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Abstract: The influence of climatic variables and land use on fecal coliform (FC) levels in stormwater
collected from outfalls throughout southern Vancouver Island between 1995 and 2011 are examined
through statistical analyses, Fourier analysis, Multiple Linear Regression (LR) and Multivariate
Logistic Regression (MLR). Kendall’s τ-b demonstrated that FC levels were significantly and positively
correlated with the amount of residential area within a drainage catchment generating the runoff,
and that FC levels were location dependent. Climatic variables of temperature and antecedent dry
period length were significantly and positively correlated with FC levels at both the sampling location
level and across the region overall. Precipitation and flowrates were negatively correlated with FC
levels. Fourier analysis showed that monthly FC levels shared the same 12 month cycle (peaking
in July) as precipitation and temperature. MLR modelling was applied by aggregating the LogFC
data by order of magnitude. The MLR model shows that the data are subject to different influences
depending on the season and as well, the month of the year. The land use and climate analyses
suggest that future climate change impact studies attempted on nearshore bacterial water quality
should be conducted at the urban catchment scale.

Keywords: stormwater quality; fecal coliforms; Vancouver Island; nearshore areas; bacteria loading;
multinomial logistic regression; periodicity analysis; land use impacts; climate impacts

1. Introduction

Contaminates transported through stormwater runoff to coastal waters can pose a potential risk
to public health and the environment [1]. Furthermore, the stormwater drainage system can also
be contaminated by sewage through infiltration or unintended connections with sewer systems and
poorly maintained in-ground sewage disposal systems [2]. Contaminated stormwater runoff will often
contain excessive levels of bacterial contaminants, which are directly related to disease outbreaks
and adverse impacts to aquatic life [3,4]. Therefore, many municipalities will monitor and manage
stormwater quality for both health and environmental concerns. Fecal coliforms (FC) have historically
been used as a fecal indicator to indicate the presence of microbial contamination in surface and ground
waters [5,6]. Since they are considered as an indicator of surface water quality and safety, FC is often
selected for monitoring in those water quality monitoring programs concerned with microbial loading.
Microbially contaminated water can be a serious source of intestinal disease through ingestion, or
exposure through bathing or by consuming contaminated shellfish [7]. Factors that could affect fecal
indicator bacteria levels have been investigated in the literature [8–10]. Sewage overflow, wildlife
and stormwater runoff from urban and agricultural land use are important sources of fecal coliform
affecting water quality [11,12]. Non-point urban and agricultural land use zones have significant
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impacts on water quality and produce a large number of fecal bacteria conveyed to water bodies [13,14].
As well, climatic variables like precipitation and wet seasons in a region are suggested to have a
positive correlation with the concentration of fecal bacteria in the surface waters [15–17].

There are a variety of studies looking at stormwater generated microbial loadings and how they
are influenced by climatic variables. Henry et al. [18] found rainfall within the 24 h preceding sampling
was found to be correlated with incidence of fecal matter, however, absence of rainfall was also
significantly tied the incidence of fecal matter depending on the location. The length of the period over
which precipitation was computed for determining correlations with fecal contamination, impacted
whether the correlations were positive, negative, significant, or had no impact [19–23]. Seasonal
variations in the correlations computed for fecal indicators versus temperature, precipitation and
antecedent dry period length were observed in several studies [21,24,25] but generally, temperature was
positively correlated with indicator bacteria concentrations [26], and precipitation was also positively
correlated [20,22]. McCarthy et al. [27] found that E. coli (EC) levels were highly correlated to antecedent
climatic parameters but like [26], found they were less correlated to hydrologic parameters such as
runoff and suggested that EC concentrations “were not prone to displaying a first flush effect”, which is
in contrast to other studies in which fecal coliforms peaked after storm events [28]. Solar intensity was
also seen to have a negative correlation with EC [29]. The additional influence of spatial location in
analyses examining climatic influences on fecal contamination was observed in several studies [30,31]
with Vermeulen and Hofstra [31] suggesting that the great variability among location characteristics
helped to explain variations in E. coli levels in their study. All of these studies vary extensively by how
strongly or weakly correlations are seen between bacteria loading and climate variables, as well as to
the way the variable is constructed. That is, depending on whether precipitation is measured during a
rain event, on the day of sampling, or averaged over a 3 day period over which the sampling took place,
produced variations in results. This suggests that the scale of the climate variable matters as much in
the research as the climatic variable itself (whether temperature, precipitation, solar radiation, etc.).

Spatial influence studies in the literature include several works stating that the contamination
in coastal water quality is caused by the combined effects of human activity and environmental
factors in coastal areas [28,32]. The accumulated fecal coliform can be transported into nearshore
ocean regions from direct runoff or sewage overflow during storm events [33,34] in combined sewer
systems. Mallin et al. [35] showed that watershed population and watershed size were significantly
related to average fecal coliform levels, with the strongest relationships for percentage of impervious
surface and fecal coliform levels. Jent et al [19] found that in non-dry periods, fecal contamination
was significantly correlated with agricultural land use, while Tiefenthaler et al. [21] showed that mean
EC were significantly greater in developed watersheds than undeveloped watersheds. Similarly,
Vitro et al. [36] found that road network density was associated with increasing fecal coliform levels but
housing unit density had a significantly negative relationship with FC levels; Paule-Mercado et al. [25]
found the highest FC concentrations were also found in urban areas versus agricultural areas. Delpla
and Rodriguez [37] showed that FC were significantly and positively correlated with urban and
agricultural land, but forests were negatively correlated. FC concentration was found to be significantly
and positively correlated with urban land use in even low percentages of urbanization [38]. Additional
studies [20,22] found higher fecal indicator bacteria concentrations in urban sites over forested sites.
The literature suggests that urban areas provide higher bacterial loads in comparison to undeveloped
green spaces, and agricultural lands also contribute higher bacterial loads than green spaces.

Other studies have gone a step further in attempts to mathematically model bacteria levels as a
function of land-use or climatic variables in order to provide insight into the relationships. Wu et al. [23]
used logistic regression modelling and showed that EC presence was significantly and positively
associated with developed area but negatively associated with agricultural area. Multivariable logistic
regression models were used to show that increases in the number of heavy rain days significantly
increased the likelihood of the presence of EC and that EC was also likely to be detected with
increases in mean temperature. Cha et al. [24] developed a model using Bayesian regression that used
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meteorological and land-use characteristics to estimate FC concentrations. The modelling was used
to provide predictions in FC increases given temperature increases. Galfi et al. [39] used PCA and
cluster analysis to find correlation patterns and found that significant climatic variables for influencing
indicator bacteria levels varied among catchments as well as seasonally. St. Laurent and Mazumder [38]
used a classification tree to better understand the influence of land use on FC levels. A common
aspect of all of these modelling studies is that they use data-driven, stochastic methods for modelling.
This is reasonable as causal mechanisms are difficult to capture and physically based models may be
onerous to implement when simply attempting to determine climatic influences on FC concentrations.
Examples of sophisticated, physically-based models in the literature that predict bacterial levels as
a function of environmental parameters include [29,40], but both look at transport in river systems.
The latter did note that the sparsity in the time series of bacteria concentrations adversely affected the
modelling [40].

