–1.0 is of very good may quality, 0.8–0.9 is good and 0.7–0.8 is sufficient.

Figure 6 shows the ROC curves for the three accepted groups of water supply system statuses:
failure and pre-failure (Figure 6a), working days (Figure 6b) and holidays (Figure 6c). In terms of the
surface area parameter under the AUC diagram, the best classification quality was obtained for the
group of events containing failure and pre-failure conditions (AUC = 0.95), which indicates a very good
matching quality. Subsequently, a good match was obtained for the working day class (AUC = 0.94)
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and non-working day class (AUC = 0.92). All ROC curves indicate a very good quality of matching the
classification model using Quadratic Discriminant.
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The conducted research on classification of operating conditions of water supply systems using
supervised learning methods showed that the best accuracy of classifiers was obtained using Quadratic
Discriminant. The best classification quality of failure and pre-failure conditions was obtained for
empirical exponents of phase II–I of the experiment. The best matching results were obtained for
working days (95–100%). This is of particular importance for the implementation of machine learning
procedures for data from exploited water supply systems. Each situation for which the measurement
results differ from the generated classifier for individual days can be qualified as an abnormal state of
operation of the water distribution system and should be subject to detailed analysis by the operator
supervising the water supply system.

4. Conclusions

Water losses resulting from uncontrolled and undetected emergency leakages are important
problems during the operation and management of a water supply system, as is the need to diagnose
them. None of the methods used so far to detect the state of operation of the water supply system
is universal. They have numerous advantages and disadvantages, and are differentiated in terms
of implementation costs, speed of anomaly detection and the possibility of their classification. The
process of assessing the condition of the water supply system should be divided into two main parts.
The first consists of a global diagnosis by means of software solutions which analyze the parameters of
the working condition recorded within the monitoring framework. The indirect solution (software)
has been devoted to this research. Issues related to the indirect detection of the condition of the
water supply system are a new field which is undergoing continuous scientific and technological
development. Only after the software diagnosis should the detailed detection of causes and/or place of
anomalies be implemented by use of precise tools and hardware.

In this article, to assess the state of the operation of the water supply system, the empirical
exponent αk−n was used based on an analogy to the Fixed and Variable Area Discharges (FAVAD)
approach in a modified form. In the research so far, e.g., Thornton and Lambert [27], the FAVAD method
was used in order to calculate the volume of uncontrolled water leakages caused by failures in variable
pressure. The new approach presented in the paper considers the determination of the exponent
binding the flow rate–pressure relationship to assess the condition of the water supply network, which
is an analytical problem that has not been addressed so far. The research was conducted into a real
water supply network with a dynamic water flow and consumption, which constitutes a multi-faceted
task compared to analyses performed under laboratory conditions.
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The study was carried out in the Wroclaw DMA of reduced night-time pressure. Based on the
results of studies and analytical work, it can be concluded that the introduction of controlled, cascading
pressure reduction before the period of minimum night flow and cascading pressure increase before the
morning increase of water demand allows to implement new analytical procedures for the analysis of
time series of pressure and flow rate. Based on these procedures, it is possible to qualify the operating
statuses of the water supply system in the DMA. Analysis of empirical exponents αk−n can, according
to the original assumption of the FAVAD, be used to assess the operating conditions in separate DMAs
of the actual water supply system. Changes in empirical exponents bring important information for
diagnosing the operating states of water supply systems due to the fact that this value is a binding
parameter of pressure and flow rate, depending on the deterministic random character of water
consumption. Supervised and unsupervised learning systems were used in the research. The use of
these tools made it possible to classify the operating statuses of the water supply systems with an
accuracy of 90%. Despite the fact that neural network, naïve Bayes classifier [31] and decision tree [23]
methods are used for the detection of working conditions of water supply networks, machine learning
methods, based on the empirical factor that can be considered a base for real-time monitoring in the
future, have not been used. The research results may significantly contribute to diagnosing operating
conditions of water supply networks and may constitute one of the tools supporting the assessment of
water supply network conditions in water supply companies.

It is necessary to implement new technical solutions and procedures, enabling the recording and
analysis of the empirical exponent αk−n. It is advisable to conduct further research, because increasing
the number of recorded events on water supply systems will allow to develop algorithms necessary to
implement the classification of operating conditions of water supply systems and to develop consulting
systems, using methods of machine learning with supervision and without supervision.
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