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Abstract: Changes in climate, land use, and population growth has put immense pressure on the
use of water resources in agriculture. Non-irrigated fields suffer from variable water stress, leading
to an increase in the implementation of irrigation technologies, thus stressing the need to analyze
diverse irrigation practices. An evaluation of 17 sites in the U.S. Corn Belt for two temporal climatic
conditions was carried out. It consisted of the analysis of critical hydroclimatic parameters, and the
evaluation of seven diverse irrigation strategies using the Deficit Irrigation Toolbox. The strategies
included rainfed, full irrigation, and several optimizations of deficit irrigation. The results show
a significant change in the hydroclimatic parameters mainly by increased temperature and potential
evapotranspiration, and a decrease in precipitation with an increase in intense short rainfall events.
Consequently, the simulations indicated the potential of deficit irrigation optimization strategies to
increase water productivity above full irrigation and rainfed conditions. In particular, GET-OPTIS
for wet soil conditions and the Decision Tables for dry soil conditions seasons. The present
study highlights the contributions of atypical weather to crop production and the implications
for future management options, and allows specialized regionalization studies with the optimal
irrigation strategy.

Keywords: crop-water productivity; irrigation strategy optimization; agroclimatic resiliency;
crop-climate decision tools; U.S. Corn Belt

1. Introduction

The spatial and temporal variability of climate, land use, soil degradation, and population growth
put immense pressure on water resources. Sustainability and resilience depend strongly on the way
managers and consumers adapt to the current and predicted variability. In particular, the intense
pressure on food security hinders adequate water resource management, primarily in the face of rainfall
vagaries and when agriculture relies on or is expected to rely on irrigation. The agrohydrological
dilemma (i.e., securing food production in water scarcity scenarios) was analyzed in several studies
focusing on the impacts of climate variability on crop yield (e.g., Niyogi et al. [1], Brumbelow et al. [2],
Rosenzweig et al. [3] and Elliot et al. [4]). Studies such as Pereira [5] and Gorantiwar et al. [6] focused on
the improvement of irrigation techniques, while Dobernmann et al. [7], Godfray et al. [8] and Rockstrom
et al. [9] focused on the prospective future of sustainable agriculture through irrigation availability.
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This study focuses on the agricultural production of corn (Zea mays L.) in the Corn Belt region of
the United States of America (US). Crop yields in the Corn Belt were projected to go down in the future
climate as a result of an increase in extreme weather events and increased rainfall variability [10].

Irrigation has the potential to become a globally implemented adaptation strategy in the face of
climate change. In the simplest sense, irrigation practices seek to apply water to the soil and plant for
effective crop production by influencing stages from germination to yield. Crop simulation models
allow investigating outcomes for different management schemes that might increase the yield [11].
One of the main tools to achieve this is irrigation scheduling (a sequence of dates or and times on which
water needs to be applied to the crop), can be optimized by mathematical models [12]. A common
irrigation strategy, known as full irrigation, is to supply sufficient water to meet with the plant
evapotranspiration requirements. Due to the scarce nature of water resources, other strategies were
developed, such as supplemental and deficit irrigation, to reduce the agricultural water demand and
to divert the resources for alternative uses. Supplemental irrigation is the application of small amounts
of water to rainfed crops when rainfall does not meet the plant evapotranspiration requirements,
and deficit irrigation is the optimized application of water below the plant evapotranspiration
requirements. Both irrigation strategies were thoroughly analyzed and optimized to maximize water
productivity and to maintain yields [13,14]. Crop Water Productivity (CWP), defined as crop yield per
cubic meter of water consumption [15] is a good indicator of water-agriculture interaction. The CWP
function can be used to show the obtainable yield at different levels of applied water. The CWP
functions (CWPFs) are characterized by linearly increasing yields with applied water until 50%
of full irrigation [16–18]. The relationship becomes curvilinear as applied water increases further,
due to losses from increased surface evaporation, runoff and deep percolation. Moreover, local
factors, such as soil and irrigation technology, can affect the relation [19]. Furthermore, climate
variability has an impact on CWPFs, which highlights the importance of a stochastic approach to
irrigation [2]. Recent studies by Evett et al. [11], Raju et al. [12], English et al. [19], Brown et al. [20]
and Shang et al. [21] indicate that a detailed and precise irrigation schedule calculated using crop
models can optimize the CWP by maximizing irrigation efficiency, reducing costs and environmental
impacts. Irrigation scheduling [22] is conventionally based on soil water balance models, where the
soil moisture deficit is estimated by the difference between the inputs (irrigation and precipitation) and
the losses (runoff, percolation, and evapotranspiration). The adequate water volume to be irrigated
varies as a function of actual evaporative demand, for deficit irrigation strategies this is a complex
task to achieve because of the day to day variation in climate and crop water demands. The impact of
hydroclimatic variability was investigated (e.g., Djaman et al. [23], Badh et al. [24], Gunn et al. [25],
Messina et al. [26], Niyogi et al. [27], Panagopoulos et al. [28] and Zwart et al. [29]), and deficit and
supplemental irrigation strategies are often promoted as a response to mitigate drought stress on
crops [6,13,14,30–32]. However, very few studies evaluated different irrigation strategies in the same
location as a measure of hydroclimatic variability and sustainable agricultural productivity. Studies by
Niyogi et al. [1], Yang et al. [33], Song et al. [34], and Kloss et al. [31] highlight the ability of crop models
to capture the impacts of climate variability on yield considering different sources of uncertainty. Most
of the crop models aim to achieve an optimum water supply for productivity, with soil water content
being maintained close to field capacity, most commonly via conventional or supplemental irrigation
(i.e., 100% of field capacity) [35]. Alternatively, deficit irrigation strategies were developed as an
adaptation to limited water availability by estimating the supply of irrigation during the most sensitive
growth stages and allowing prioritization of the allocation of resources to these drought-sensitive
stages [10,32]. Deficit irrigation strategies aim for a determined lower percentage, typically between
70%–90%, of field capacity [13,30]. The optimal time to irrigate depends on the seasonal water demand
pattern which varies by crop, the hydraulic soil characteristics, and the available amount of water [36].
The estimation of the irrigation scheduling is aimed to obtain the highest potential crop yield for
a given total seasonal depth of irrigation. However, these estimations are also limited by preconditions
of access to a perfect forecast of intraseasonal crop water requirements [37]. As an alternative to such
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idealized consideration, optimization approaches based on decision tables or a framework such as
the Optimal Climate Change Adaption Strategies on Irrigation Methodology (OCCASION) [38] are
available.