The Capital Regional District (CRD) of southern Vancouver Island is a government body
representing 13 municipalities and three electoral areas. The core area of CRD has approximately
270,000 people and 27,600 hectares including residential, industrial, commercial, institutional and
agriculture regions. The area has approximately 8350 properties with onsite sewage disposal and
with others connected to a sewer system [2]. The CRD assists these municipalities in developing
their stormwater management plans and infrastructure, as well as water quality monitoring for these
municipalities. Coastal water quality has been a critical issue worldwide for nearshore inhabited
regions and the CRD is no exception. Coastal water quality is known to be affected by natural
and human factors includes runoff, sewage wastewater, land reclamation and climate change [41].
The implementation of monitoring programs is necessary and critical in managing coastal water
contamination [42,43]. The CRD collects pollutant levels (including fecal coliforms) within stormwater
pipes, streams and nearshore areas throughout the CRD, with an interest in identifying hotspots
and remediating those areas of highest priority. This process includes collecting water samples and
analyzing for fecal coliform bacteria in the sample. The collected data are used to estimate and analyze
the distribution of microbial contamination and any possible public health concerns. This allows the
jurisdictions involved to undertake remedial measures where most needed. Currently, the sampling
frequency is regulated primarily by cost and capacity but increased sampling strategies are advised for
locations exceeding a certain threshold. Given that fecal coliform contamination in stormwater runoff

is directly influenced by climate and watershed properties [10,13,44], a regular sampling scheme that
does not consider climate and weather will likely miss peaks in contamination.

The literature shows some consensus on the impact of land use on bacteria levels but the influence
of climate variables remains contentious, particularly where the study focuses on stormwater runoff

generation. Much of what is observed is likely due to site specificity and the scale of the sampling and
analysis [40,45]. If agricultural areas are absent from the drainage area, bacteria loads in stormwater
runoff generation are believed to be low and are thus, highly affected by sampling plans, which tend
to be sparse and intermittent. Thus, stormwater specific data sets tend to be limited in terms of
sampling period, length of database in time and extent over space, and therefore, the insight they can
provide on environmental influences is limited. This often drives researchers to turn to data-driven
methods [23,24,38,39,46,47] to provide insight but these methods are not unaffected by the temporal
and spatial scale of the sampling and analysis.

Given the extensive monitoring network developed by the CRD, the objectives of this work are
to determine if the fecal coliform data collected by the CRD during its regular monitoring program
are influenced by local weather and land use; what insights arise from the scale of the collection and
variable (fecal coliforms in this research) studied, and in particular, whether data-driven methods
are able to provide insights into the causal mechanisms behind the observations. With the outcomes,
the monitoring program can be modified to improve sampling statistics and possibly indicate the
impacts of climate change on bacterial loads in the future.
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2. Materials and Methods

2.1. Study Area

The study area is located on the southeastern core area of the CRD between latitudes 48◦29′57.3”
N and 48◦24′02.2” N, and longitudes 123◦26′26.3” W and 123◦15′40.4” W. Shown in Figure 1, the study
area forms part of the “core area” of the CRD and is approximately 15,000 hectares in size and spanning
six municipalities, two First Nations, federal, provincial, regional, and municipal parkland. Land use
in the core includes residential, commercial, industrial, institutional, and agricultural activities and
is shown in Figure 2b. The region lies within the Coast Mountains and Islands physiographic region,
and contains a number of watersheds of variable size, some natural and some urbanized, draining to
the coastline through stormwater drainage systems or creeks and rivers. Within the Georgia Depression
Ecozone, the Biogeoclimatic zone is Coastal Douglas Fir, which experiences mean annual temperatures
of almost 10 ◦C and mean annual precipitation of over 1000 mm annually [48]. The mean coldest
month is January with average temperatures of around 3 ◦C and the mean warmest month is in July,
which averages roughly 17 ◦C. This mild climate experiences on average 204 frost-free days per year.
While weather systems in British Columbia are highly impacted by elevation changes, the elevation
change in the study region is less than 50 m. Rainfall systems for this area tend to form in the north
Pacific and move easterly across the mountain range running down the center of the island. The process
leads to greater rainfall on the western side of the Island and less on the leeward side (eastern side)
resulting in a rain shadow for the study area because it is on the eastern side of the Island [48]. Rainfall
is higher in the winter months and leads to stormwater runoff draining through the natural portions
of the watershed (see Figure 2a) or through the stormwater minor drainage system and pipe system
to end up discharged to the coastal harbors shown in Figure 1. Soils in the overburden above rock
formations in pervious areas are generally Distric Brunisol [48] soil type within the Luvisolic soils
group, which are typically well draining.
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2.2. Database Construction

The fecal coliform samples were collected from stormwater outfalls along the coastline of Esquimalt,
Victoria, Oak Bay, and Saanich, and analyzed by the Stormwater, Harbours and Watersheds Program
(SHWP) from 1995 to 2011. The database contains in total 6112 sampling data (N = 6112) from over 480
unique sampling locations. Stormwater samples for most stations were collected from each discharge
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point once during January to April (wet season) and once during June to September (dry season);
although, there are data in all months of the year for most years in the database. Stormwater flows
were sampled by land or boat at the point of discharge before going into the ocean to avoid unwanted
flows. The sampling process attempts to avoid first flush conditions in order to reduce the chances of
an unusual result. The measurements are also compared to historical results where the discharge is
flagged for resampling outside the usual sampling period in the case of an unusually high observation.
Thus for some years, there are data points for all 12 months [2].

A series of statistical tests were conducted on the data to determine which methods should be
used in the analysis. The Kolmogorov–Smirnov test for normality showed that the fecal coliform
data are not normally distributed and are highly right-skewed. In order to reduce the skewness and
kurtosis, the fecal coliform (FC) data were log base10 transformed but the Kolmogorov–Smirnov test
again rejected a normal distribution assumption for LogFC. All further analyses are conducted on
FC data that are above a recreational water quality guideline of 200 CFU/100 mL [49] because data
lower than this limit are not of concern in the environment. Restricting the database to values equal to,
and above this limit resulted in a database of 2749 individual data observations over the 17 year period.