Most of the simulation-based studies of deficit irrigation do not consider the variability of
important climate parameters, i.e., temperature, evapotranspiration and precipitation, within different
temporal scales. The studies mostly focused on all rainfed sites or at irrigated sites with assumption
about full field capacity irrigation [14,31,32,39,40]. This highlights the need for multidisciplinary
simulations where different irrigation management strategies for corn production are compared and
assessed. Therefore, based on the projected changes in water resources availability and the potential of
implementation of irrigation technologies in the intense agriculture in the Corn Belt, the objective of
this study was to understand the hydroclimatic variability at different temporal scales and to evaluate
supplemental and deficit irrigation optimizers under potential water scarcity conditions over locations
across the US Corn Belt.

2. Materials and Methods

2.1. Study Area

Corn, the primary US feed grain, accounts for around 500–600 billion tons of production in the
US [41,42]. Most of the corn production occurs in the Corn Belt, a region in the US Midwest known
for the ideal climate and soil conditions for crop production and intense farming characterized
by high fertile soils, high organic soil concentration, timely rainfall, and ample solar radiation.
Geographically, the Corn Belt consists of the states of Iowa, Illinois, Indiana, Nebraska, Kansas,
Minnesota, Missouri, South Dakota, North Dakota, Ohio, Wisconsin, and parts of Michigan and
Kentucky. The region is divided by two large intensively cropped river basins, the Upper Mississippi
River Basin and Ohio-Tennessee River Basin and it is located within five water resources regions
(Missouri, Arkansas-White-Red, Souris-Red-Rainy, Upper Mississippi, Lower Mississippi, Ohio,
and the Great Lakes) [28].

County-level data of corn yield and climatic variables were assessed and used following Niyogi
et al. [1] and Liu et al. [43]. This provided a spatially representative data set for 17 sites within the US
Corn Belt. Information regarding these sites is provided in Figure 1 and Table 1.

Table 1. Summary of the 17 study sites.

# Code Site County State Area Harvested Irrigated Area
[×1000 ha] [%]

1 W1 Kirksville Adair Missouri 5.73 NDD
2 W2 Topeka Shawnee Kansas 15.29 31
3 W3 New Madrid New Madrid Missouri 27.51 79
4 W4 Olivia Renville Minnesota 43.97 <0.1
5 W5 Brookings Brookings South Dakota 47.87 8
6 W6 Iowa City Johnson Iowa 55.44 NDD
7 W7 Grand Forks Grand Forks North Dakota 56.30 4
8 W8 Columbus Platte Nebraska 75.72 67
9 W9 Rochester Olmsted Minnesota 115.32 <0.1

Total 443.16 19

10 E1 Marysville Union Ohio 8.88 NDD
11 E2 Toledo Lucas Ohio 29.02 NDD
12 E3 Huntington Huntington Indiana 30.41 <1
13 E4 Baraboo Sauk Wisconsin 32.65 19
14 E5 DeKalb DeKalb Illinois 50.44 <0.01
15 E6 Beloit Rock Wisconsin 60.59 7
16 E7 Rensselaer Jasper Indiana 62.99 9
17 E8 Tuscola Douglas Illinois 104.2 <1

Total 379.19 5

NDD: not disclosed data; 1 ha = 10,000 m2.
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Figure 1 shows a representative county outline map of the US Corn Belt with the distribution
of irrigation intensity. The counties with the most irrigated area are in the southwest of the Corn
Belt, and the center or eastern region is almost entirely rainfed agriculture with no irrigation reported.
The study sites (Table 1) are divided into two parts across the Corn Belt, the Western (red) and Eastern
(blue). The sites in the Western Corn Belt reported more use of irrigation technologies with two counties
(New Madrid, MO, and Platte, NE) with more than 60% irrigated area. On the contrary, the sites
located in the Eastern Corn Belt have mainly rainfed agriculture with less than 10% irrigated area with
the exception of Baraboo, WI. This irrigation intensity can be considered representative of the ground
reality across the Corn Belt.
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Figure 1. Map showing the reported irrigated area by county along in the US Corn Belt and the location
of 17 study sites (2012 NASS-USDA [44]).

2.2. Data

To analyze the impacts of climate variability on crop yield, historical (1981–2010) and future
climatic conditions (2041–2070) were considered for the 17 study sites. The data required was compiled
as input the modeling framework discussed in Section 2.4, details can be found in Supplementary
Material SI. The data sets included were the daily meteorological data (minimum temperature,
maximum temperature, and precipitation) for the historical climatic conditions from the National
Centers for Environmental Information (NCEI, [1]). The future climate condition was obtained from
the National American Regional Climate Change Assessment Program (NARCCAP, [45]) from the
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dynamically downscale product from the MM5 with the Hadley Centre Climate Model version 3.
Further information about this data set can be found in Mearns et al. [46–48], and Horton et al. [49].
The irrigation strategy model requires information about evapotranspiration water loss. Because of the
lack of this information for the historical climatic conditions and to keep consistency between different
time scales, the daily potential evapotranspiration was calculated with the FAO ETo Calculator [50]
using the Penman-Monteith equation. Additional agronomic information was required which was
compiled from the National Corn Handbook [51], which included the extent of the growing season
of around 130 to 150 days across the Corn Belt. A period of 150 days was considered and divided
into four phenological stages. These stages included: initial planting/germination (30 days), crop
development (40 days), mid-season (50 days) and late development (30 days). The growing season
dates were specifically chosen for each site from the reported dates in the Field Crops Usual Planting
and Harvesting Dates [52], for the historical climatic conditions from 1997 and for the future climatic
conditions from 2010.

2.3. Irrigation Strategies

When this study was conducted, only seven irrigation strategies were integrated into the Deficit
Irrigation Toolbox (DIT) described in Section 2.4. The present study seeks to analyze rainfed, full and
deficit irrigation strategies with diverse management optimization to assess these strategies relative to
the on-going practices in the study sites. Therefore all the seven irrigation strategies were considered.
These include (i) no irrigation (rainfed system), (ii) full (supplemental) irrigation, and (iii) five deficit
irrigation strategies. These seven strategies were:

1. Rainfed (S1_RF): consists of no water application to simulate rainfed agriculture. This is used as
a reference and is expected to produce a lower limit of yields.

2. Full supplemental irrigation (S2_SFI): triggers the irrigation of a predefined amount of water
when the soil water deficit is above a certain threshold. The full irrigation assumes an unlimited
amount of water availability. This strategy is expected to consume the maximum amount of water
while achieving the yield potential.

3. Simple Deficit irrigation (S3_DI): triggers irrigation of a predefined amount of water when
the soil water deficit is above a threshold which already causes drought stress for the crop.
This irrigation strategy is a simple implementation of deficit irrigation. It is expected that S3_DI
consumes less water than S2_SFI, but full irrigation cannot be applied when water availability
is constrained or limited. S3_DI serves as a non-optimized deficit irrigation strategy which is
compared with other optimized deficit irrigation strategies.

4. Constant supplemental irrigation in a fixed schedule (S4_CFS): realizes a fixed application
depth of water for a fixed irrigation interval of days (e.g., 7 days between applications). This deficit
irrigation strategy can deal with limited given water volumes but implements a non-optimized
strategy which is expected to achieve a low yield.

5. Optimized deficit irrigation with decision table (S5_ODT): is a closed-loop irrigation control
based on information about the available water and the water deficit in the soil. For daily decisions,
a decision table is optimized for maximizing water productivity. The optimizer was implemented
using Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) for nonlinear function
minimization, Version 3.61. Beta [53].

6. Optimized deficit irrigation with a decision table and phenological stages (S6_ODTph):
implements a modified decision table based on the crop response to water stress at the
specific phenological stages throughout the growing season. The optimizing process was also
implemented using CMA-ES.