Contamination by sewage is considered an important factor causing high fecal coliform levels
in waterbodies in many previous studies [11,12]. The report from SHWP also comments on the
presence of sewage odors when a sample is taken, or other related problems. As a large amount of
fecal bacteria exist in sewage wastewater, sewage cross-connections or infiltration can cause seriously
adverse impacts. Therefore, non-parametric ANOVA is used to investigate if a significant difference
exists in fecal coliform levels between the “sewage odor” identified stormwater samples and no odor
stormwater samples. Sewage presence analysis was performed using the Kruskal Wallis Test and
showed that the group of sewage-related samples (from odor detection) were significantly different
from the group of regular samples with p-value = 0.000; the sewage-related samples have much higher
levels of FC. There were 384 sewage-related samples. Since the focus of this study is stormwater that is
not impacted by sewage, these data were removed from the final database used in the analysis. The
frequency histogram of the final database is shown in Figure 3.
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Figure 3. Histogram of cleaned LogFC data. The bin value indicates upper limit of that bin.

Daily historical data for this study were obtained from Environment Canada. The four weather
stations selected in the CRD area, and shown in Figure 1, include the Esquimalt Harbour weather
station, Victoria University CS weather station, Victoria Gonzales CS weather station and Victoria
Francis Park weather station. Daily temperature and precipitation measured from 1995 to 2011 are used
to check the relationship between bacterial contamination and meteorological variables. An average of
the data from the four stations was computed and used in the analyses. Monthly climatic data averaged
over the 17 years of collection were also generated for use in the periodicity analysis. In addition,
cloud cover ratio data for the Victoria area were derived from Environment Canada, 1981–2010 station
data for the study area. The watershed information shown in Figure 2a was obtained from the CRD
and the land use information (Figure 2b) was obtained from Natural Resources Canada.
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ArcGIS was used to visually explore the logarithm of the geometric mean of fecal coliform data
above the regulated threshold of 200 CFU/100 mL collected within and adjacent to nearshore areas in
the study region. The spatial distribution of bacterial contamination is visualized using the Kernel
Density [50] which calculates the density of points in a region for each cell multiplied by the unit area.
This map can provide a visual summary of the spatial distribution of fecal coliform data across the
region as well as suggest any “hot spots”. Figure 4 shows the areas determined as hot spots with high
fecal coliform levels. The areas with deeper shading, indicating higher levels of FC are seen near the
Victoria downtown, Esquimalt and the eastern shore area of Oak Bay. The southern shore of Oak Bay
and the northeastern shores of Victoria have relatively lower pollution levels. The density map was
also used to select hot-spot stations for further analysis (also shown in Figure 4). The five stations
shown were selected to span the visually obvious areas of high FC levels, but also were stations that
had consistent data collection over the period. The hot spots are located in the densely populated
residential areas, which suggest that the source of fecal coliform is likely from urban activities. These
five stations are further studied in the temporal analysis section.
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For determining relationships between these data and climatic variables, correlations are computed
between the data and several independent variables: 7, 3, 2 and 1-day rainfall totals preceding, or on
the day of sampling; 7, 3, 2 and 1-day mean temperature; maximum temperature and minimum
temperature preceding, or on the day of sampling; mean monthly cloud cover ratio; antecedent dry
period length preceding the day of sampling, and flowrate measured at or close to the sampling location.
Spatially distributed variables considered are watershed drainage area leading to the sampling point
and land use in that drainage area, which is divided into residential use and green spaces.

2.3. Data Exploration and Analysis Methods

IBM SPSS, MATLAB and MS Excel are used in the statistical analyses and exploration of the data.
To investigate trends and periodicity, dependent variables such as LogFCi,j, are distinguished here
from independent variables (such as air temperature and precipitation), where i represents the date
collected and j indicates the station number. Other dependent variables used in this research include,
the monthly (m) average of the log-transformed fecal coliform values, LogFCy,m in each year y over
the 17 year period for all stations combined; and the 17 year average by month, log-transformed fecal
coliform values (LogFCm) is also considered. The geometric mean of the FCi,j values in the averaging
period are computed first, then log transformed.
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2.3.1. Periodicity and Fourier Analysis

Periodicity investigations [51] can provide insight into seasonal influences on the temporal
distribution of bacterial contamination, and seasonality has already been shown to influence results in
the literature. The data are imported into MATLAB for periodicity analysis in which Fourier analysis
is conducted to investigate peaks, periodic cycles and potential models. In a periodicity analysis using
Fourier models, the following equation is fitted to the LogFCy,m versus a year-month index spanning
from 1 to n = 204 (equal to 17 years of 12 month data), and to LogFCm versus m (n = 12) with the
following equation:

f (xt) = a0 +
n∑

i = 1

ai cos(iωt) +
n∑

i = 1

bi sin(iωt) (1)

where a0; ai; bi are Fourier coefficients, and f (xt) is the predicted value of variable xt at time t.
The fundamental frequency ω is equal to 2π/T in which T is the period of the signal. The climate data
are also investigated with this function in order to determine if the periods in the climate data are
similar to the periods in LogFCy,m and LogFCm.

2.3.2. Temporal Trends and Correlations between Variables

The overall correlations between LogFCi,j and independent variables are analyzed to determine the
influence of each variable toward the level of bacterial contamination using Kendall’s τ-b for non-normal
distributions. While, Kendall’s τ-b and the commonly used Spearman’s ρ produce similar values much
of the time, Kendall’s test provides better explanations for non-linear correlations as compared to
Spearman’s test [52]. The data observed at the hot-spot stations are also tested for correlations with the
independent variables. Correlations are computed between LogFCi,j and the following independent
variables: 7-day total precipitation (P7), 3-day total precipitation (P3), 2-day total precipitation (P2),
precipitation (P), 7-day average temperature (T7), 3-day average temperature (T3), 2-day average
temperature (T2), mean temperature (Tmean), maximum temperature (Tmax), minimum temperature
(Tmin), antecedent dry period length (tdry), watershed area (WA), residential area (RA), greenspace area
(GA), cloud cover (CC), and flow rate at discharge (FR).

2.3.3. Regression Modelling

Depending on the outcomes of the correlation analysis and periodicity analysis with Fourier
modelling, multivariate linear regression (LR) is attempted to provide the best (in terms of coefficient
of determination R2) model possible given all the temporal data. The equations for an LR model are
well known and not repeated here. In addition, Multinomial Logistic Regression modelling (MLR) is
also used to explore other potential prediction models based on the limitations of LR. MLR is a method
similar to LR but has the added advantage of not being constrained by several assumptions including
that the independent variables must be statistically independent (although collinearity should not
be great). In addition, the dependent variable may be a categorical or nominal value [53]. This was
intentionally chosen because of the incredible variance in the data of FCij across the entire database
of 17 years, which is also true of LogFCij. By using categories of LogFCij determined by the order of
magnitude of the LogFCij value, this method can provide insight into how well individual parameters
work to influence observed levels of LogFC, and if predictions on the likelihood of a LogFC value being
observed at a certain level are possible based on climatic observations. This method is considered
a classification method that relates a linear prediction function to the “logit” g(x) with n number of
predictors x (x = x1, x2, . . . , xn) such that [53]:

g(x) = β0 + β1x1 + β2x2 + . . .+ βnxn (2)
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and the conditional probability that the outcome Y is present is Pr(Y = 1|x) = π and,

π =
eg(x)

1 + eg(x)
(3)

Thus, the model attempts to compute the odds, or likelihood of observing a value associated with
a certain level or class. The application of the MLR model was conduct with SPSS which also provides
measures of (1) model fitting information (in the form of a X2 test that compares the model to a −2 Log
Likelihood model) such that the model is significant if the p-value is <0.05; (2) goodness of fit (also
at 0.05 level) relative to a baseline null model; (3) the likelihood ratio tests in which the significance
of each predictor is rated as having a significant influence on the classification if the p-value is <0.05;
(4) model coefficients; (5) performance in each class or level between the observed and predicted values
(as a percent) as well as the overall percent performance; and (6) three Pseudo R2 values that provide a
measure of model performance [54].

In such a model, the choice of levels or classes is important. If too few classes are chosen that are
too gross with little discretization, the model will perform perfectly as there are few “choices” to make,
even though the model fit may not be significant. If there are too many classes, the model performance
is poor. The application of this model will be on the order of magnitude of the LogFC values instead
of the actual values because the actual values would create too many classes. MLR models will be
developed for all of LogFCi,j, LogFCy,m and for values of LogFCi,j at hotpsots but the “values” will now
be one of 11 possible classes created as the order of the LogFCij value: 2, 2.7 (representing 500 CFU/100
mL), 3, 3.7, 4, 4.7, 5, 5.7, 6, 6.7, 7, etc. The FCi,j values were rounded up to the nearest order of magnitude
(thus, values greater than 500 CFU/100 mL, for example, would be rounded up to 1000 CFU/100 mL),
then log transformed before placing them into a class. For LogFCi,j, no intermediate classes beyond the
order (i.e., no value of 2.7 for example) are chosen so there are only six classes.

It should be noted that this method has no equivalent to R2 such as that which can be computed
for a linear regression model; thus, researchers have devised what are known as Pseudo-R2 values,
with SPSS reporting three different types. Since all three provide similar values, the first reported,
which is the Cox and Snell value, is given in this study and is computed as:

Pseudo−R2 = 1−
(

L0

LM

)2/N

(4)

where N are the number of observations in the dataset, L0 is likelihood of a model with no predictors
and LM is the likelihood of the model being assessed. Great care must be taken when using this value to
make interpretations. Firstly, a perfect prediction does not produce a value of 1 as in R2, but instead for
Cox and Snell’s Pseudo-R2, a perfect model performance would give a value less than 1. The literature
has reported that a value close to 0.2 is considered a “good model” [55]. Since great care must be taken
in the interpretation of this performance metric, MLR model performances are compared as opposed to
examining the Pseudo-R2 value in isolation. This is sufficient for understanding the relative influence
of climate variables on predictions in an effort to gain knowledge where significant correlation analysis
is lacking.

3. Results and Discussion

3.1. Periodicity and Fourier Models

Figure 5a,b show the time series of LogFCy,m and the average precipitation and average temperature
in the corresponding month, along with the best fitted series for each variable. Figure 6 shows three
panels with the average monthly data (LogFCm is shown in Figure 6c) over all 17 years. Fourier series
models describing the fitted curves are also shown. Table 1 shows the Fourier coefficients and the
RMSE and R2 values for the best fit models. Higher order harmonics were attempted until R2 values
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ceased to increase. For Py,m and LogFCy,m, a simple, one harmonic best fits the data although the
RMSE is high. For temperature, Ty,m, an 8 harmonic Fourier model fit the temperature function for this
area over the 17 year period extremely well. The lower harmonics did not produce nearly as good an
R2 value.Water 2019, 11, x FOR PEER REVIEW 11 of 25 
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Figure 6. (a) Monthly temperature averaged over the entire 17 year period with fitted Fourier model
shown as the solid line; (b) monthly averaged precipitation with Fourier model; (c) LogFCm with fitted
Fourier model and (d) PTR versus month with fitted Fourier model.

The non-uniform sampling schedule can lead to an inconsistent number of samples collected in
each month, which can lead to a skewed data set in favour of times in the year when samples are
taken [51]. As in [51], the positive test ratio (PTR) is considered in order to screen out the influence
of the number of tests taken in any given month or season. PTR is the number of cases above the
regulation limit 200 CFU/100 ml divided by the number of total cases in each month of the 17 years.
Figure 6 shows the Pm, Tm, PTR and LogFCm data with fitted Fourier models. Information on the fitted
models are given in Table 1.
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Table 1. Fourier Coefficients.

Model Variable and Fourier Model Adj. R2 RMSE

1

Monthly temperature (t = y, m): = 10.72 +
0.03cos(0.07t) + 0.41sin(0.07t) − 0.19cos(0.14t) −
0.16sin(0.14t) − 0.12cos(0.21t) + 0.05sin(0.21t) −
0.21cos(0.28t) + 0.12sin(0.28t) + 0.10cos(0.35t) +
0.08sin(0.35t) − 0.14cos(0.42t) − 0.07sin(0.42t) −
0.15cos(0.49t) − 0.21sin(0.49t) + 4.261cos(0.56t) +

3.648sin(0.56t)

0.93 1.13 ◦C

2
Monthly precipitation (t = y, m): = 40.6 −

9.273cos(0.48t) + 13.32sin(0.48t) 0.92 15.17 mm

3 LogFCy,m = 3.547 + 0.11cos(0.52t) + 0.11sin(0.52t) 0.92 0.13

4
Mean monthly temperature (t = m) = 10.96 −

3.41cos(0.56t) − 4.371sin(0.56t) −0.52cos(1.12t) +
0.26sin(1.12t)

0.99 0.16 ◦C

5
Mean monthly precipitation (t = m) = 59.06 +

48.6cos(0.59t) + 3.97sin(0.59t) + 24.07cos(1.18t) +
7.43sin(1.18t) + 13.69cos(1.77t) + 5.3sin(1.77t)