7. Optimized deficit irrigation with Global Evolutionary Technique for Optimal Irrigation
Scheduling (GET-OPTIS) (S7_GO): is an open-loop irrigation control that implements a general
irrigation calendar which is valid for all growing seasons of a considered time series.
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The implementation is based on the tailor-made evolutionary GET-OPTIS algorithm developed
by Schütze et al. [38]. This strategy allows for a simpler application in practice than S5_ODT and
S6_ODTph since no information about the water deficit in the soil is required.

S1_RF, S2_SFI, and S3_DI were evaluated using the workflow outlined in Figure 2.
The remaining strategies were implemented based on the workflow shown in Figure 3. Consequently,
for the optimized strategies the computational demand is significantly higher. Furthermore, S2_SFI,
S3_DI, S5_ODT, and S6_ODTph strategy require sensor information about either climate and/or soil
variables. On the contrary, S1_RF, S4_CFS, and S7_GO strategy are the cheapest and easiest to use.
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Figure 2. Model framework for the basic irrigation strategies (S1_RF, S2_SFI, S3_DI).

2.4. Model Framework

The assessment of diverse irrigation strategies was modeled using the DIT [54], an open-source
software to analyze the crop yield response to climate and soil variability, as well as water management
practices. The DIT considers several irrigation scheduling strategies and different crop models such as
AquaCrop [18] and Soil-Water Balance (SWB) [55]. The stochastic relationship between simulated yield
and irrigated water also known as Stochastic Crop Water Production Functions (SCWPF), the main
result of the DIT, is an effective tool for risk analysis on irrigation demand [37]. The framework
used in the DIT was applied and validated in different field studies (e.g., Grundmann et al. [56],
Schütze et al. [57], and Gadédjisso-Tossou [54]).

For this study, the Soil-Water Balance Model (SWB) [55] was combined with seven different
irrigation strategies available in the DIT. The SWB model is a relatively simple model that simulates
the yield response based on the water deficits in the soil storage. The choice of this model was
to avoid confounding in the interpretation of the results with other complex models and can be
undertaken in a future study with more available data. Despite its simplicity, the model demonstrated
reliable performance in previous studies (e.g., Rao et al. (1988 [58], 1992 [59]), Panigrahi et al. [60],
Khan et al. [61] and Gassmann et al. [62]). The ability of the model to be really responsive to
hydroclimatic variability in one of the inherent strengths and needs in choosing this modeling system.

Each irrigation strategy implementation followed a certain framework. For the first three irrigation
strategies (S1_RF, S2_SFI, S3_DI), the workflow considered in this study is shown in Figure 2. The first
framework mainly consists of three phases: I. Pre-Processing of the data for both the historical and
future climatic conditions, including the calculation of daily potential evapotranspiration; II. Model
simulations for multiple configurations within the DIT for the growing seasons within the climatic
conditions assuming a specified initial soil moisture condition; III. Post-processing of the results
by analyzing the SCWPFs within the 90% exceedance probability. For the other strategies (S4_CFS,
S5_ODT, S6_ODTph, S7_GO) the framework outlined in Figure 3 was used.
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Figure 3. Model framework for the optimized irrigation strategies (S4_CFS, S5_ODT,
S6_ODTph, S7_GO).

Similar to the first three phases shown in Figure 2; an additional iteration for limited available
water volume between 100 to 600 mm. The incorporation of optimization phases IV and V to account
for robustness as the optimizer maximizes a larger quantile (e.g., 90%) of the yields of the simulated
scenarios to ensure high water productivity.

The optimization step is implemented using various global, computational demanding
optimization techniques (Section 2.3). This proposed framework allows for the risk analysis and
assessment of both historical and climate change scenarios within different conditions of water
availability. The product of these model simulations is the SCWPFs, (i.e., the stochastic relationship of
simulated yield and irrigated water), which represent the risk pattern for a specific irrigation location
and certain initial and boundary conditions [63].

2.5. Experimental Design of Model Simulations

The present study undertook multiple simulations for each site and climatic conditions.
The experimental design of each simulation follows the sequence shown in Figure 4. This sequence
comprised of four steps: (1) The model simulations were carried out resulting in 108 simulation results
per site for each climatic conditions, (2) The analysis of these results based on the location within the
US Corn Belt, (3) The analysis of the main hydroclimatic parameters to better understand the changes
on the simulated yields, (4) The final evaluation of each strategy for both historical and future climatic
conditions as well as performance metrics of the irrigation strategy model based on the reported
annual yields in the historical climatic conditions.