0.92 13.95 mm

6
Log FCm = 3.44 − 0.6cos(0.6t) − 0.12sin(0.6t) +
0.11cos(1.2t) + 0.01sin(1.2t) + 0.09cos(1.8t) +

0.02sin(1.8t)
0.69 0.08

7
PTR = 0.59 + 0.01cos(0.55t) + −0.07sin(0.55t) +
0.08cos(1.1t) − 0.02sin(1.1t) + 0.02cos(1.65t) −

0.03sin(1.65t)
0.67 0.05

In interpreting these values, what’s important is the fundamental frequency ω in the dominant
portion of the series. Cosine and sine terms are dominant if their coefficients are higher than other cosine
and sine terms. For example, in Table 1, models 2 and 3 for precipitation and LogFCy,m, respectively,
have very similar fundamental frequencies (0.48, 0.52, respectively), which translate into both signals
having a roughly 12 month periodicity in the signal. The fitted model shown in Figures 5a and 5b,
respectively show the simple wave with a high R2 value suggesting that while the peaks and troughs
could not be captured in either model, both signals have this frequency. With regard to model 1, which
is the 8 term Fourier model of temperature, the curves as seen in Figure 5a is nearly perfectly captured
but model 1 suggests that the fundamental frequency is 0.07. However, the dominant terms in this
expression are the last sine and cosine terms as they have the largest coefficients. The frequency of those
terms is 0.56, again illustrating the annual periodic signal in the temperature. Since all fundamental
frequencies are essentially equal, the analysis does not preclude the suggestion that LogFCy,m signal
characteristics arise from precipitation and temperature signals.

Similar profiles are seen in Figure 6a,b for mean monthly temperature and precipitation over the
entire 17 year period. Models 4 and 5 show fundamental frequencies of roughly 0.6, corresponding
to a roughly annual periodicity that is clearly shown in the two panels. Models 6 and 7, for LogFCm,
and PTR, respectively, also show periodic signals of roughly 12 months; however, the signal peaks
do not mimic either of those made by precipitation or temperature. Figure 6c shows two peaks—one
in July and one in October. While both the PTR and LogFCm curves show a nearly identical curve in
the fitted Fourier models, there is a glaring discrepancy in the month of May (shown circled in red in
Figure 6c). Recall that the sampling program is focused on two seasons: January to April and June to
September. May is not usually sampled. The PTR curve seems to suggest that the data point shown in
May is an outlier requiring further consideration in the data. The models also suggest that more than
just precipitation or just temperature are responsible for the oscillations seen in the curves.

The climate in southern Vancouver Island can be summarized as having less precipitation with
moderate temperatures in the summer and more precipitation with cooler temperatures in the winter.
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Both the minimum and maximum temperature over most of the year are not sufficient to kill the
fecal coliforms since the fecal coliform could grow at temperatures between 4 ◦C to 35 ◦C and grow
quickly around 20 ◦C [56]. The general inspection indicates temperature is one of the most important
factors that cause high fecal coliform levels in the summer. During the winter time, the temperature is
relatively low but the precipitation and cloud cover ratio is high and these provide moisture for fecal
coliform growth and less possibility of mortality by sunlight.

The results also suggest a different seasonal pattern in fecal coliform levels from a regular monsoon
climate pattern in which the level of fecal coliforms is high in summer and low in winter. The high
peaks of fecal coliform concentration appear twice during the year; once is in summer around July and
once in winter around October. The lowest level of fecal coliform is found in February as well as for
the positive test ratio. It is apparent that the mild Mediterranean climate in Victoria could result in
a relatively unusual distribution of bacterial contamination compared to other studies conducted in
the world. The positive test ratio of high fecal coliform concentration is even found to be highest in
October instead of July. There is also a high level of fecal coliform appearing in the samples collected
in October. This finding indicates the monitoring schedule should expand outside its two season
monitoring approach.

3.2. Correlation Analysis with Temporally and Spatially Related Variables in LogFCi,j

Kendall’s τ-b test results are listed in Table 2 and only those tests that returned a p-value < 0.05
are shown. In general, temperature variables and antecedent dry period have a positive correlation
with the LogFCi,j. The result shows a relatively high temperature would help fecal coliform growth
in the summer and accumulate in the drainage area while no precipitation occurred. Conversely,
precipitation variables have a negative correlation with the LogFCi,j, which is unexpected as moisture
helps bacteria grow and much of the literature showed an opposite correlation. The reason could be
that heavy precipitation continuously washes off the bacteria and dilutes the density of fecal coliform
during the wet season. The flow rate at discharge is largely negatively correlated with the fecal coliform
levels, which, like precipitation suggests that higher flow rates of stormwater are diluting contaminants
to the discharge. The data collection methods by the CRD intentionally avoided first flush timing,
which would mean that only the late stages of the event are sampled.

Table 2. Non-parametric correlation Kendall τ-b of LogFCi,j for all stations and at each hot spot. The
symbol ‘*’ indicates the numeric value of τ-b has a p-value less than 0.05 and ‘**’ indicates a p-value less
than 0.01. Symbols ‘+’ and ‘−‘ indicate the correlation was positive or negative, respectively, but is
not significant.

Variable All Stations #805 #641 #623 #320 #245

Tmean 0.04 ** 0.24 * + + 0.54 ** +
Tmin 0.04 ** 0.24 * + + 0.54 ** +
Tmax 0.05 ** + + + 0.51 ** 0.15 *
T2 0.06 ** + + + 0.51 ** 0.16 *
T3 0.06 ** + + + 0.51 ** 0.22 **
T7 0.07 ** + 0.10 * + 0.51 ** 0.17 *
P −0.01 ** + 0 − −0.19 * −0.20 *
P2 −0.05 ** − − − −0.21 * −0.18 *
P3 −0.06 ** −0.23 * - - −0.25 ** −0.25 **
P7 −0.06 ** −0.33 ** - - −0.38 ** −0.16 *
tdry 0.06 * + + - 0.26 ** 0.22 *
FR −0.05 ** −0.26 * 0.10 * - −0.23 ** −0.26 **
WA +

RA 0.11 **
GA +
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With regard to the land use, the residential area has a positive correlation with LogFCi,j which
confirms the previous hypothesis that the bacteria contamination is mainly caused by human activities.
The literature suggests that the watersheds with a high percentage of urban and agricultural land
use mostly have high contamination levels [13]. The watershed area and the greenspace area both
showed a positive but insignificant correlation suggesting that greenspace and the watershed as a
whole are also contributing to the amount of fecal coliform observed. The GIS analysis shows the
heavily contaminated areas are in Victoria downtown, Esquimalt and the southeastern shore of Oak
Bay are densely populated and contain high percentages of impervious land use. It is reasonable to
suggest that in this region, high levels of bacterial contamination are likely to be observed in populated
residential areas with high percentages of impervious land use.

Table 2 also shows the correlations for selected hotspots. Station #320 showed a very strong
correlation with all variables; both temperature and precipitation being significant variables with
many p-values around 0.000. Thus, at least for this station, LogFC is greatly affected by meteorological
changes. This seems to be also true for station #805. The correlations shown conform to the correlation
analysis of all samples from all stations: the temperature and antecedent dry period are positively
correlated to LogFC while the precipitation has a negative correlation. However, station #641 showed
only one significant positive relationship with temperature and the opposite relationship with flowrate.
While station #623 showed correlations that were in keeping with the general trend for all stations,
none of them were significant. Since this sampling station is located in the nearshore of Victoria’s
downtown area, the distribution of fecal coliform could be dominated by spatial variables (land use)
rather than temporal variability. Station #320 shows that all temperature variables are positively
correlated with LogFC at this sampling station and in fact, all of the relationships are significant and
strong. All the temperature variables are correlated so it is not surprising that all the temperature
correlations are negative, near 0.5 and all very significant (p-value near zero). However, there is next to
no difference amongst the correlations and thus, no one variable distinguishes itself in its influence on
LogFC than any other temperature variable. The precipitation shows a negative correlation with LogFC
while the antecedent dry period has a positive correlation. The 7-day total precipitation provides the
strongest negative correlation suggesting that long-term precipitation could greatly reduce the level
of fecal coliforms in the area draining to this station. Station #245 shows similar trends but now the
3-day precipitation variable P3 has the strongest correlation for all the precipitation variables studied
(i.e., P, P2, P3, P7). This variability in correlation strength across temperature or precipitation variables,
and the lack of significance in the group of hotspot stations selected, suggests incredible variation
by location in the database and that analysis on climatic/land use influences on FC or potentially
prediction of FC levels should be done on a station by station basis.

The literature on fecal bacteria growth and die-off rates in the environment [56,57] suggest that
the summer temperature in the study area (under 20 ◦C) is considered to be ideal for fecal bacteria
growth. Since the maximum temperature is rarely over 30 ◦C, the die-off rate of fecal coliform is also
low in the study area. McCarthy et al. [27] suggested that temperature was an important variable such
that E. coli could be persisting or growing in the catchment during periods of warmer temperature,
and this may be applicable in this study region.

The correlation analysis shows that precipitation is negatively correlated with fecal coliform
concentration, but the relationship is weaker than that for temperature. The negative correlation
contradicts some of the literature [58] but seasonal dependence is important [26,30]. The 7-day total
precipitation has the strongest negative correlation coefficient among the precipitation variables in two
of the stations, which may suggest that long-term rainfall could further decrease the fecal coliform
level of the area. The southern Vancouver Island region usually has light and long-term precipitation
during the wet season. With regard to the positive correlation of LogFC and antecedent dry period,
this could be due to long inter-event periods allowing significant accumulation of fecal coliform in
the drainage area. When storms occur, because they are not sampled at the first flush, there will be
dilution of the fecal coliform concentration. However, one needs to note that the chances of obtaining a
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sample with over the limit bacteria concentrations is even higher during the winter (as noted by the
curve of PTR in Figure 6d) even if the average value of fecal coliform is lower than in the summer. This
indicates that the minimum temperature (approximately 3 ◦C) in the study area is not sufficient to
inactivate fecal bacteria, and the bacterial contaminants could be transported by stormwater to the
discharge in the cooler, wetter season.

Table 3 shows the correlations when comparing LogFCy,m and the available temporal datasets
including cloud cover CC. This table shows that all the temperature variables and the cloud cover
variable have a significant influence on LogFCy,m with Tmin having the strongest correlation of the
variables, albeit, the difference is very small. This would suggest that temperature could be a useful
predictor of LogFC for general planning purposes on an annual basis, or in climate change studies.

Table 3. Non-parametric correlation Kendall τ-b of LogFCy,m and p-values.

Statistics Tmin T Tmax P CC

τ-b correlation 0.122 0.121 0.119 −0.092 −0.117

p-value 0.024 0.025 0.027 0.088 0.037

3.3. Climate Related Modelling

3.3.1. Multiple Linear Regression

Through the previous correlation analysis process, the fecal coliform value has shown a significant
relationship with meteorological variability, although the correlations are weak. The periodicity
modelling showed that there are issues raised by PTR versus the month averaged over all 17 years.
Figure 6c is the data with a Fourier model superimposed on the LogFCm data showing a circled May
data point. This data point in Figure 6d corresponds to the PTR data which shows no uncharacteristic
dip but follows the 3 term Fourier model much like the LogFCm Fourier model. Since the data sampling
period strongly skews data in favour of the months of January to April (henceforth, referred to as
Season 1) and June to September (Season 2), the month of May does not have a lot of data points but
interestingly, the data point in Figure 6c for May seems uncharacteristically out of place. The months of
October to December have some data but are also sparse over the 17 year period. Therefore, any further
climate analysis examines the data for LogFCi,j with the months of May, and October to December
removed. The database of the full 17 year period now spans 2181 data points down from 2365 (after
the sewage suspected samples were removed as indicated earlier).

The goal of this section is to develop a general function for predicting the LogFC with selected
meteorological variables. The significant but low correlations suggest that attempting to linearly
regress all of LogFCi,j with one or more climate variables may likely show a significant relationship but
the R2 would likely be poor. Figures 7a, 7b and 7c show the data as a function of mean temperature for
all LogFCi,j, LogFCy,m and LogFCm, respectively. These scatterplots indicate the variance in the data
that a linear regression model must attempt to explain. Thus, LR was only attempted on LogFCm.

The LR modelling was conducted through SPSS and uses Akaike information criterion to avoid
potential overfitting and only chose the most significant variables. The variables tested were all those
listed in Table 2 (with the exception of the watershed information, and the flowrate when it was not
possible) and cloud cover (CC) was also included. The variables providing the best fit are Tmin and CC
with an R2 of 0.55 and an adjusted R2 of the model shown in Equation (5) as 0.45. The RMSE = 0.109
and the significance of the Tmin and CC coefficients are 0.02, and 0.07, respectively.

LogFC = 2.05 + 0.08Tmin + 1.41CC. (5)
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Figure 7. Scatterplots of (a) LogFCi,j versus temperature of the day of sampling at each location;
(b) LogFCy,m versus mean monthly temperature; and (c) LogFCm versus mean monthly temperature
over the entire period in each month.