As was described previously, the model simulations for each study site comprised of
seven different irrigation strategies, each analyzed with four different initial soil moisture conditions.
For the first three irrigation strategies (S1_RF, S2_SFI, S3_DI) each strategy-soil moisture iteration was
modeled with only one available water volume and for the remaining four strategies (S4_CFS, S5_ODT,
S6_ODTph, S7_GO), each strategy-soil moisture iteration was modeled with six different available
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water volume to irrigate. This resulted in 108 simulations for each site or a total 1836 simulations for
each 30 year long climatic conditions in the US Corn Belt. These results were then grouped depending
on the location of the site within the US Corn Belt, as each region had different implementation
of irrigation. The Western Corn Belt reported the most irrigation applied primarily in Kansas and
Nebraska. The Eastern Corn Belt reported very little irrigation. In the next step, a hydroclimatic
analysis of the main parameters (i.e., temperature, precipitation, and potential evapotranspiration) was
carried out. This aimed to further understand the changes between both historical and future climatic
conditions and the impacts on yield and water resources availability. The last step was the evaluation
of the model simulations, first for the performance of the model based on the annual yields on the
historical climatic conditions and lastly, a comparison of the best performing strategy (i.e., higher
potential yield with less applied water) within all the strategies considered.

• Irrigation strategy 

model of the 17 

study sites, with 

iterations of 7 

strategies, 4 initial 

soil moisture 

conditions and 6 

available water 

volumes. 

1. DIT 

Simulations
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Results.
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Western and Eastern 

Corn Belt.

2. Results Analysis and 

Aggregation • Analysis of main 

hydroclimatic 
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precipitation, and 

evapotranspiration).

3. Hydroclimatic 

Analysis

• Performance metrics of 

irrigation strategy 

model.

• Comparison of 

stochastic results for 

each site during the 

future climate 

conditions.

4. Irrigation Strategy 

Evaluation

Figure 4. Main Steps of the Experimental Design of Model Simulations.

2.5.1. Hydroclimatic Variability Analysis

The hydroclimatic data analyzed for each site was daily precipitation, maximum and minimum
temperature, solar radiation and the estimated potential evapotranspiration. The Corn Belt, particularly
the Eastern region, is known for its suitability for rainfed agriculture, nevertheless previous studies
(e.g., Alter et al. [64], Karl et al. [10], Gunn et al. [25], Pryor et al. [65], Djaman et al. [23] and
Dai et al. [66]) analyzed the impact of the past and projected hydroclimatic changes on the food
production in the Midwest US. To help offset the reliance on rainfed agriculture, studies such as Van
Dop et al. [67] project an increase in the number of counties within the U.S. where the optimal yield
could be improved by the application of irrigation, making this technology a profitable investment.
For both historical and future climatic conditions, the main hydroclimatic parameters (average
temperature, total precipitation and potential evapotranspiration) were analyzed within the months of
April to September which comprised the common 150 days of the growing season within the US Corn
Belt. The differences between each region of the Corn Belt and each time series were analyzed.

2.5.2. Model Performance Metrics

Model evaluation metrics assess goodness of fit between model predictions and data. One widely
used performance metric is the Mean Absolute Error (MAE). The MAE compares simulated yield with
the relative observed yields for each site. This was calculated as follows:

MAE =
1
n

n

∑
i=1
|Ys −Yo| (1)
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where Ys is simulated yield and Yo is the reported data. The advantage of using MAE is not only
that it is easy to interpret but also allows a comparison with previous studies (e.g., Liu et al. [43] and
Niyogi et al. [1]) where the same data sets were evaluated with different crop models.

2.5.3. Evaluation of Irrigation Strategies

The evaluation of the model simulations of each irrigation strategy was based on two limits to
assure a true optimization of irrigation application. These two limits were: (i) The optimal conditions
for irrigation application based on the simple deficit irrigation estimation, which defines the maximum
volume of irrigated water that is not exceeded and (ii) the optimal rainfed conditions, which defines
the minimum optimal yield that needs to be achieved. As a result, the simulated results must display
a higher potential yield than the rainfed (S1_RF) and higher savings (less irrigated water applied) as
compared to the simple deficit irrigation (S3_DI) strategy.

3. Results and Discussion

3.1. Hydroclimatic Variability Analysis

The monthly distribution within the growing season of hydroclimatic parameters: temperature,
precipitation, and evapotranspiration in the historical and future climatic conditions are shown in
Figure 5, which consists of two sets of plots. The left side (plots a, b, and c) show the historical climatic
conditions and the right side (plots d, e, and f) show the future climatic conditions. Each plot is
described by a colored central box (blue for Eastern, and red for Western Corn Belt) that represents
the distribution of the data where the first and third quartile are the lower and upper boundary lines
respectively and the central point indicates the median. The vertical lines extending from the box
indicate the data outside of the main quartiles. The outsiders represent the variability within the years
and the dotted lines represent the average trend for each parameter in the sites located in each region
of the US Corn Belt.

Considering the changes in temperature in both historical and future climatic conditions,
the variability within the sites in the Western Corn Belt is higher than in the sites located in the
Eastern Corn Belt. The trend in the future growing seasons seems to change, where it is expected
a warmer and earlier spring and lower temperatures during summer. The warming in the early
months has already changed the dates of the growing season in each county independently by around
12 days longer than it was a century ago [68]. It is estimated an overall warmer temperature during
the growing season which could affect not only corn agriculture but other productive crops. A more
intensive analysis of the temperature in the Midwest US performed by Dai et al. [66] showed that the
early growing season average temperature increased at a rate of 0.15 ◦C/decade overall, showing
different trends for minimum and maximum temperature as well as maximum solar radiation.

Precipitation in both historical and future climatic conditions showed to have a wider inter-annual
stochastic variation (i.e., the data outside the central box show a significant increase) from site to site
from all the other climate parameters. This randomness could be explained by the increase in short
duration heavy rainfalls that are predicted across the US Corn Belt. These extreme rainfall events show
an increasing trend, even though the average precipitation showed a general decreasing trend from
April to July in the Eastern Corn Belt and throughout all the growing season in the Western Corn Belt.
Van Wart et al. [69] demonstrated that the sites located in the Western Corn Belt were more frequently
subjected to an episode of transient and erratic rainfall in the critical development stage leading to
extra fieldwork, such as drying crops or even bigger yield lost.

The future climatic conditions show lower values of average solar radiation (from the NARCCAP
data set) which results in the lower estimation of potential evapotranspiration based on the
Penman-Monteith equation. The maximum obtainable yield is reached only when enough water
is provided to satisfy crop requirement; hence, irrigation is triggered when the crop has not enough
water to meet the maximum evapotranspiration requirements [19]. Climatic variability between
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different locations have a significant impact on the yield production, due to the interaction of
precipitation, potential evapotranspiration and plant growth requirements. In particular, the amount
of water required by maize throughout the growing season depends on the evaporative demand of
the atmosphere and water availability [18]. The difference between the two climatic conditions
(historical vs future) coincides with the temperature and precipitation changes which connote
significant variations of solar radiation, wind velocity, and humidity. Further studies such as that by
Basso et al. [70] analyzed the impact of this change in evapotranspiration for the current seeds used
in the Corn Belt and concluded that the current high yield can be obtained when the water supply is
constantly between 500 to 700 mm for the growing season.
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Figure 5. Box-and-whisker plots of the monthly trends of the hydroclimatic parameters in the historical
(left side a to c) and future (right side d to f) climatic conditions for the sites located in the Eastern
Corn Belt (blue) and the sites located in the Western Corn Belt (red).

3.2. Model Performance Metrics

The mean absolute error (MAE) was used to assess the performance of the irrigation
strategy model.

The MAE (Table 2) summarized the overall performance of the model for each site. For the
sites located in the Eastern Corn Belt, the model performed slightly better with an average MAE of
1.7 tons/ha where for the sites located in the Western Corn Belt the average MAE is 2.02 tons/ha.
Previous studies by Liu et al. [43] and Niyogi et al. [1] used the same onsite climatological data with
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three different crop models: the Hybrid-Maize [33], the Decision Support System for Agrotechnology
Transfer (DSSAT) [33] and the Integrated Science Assessment Model (ISAM) [63] in order to assess the
impact of model complexity on simulated corn yield in response to climate change. The accuracy of
the implemented model in this study shows similar prediction accuracy to the Hybrid-Maize model
which was the best of the three models used and was also the simplest crop model. These 17 case
studies results provide additional confidence in using the Deficit Irrigation Toolbox to achieve useful
model responsiveness to high hydroclimatic and spatial variability.

Table 2. Mean absolute error (MAE, tons/ha) of simulated corn yields in the historical climatic conditions.

Site Code
Observed Yield

[tons/ha]
Predicted Yield

[tons/ha] Mean Absolute Error
[tons/ha]Average Std. Dev Average Std. Dev

New Madrid W3 9.72 1.23 8.87 1.64 1.78
Topeka W2 7.77 1.46 7.53 1.83 0.94

Kirksville W1 6.96 2.10 7.24 1.52 2.11
Columbus W8 9.08 1.85 9.30 2.04 2.16
Brookings W5 7.25 2.07 7.33 1.87 2.47

Grand Forks W7 5.96 1.67 6.86 1.87 1.94
Iowa City W6 8.89 2.16 7.52 1.77 2.23

Olivia W4 9.51 2.08 9.72 1.83 1.49
Rochester W9 9.51 2.07 8.99 2.39 2.11

Baraboo E4 8.42 1.37 8.50 1.48 1.40
Beloit E6 8.87 1.52 8.91 1.84 1.21

DeKalb E5 9.96 1.62 9.84 2.59 1.98
Rensselaer E7 8.93 2.00 8.61 2.20 1.98

Tuscola E8 9.69 1.78 9.29 2.27 1.76
Huntington E3 8.83 1.70 8.29 2.14 1.52
Marysville E1 8.49 2.01 9.14 1.81 2.04