Notice that in Equation (5), the coefficient multiplied by CC is positive not negative. When no
weather or obstructions to visibility occur, sky conditions are provided reflecting the observation of
total cloud amount. The value of CC based on the amount (in tenths) of cloud covering the dome of
the sky with 0 being clear and 1.0 being completely clouded over sky. While higher cloud clover might
suggest greater opportunity for precipitation, which is negatively correlated with FC in this region,
in the absence of precipitation, cloud cover would prevent solar radiation from promoting bacteria
die-off. This concurs with [29] that stated that higher solar radiation lead to lower bacteria levels.

While the R2 is only fair, the model coefficient for Tmin is significant and nearly significant for CC.
This is not surprising given the results of the correlation analysis. In addition, some of the principles
behind the non-parametric correlation analysis are similar to some of the assumptions underlying
multiple linear regression. The Fourier analysis suggested a seasonal influence on the data and the
differences in correlations in Table 2 suggest that location in space is important. Thus, averaging across
space and over the year, as is done for LogFCm in this analysis, would produce large errors in any
prediction model. Figure 8 shows plots of the residuals in the predict LogFCy,m values. The residuals
for Tmin are scattered over the temperature range experienced over the year and there is no trend that
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warmer or cooler temperatures lead to better predictions. This is also true of cloud cover in that the
residuals are scattered around 0 for the full range of CC.Water 2019, 11, x FOR PEER REVIEW 17 of 25 
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Figure 8. Residuals as a function of (a) Tmin, and (b) CC, and (c) trend of predicted versus observed
LogFCm with one to one line shown in blue.

3.3.2. Multinomial Logistic Regression in LogFCy,m

Tables 4–6 show the results of the MLR on LogFCi,j, LogFCi,j at the hotspots and LogFCm,
respectively. Each variable is tested for its significance in explaining the likelihood of LogFC belonging
to a certain order of magnitude (class), and then the percentage of model performance for each class is
computed. The shaded cells indicate that the predictor had a significant influence on the overall model
performance. The model performances are calculated as a weighted performance in each class. If no
value of performance is shown for a class that means that there were no observations for that class in
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the data set. The number of data points in the set are indicated by N and whether or not the model fit
is significant or not is shown with shading (no shading indicates it is not significant).

Table 4. MLR modelling results for LogFCi,j for all stations. A shaded box indicates a significant
relationship with no shading indicating the p-value was greater than 0.05.

Period Season Month

All 1 2 1 2 3 4 6 7 8 9

N 2181 1038 953 307 424 216 91 157 419 357 210

Qual-ity Model Fit
Pseudo-R2 0.06 0.10 0.06 0.17 0.13 0.31 0.49 0.34 0.19 0.21 0.32

Predictor Significance

Intercept
Flow Rate

T
Tmin
Tmax
T2
T3
T7
P
P2
P3
P7
tdry

Class of LogFC

Class % Performance

2 41 57 42 59 71 68 58 53 45 55 65
3 64 52 70 56 47 51 67 72 69 62 35
4 0 0 4 10 0 16 13 128 16 17 47
5 0 0 0 0 0 0 100 0 0 5 33
6 0 100 0 100 100 100 0 100 100

Overall 41 46 42 52 50 51 56 48 44 47 50

In examining Table 4 closely, for all the 2181 records of LogFCi,j, flowrate and seven day average
temperature and flowrate were found to significantly influence the likelihood of observing an order of
LogFC but the overall model performance was only 41%. When examining the difference introduced by
seasonality, Season 1 data provided a better model performance than Season 2 and was able to perfectly
predict the values of order of magnitude 6 and higher. However, it could only predict values in order 2
and 3, which were the bulk of the database with only roughly 50% performance. Here again flowrate
was significant but now so was temperature T and T2 and P and P2. Season 2 showed a very good
performance for order 3—better than in Season 1 but now only T3 and T7 were significantly influencing
results indicating that only temperature matters in the warmer season. This is not surprising as this is
also the drier season. However, flowrate was still significantly influencing predictions in Season 2 as
well. This however changed when focusing on the monthly performance.

The analysis by month showed that flowrate was significant in August and September—two of
the four months of the warm season but the peak in FC levels occurs in July which does not have
flowrate significantly influencing the model performance. The month of February showed absolutely
no significant influence of any variable. The peak month of July showed that maximum observed
temperature and precipitation on the day or within two days of sampling were significantly influencing
the model results. July also had the lowest performance as compared to the other months in Season
2, which were all able to predict occurrences of order 6 and higher in LogFCi,j at 100%. Interestingly,
September had the best spread of performances in each class for Season 2 and here flowrate and seven
day accumulation of precipitation were key to that performance. The best performance overall was
for the month of April in which, flowrate, T3, T7, and tdry were key. The Pseudo-R2 values were only
above 0.2 in the months of March, April, June, August and September, again suggesting that monthly
time scales for examining climate influences is warranted.
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Table 5. MLR modelling results for LogFCi,j for the hotspot stations. A shaded box indicates a
significant relationship with no shading indicating the p-value was greater than 0.05. The letter “B”
indicates the relationship is not significant but the p-value was very close to 0.05.

Period Season Month

All 1 2 1 2 3 4 6 7 8 9

N 210 99 111 33 28 30 8 22 33 29 27
Model Fit B B
Pseudo R2 0.52 0.60 0.66 0.96 0.94 0.93 0.86 0.97 0.94 0.92 0.54
Intercept
Flow Rate B

T
Tmin
Tmax
T2 B
T3
T7
P

P2
P3
P7 B
tdry

Class Performance in (%)
2 100 100 100 100 0 0

2.70 6 20 17 100 100 67 100 0 0.5 100
3 38 50 39 100 100 71 100 100 100 100 100

3.70 54 57 66 100 83 25 100 100 83 92 71
4 21 44 33 100 100 83 100 100 88 50 25

4.70 50 47 48 100 100 86 100 80 80 100
5 38 36 100 100 100 67

5.70 100 50 100 100
6 75 100 100 100 100

6.70 100 100 100
Overall 41 50 48 100 96 70 100 100 84 86 74

Table 6. MLR modelling results for LogFCy,m. A shaded box indicates a significant relationship and no
shading indicates the p-value was greater than 0.05.