Toledo E2 9.39 1.68 9.55 2.24 1.69

3.3. Results of Evaluation of Irrigation Strategies

Yield development is impacted by water stress, which was different across sites and the historical
and future climatic conditions. Following the experimental design, for every study site, the stochastic
crop water production functions (SCWPFs) were estimated based on the limited available water
volumes. Figure 6 shows an example of the simulation results for the site in Topeka, KS (W2) for both
time series with initial soil moisture of 20%. The different shades of grey in Figure 6 represent the level
of optimization achieved by the strategies, where the SCWPF found in the white area are the optimal
simulations based on the evaluation metrics (Section 2.5.3). The results in the grey areas show only
water saving compared to the full supplemental irrigation.

The results in all 17 study sites indicate that water availability was enough in both historical
and future climatic conditions to grow corn under rainfed conditions with a very low yield and
with high variability between years. Also, all strategies show significantly different SCWPF in the
different soil moisture analyzed. The impact of the hydroclimatic variability between the historical and
future climatic conditions is shown simply by the simulated yield with the rainfed strategy (S1_RF).
Where the potential yield decreased around 20%, highlighting the need for future optimized irrigation
strategies that consider limited available water.

To summarize the main findings of the evaluation of the diverse irrigation strategies, for the case
of the constant supplemental irrigation in a fixed schedule strategy (S4_CFS) an improvement in yield
can be seen only above rainfed conditions, although small water savings compared to deficit irrigation
strategies can be seen only in wet soil conditions (i.e., above 30% initial soil moisture). The decision
tables and GET-OPTIS optimizers (S5_ODT, S6_ODTph, S7_GO) showed better results within all the
study sites. Both optimizers increased water productivity when compared to non-optimized irrigation
strategies. GET-OPTIS (S7_GO) showed better results for wet soil conditions with higher precipitation
variability and the Decision Tables performed better for dry soil conditions with high precipitation
variability. In particular, the optimized deficit irrigation with decision table strategy (S5_ODT) and
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with phenological stages strategy (S6_ODTph) showed improvement in all soil conditions in the
historical climatic conditions with more than 50 mm savings of irrigated water. The results during the
future climatic conditions demonstrate that the variability within the hydroclimatic parameters affects
differently each location, resulting in variable water demands for the entire region.
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Figure 6. 90% Quantile of Stochastic Crop Water Production Functions for the site in Topeka, KS (W2)
for (a) historical and (b) future climatic conditions with initial soil moisture of 20%.

The 90% quantile of Stochastic Crop Water Production Functions (SCWPFs) of the study sites
are significantly different at several levels of irrigation with a proportional increasing trend with the
available volume, where a higher level of irrigated volume is required for dry soil conditions. In wet
soil conditions (40% initial soil moisture), the irrigation strategies have no impact on the yield, showing
the importance of plant-soil moisture data to achieve precise irrigation scheduling. In all locations,
stochastic variability between years showed to be higher at low levels of irrigation. This was evidently
improved by GET-OPTIS and Decision Tables optimizers. These optimizers performed better for the
climates with low and variable rainfall were the irrigation can become the stable source of water for the
plant at the most important stages of crop development, the vegetative and reproductive. Plots of each
soil moisture-initial conditions for all the 17 study sites are presented in Supplementary Material SII.

Figure 7 shows the evaluation of all the simulation results during future climate conditions.
The optimal performing strategy, based on the highest achievable yield with the lowest applied water,
is shown for each soil moisture conditions considered.

A detailed evaluation of the optimal irrigation strategy is shown in Supplementary Material SIII,
where the percentage of improved yields and water savings are shown based on the two limits set to
ensure the optimization of irrigation strategies. Regarding the improvement in the potential yields,
Tuscola, IL (E8) for up to 85% in dry soil conditions and 21% for wet soil conditions. Topeka, KS (W2)
also show the largest improvement, with more than 70% in dry soil conditions and 12% in wet soil
conditions. Regarding irrigated water savings, Huntington, IN (E3) had more than 90 mm in savings
in dry soil conditions and Rensselaer, IN (E7) and Toledo, OH (E2) had around 100 mm in savings
for wet soil conditions. Grand Forks, ND (W7) and Columbus, NE (W8) showed improvements
above the 100 mm for dry soil conditions and wet soil conditions respectively. In both locations
(W7 and W8) irrigation technologies are already being implemented, highlighting the potential of
deficit irrigation technologies to maximize water productivity. The sites located in the center of the
Corn Belt (i.e., Rochester, MN (W9) Baraboo, WI (E4), and Beloit, WI (E6)) in wet soil conditions
showed no improvement in yields compare to the rainfed strategy S1_RF.
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Figure 7. Optimal irrigation strategy for every initial soil moisture [10–40%] for future climatic conditions.

3.4. Summary of Discussion

Recommendations for full or limited irrigation differ in practice and literature, hence the
evaluation of a wide range of irrigation strategies was carried out. Results highlight the potential
of deficit irrigation to be beneficial for crop yield, yet also considering rainfed and supplemental
irrigation approaches. The optimization of deficit irrigation strategies increased water productivity for
the historical climatic conditions as well and showed potential to conserve water and improve yield
productivity for the future climatic conditions. In years of predicted water scarcity, yields of at least
60% could be achieved with 200 mm of irrigation water at very high reliability when optimization
strategies are used. In the same conditions, the rainfed strategy achieved less than 40% in the study
sites of the Corn Belt. The simulated level of irrigated water coincides with the optimum crop water
productivity values reported for irrigated maize by Zwart et al. [29], demonstrating the high risk
of non-optimized schedule for sites with high climate variability. Based on the performance of the
strategies, the future investment in irrigation equipment can be expected to happen primarily in the
sites located in the Eastern Corn Belt within Ohio and Great Lakes water resource region. The sites
located in the Western Corn Belt, where there is already irrigation, are expected to continue adapting
for efficient irrigation practices to minimize the impact of the water demand on other vital demands.
The exception of Iowa and Minnesota in the Upper Mississippi water resource region where the
implementation of irrigation did not show a significant improvement of the rainfed agriculture for it
to be considered a profitable investment base merely on the gains in simulated yields.
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3.5. Limitations

The irrigation strategy model has several limitations. The first concern was that the observed
data available was for only rainfed conditions, therefore the model showed slightly different results
for the counties where irrigation is already being applied. Additionally, the simplicity of the SWB
has inherent limitations predicting crop yields for the different growing season dates. Another
simplification of our experimental designed is the choice of 10% ranges of initial soil moisture
percentage due to the lack of data in different temporal scales. Despite such limitations, the model
framework, as well as the experimental analysis proved its high usefulness and big potential for further
specialized studies.

4. Conclusions

This study aimed to analyze the hydroclimatic variability at different temporal scales and to
evaluate supplemental and deficit irrigation optimizers under potential water scarcity conditions
over US Corn Belt, where rainfed conditions are expected to change and adaptations strategies are
needed. The experimental design using the DIT were used to integrate different irrigation strategies
into a parsimonious crop model that boosts crop efficiency and reduce the impact on water resources
in a changing climate. The previously favorable hydroclimatic conditions in the Corn Belt for rainfed
agriculture are estimated to change, opening the opportunity for mitigation strategies. The results
show a decreasing trend in seasonal precipitation but an increasing trend in temperature and potential
evapotranspiration for future growing seasons. The spatial and temporal variability of the precipitation
changes shown by the increased stochastic variations suggests the need for additional catchment
capacities and an increase in the water demand for agricultural production affecting all the other
water demands. Higher hydroclimatic variability implies higher risks yield reduction, consequently,
the simulations showed the great potential of deficit irrigation optimization strategies to increase
the water and yield productivity for future growing seasons. The Decision Tables and GET-OPTIS
optimizers showed good results for the study sites, GET-OPTIS showed better results for wet soil
conditions with higher precipitation variability and the Decision Tables performed better for dry soil
conditions seasons with high precipitation variability. The regionalization of more studies of areas
surrounding the studied sites where a more complex crop model with specialized soil and climate
data can be done based on the optimal irrigation scheduling strategy produced by this study.

Supplementary Materials: The following are available at http://www.mdpi.com/2073-4441/11/12/2447/s1,
The supplementary material consists of three parts: Supplementary Material SI: Detailed information about the
weather station and important seeding and harvest date for each study site during each climatic conditions;
Supplementary Material SII: The extensive simulation results for all study sites in the different initial soil moisture
conditions; Supplementary Material SIII: The detailed evaluation of optimal irrigation strategy for future climatic
conditions.
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Abbreviations

The following abbreviations are used more than once in this manuscript:

CWP Crop Water Productivity
US United States of America
SCWPF Stochastic Crop Water Production Functions
SWB Simple Soil-Water Balance Model for Irrigated Areas
CMA-ES Evolution Strategy with Covariance Matrix Adaptation
GET-OPTIS Global evolutionary Technique for Optimal Irrigation Scheduling
S1_RF Rainfed irrigation
S3_DI Simple deficit irrigation
S4_CFS Constant supplemental irrigation in a fixed schedule
S5_ODT Optimized deficit irrigation with decision table
S6_ODTph Optimized deficit irrigation with decision table with phenological stages
S7_GO Optimized deficit irrigation with GET-OPTIS
MAE Mean Absolute Error
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