All Season 1 Season 2
N 116 59 57

Model Fit
Pseudo R2 0.40 0.29 0.52
Intercept

Tmin
T

Tmax
P

CC
Class % Performance (N in class)

2.7 0 100 (1) 0 (2)
3 77 95 (41) 52 (21)

3.7 60 27 (11) 77 (26)
4 8 0 (6) 33 (6)

4.7 100 100 (2)
Overall Performance 63 73 61
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Table 5 shows the results for the hotspot stations. Recall from Table 2, only two to three of the
five hotspot stations had climatic variables and land use variables with significant effects on LogFCi,j.
In Table 5, the overall performance for all the data, Seasons 1 and 2, are similar to the entire dataset but
now, for the whole set, flowrate and precipitation are influencing results as opposed to flowrate and
temperature. The only variable influencing performance in Season 1 is seven day precipitation and
only marginally in Season 2, in which the model fit was not significant. A more granular analysis by
month showed that the two months with high levels of FC, June and July were nicely modelled with
flowrate and T3 providing a perfect model performance at all classes in the month of June. However,
the month of July, had a poorer performance but flowrate was not a factor but other temperature
variables, precipitation variables and dry days were statistically relevant. The Cox and Snell Pseudo-R2

values are all greater than 0.2 suggesting good model performances in all variables used in the model.
Table 6 shows the results for the 116 data points without May, October–December values seen in

Figure 5b. Again, the data were also examined by season but data by month were sparse, which would
lead to falsely inflated values of model performance and thus, were not examined.

The model performance overall is the best seen for all data sets which is not surprising. As well,
while Season 1 had the best performance, the fit was not significant and no single predictor had a
significant influence. The overall model performance in Season 2 was 61% with good performance in
the middle and higher order classes. Here all the variables were significant with the exception of cloud
cover, which proved useful in the multiple linear regression modelling for the data set of Figure 6c
(monthly averages over the entire database LogFCm). In the logit model of Equation (3), the model
coefficients β are specific to each class.

To illustrate the model implications on the relationship between increases or decreases in
fundamental variables, two classes are created for this dataset: LogFC < 3.7 assigned to order 3 and
those ≥3.7 are assigned to order 4. The results are shown in Table 7. In this analysis, category 4 was the
reference category, and P and T were the selected variables. Unlike the LR modelling of Section 3.3.1,
CC had no impact on the results. As Tmin and Tmax are certainly related to T, and to understand the
general influence of T and P as two distinct climatic variables on LogFCy,m, these two variables were
selected for the analysis in this illustration.

Table 7. MLR modelling results for LogFCy,m with only classes 3 and 4 and variables, T and P.

N 116

Model Fit Significant? Y

Goodness of Fit Significant? Y

Pseudo R2 0.12

Intercept β0 −0.614

β of T 0.078

β of P −0.013

3 68 (65)

4 67 (51)

Overall Performance 67%

In terms of the logistic model, these coefficients suggest that,

logit(π) = −0.614 + 0.078T − 0.013P (6)

In Equation (6) each coefficient is the expected change in the log odds of observing a LogFC of
magnitude 3 for a unit increase in a predictor variable when the other predictor variables are fixed.
The value of eβ for a specific predictor is the change in odds (in the multiplicative scale) for a unit
increase in that predictor. The intercept, in this case, is the log odds of observing a value of order
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of magnitude 3 if temperature and precipitation are zero because that was chosen as the reference
category in this analysis. This fitted model says that if precipitation is held fixed, the coefficient for
temperature suggests that for a unit increase in temperature (1 ◦C) would result in an increase in the
odds of observing a LogFC with order of magnitude of 4 by 8% (since e0.078 = 1.08). Conversely, if
temperature is held fixed, a unit increase in precipitation (1 mm) would result in a decrease in the odds
of observing an order of magnitude 4 by 2%.

This analysis reaffirms the suggestion that in this study region, temperature increases are likely
to increase LogFC levels and precipitation likely lowers LogFC levels. The results in Tables 6 and 7
all involve a spatial averaging over the study area, which has already suggested possible errors in
modelling. Vermuelen and Hofstra [31] noted that temperature was a significant variable in four of
six locations studied yet leaving it out of their overall model did not make a “great difference” for
a model with an adjusted R2 of 0.49. The implication of spatial influences was further iterated by
Mallin et al. [35] who found that multiple regression models failed to explain any more of the variability
in bacteria than simply using percent impervious surface cover alone. Seasonality implications were
clearly visible in the results. In Selvakumar and Borst [59], the authors found seasonal variations
in the data in which early season storms generally had higher levels of bacteria than late season
storms, both within and between watersheds. But when spatial implications were ignored and all
watersheds were lumped together, bacteria levels decreased with increasing cumulative annual rainfall.
This suggests that if detailed modelling or planning is going to be conducted, it should not only be
conducted with attention to location, but attention to season.

4. Conclusions

This study provides insight into the temporal and spatial distribution of bacterial contamination
in nearshore areas of southern Vancouver Island and explains the potential relationships in fecal
coliform levels in stormwater with land-use and climate variables. Non-parametric correlation analysis,
Fourier analysis, multiple linear regression and multivariate logistic regression were used to determine
the significance and relative influence of climatic variables on LogFC levels measured between 1995
and 2011 at three temporal scales: at the time of sampling, the monthly average of LogFC across all
stations in the region, and the average across space and time for each month.

The Fourier model demonstrates an annual periodicity of fecal coliform with two peaks in July
and October. Despite the extreme values observed in the 17 years’ historical data, the data follow the
general trend of this periodicity as do the precipitation and temperature. No matter the temporal scale
used, the Fourier analysis always produced a periodicity of 12 months.

The correlation analysis showed that fecal coliform concentrations for all stations throughout
the period have a significant correlation with many climatic variables including positive correlations
with temperature, antecedent dry period and land use in the watershed, and negative correlations
with precipitation and flowrate. Drainage area showed no significant correlations with bacterial
contamination. But drainage area, amount of residential area in the drainage area as well as green
space were all positively correlated with FC levels but only the amount of residential, or urban
area, was significantly correlated. This suggests that the bacteria loading mostly originates from
residential activity. The incredible variability in whether relationships were significant or not suggest
that modelling or planning should be done on a location basis and not necessarily averaged across
the region. Seasonal effects were also apparent and planning and prediction should be conducted
differently in the two seasons. In particular, the drier, hotter season had higher levels of FC and
therefore, should be the focus of future planning.

Linear regression developed a prediction model for LogFC in each month with a low adjusted R2 of
under 0.5, but with significant or marginally significant variables of minimum monthly temperature and
cloud cover. Multivariate logistic regression was used with classes representing the order of magnitude
of LogFC. This type of regression showed very good model performance, which improved when
considering the wet season separately from the dry season, and when looking at a individual months.
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The authors recommend that when examining the influences of climate change on fecal coliforms,
and possibly, on other types of bacterial contaminants in this region, that variables be distinguished
by season, and possibly by month, as well as by location. In addition, the authors recommend that
the CRD monitor FC more intensively at every month of the year, and in the fall season that includes
October. The analysis should be updated whenever new data are made available. Since the land use
was only represented by only two different types of land use (residential versus greenspace), the study
should be expanded to other areas of the region that include forested and agricultural lands. The MLR
model could be easily applied on the updated and expanded datasets.
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