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Abstract: Urban water systems are being stressed due to the effects of urbanization and climate
change. Although household rainwater tanks are primarily used for water supply purposes, they also
have the potential to provide flood benefits. However, this potential is limited for critical storms,
as they become ineffective once their capacity is exceeded. This limitation can be overcome by
controlling tanks as systems during rainfall events, as this can offset the timing of outflow peaks from
different tanks. In this paper, the effectiveness of such systems is tested for two tank sizes under a
wide range of design rainfall conditions for three Australian cities with different climates. Results
show that a generic relationship exists between the ratio of tank:runoff volume and percentage peak
flow reduction, irrespective of location and storm characteristics. Smart tank systems are able to
reduce peak system outflows by between 35% and 85% for corresponding ranges in tank:runoff

volumes of 0.15–0.8. This corresponds to a relative performance improvement on the order of 35%
to 50% compared with smart tanks that are not operated in real-time. These results highlight the
potential for using household rainwater tanks for mitigating urban flooding, even for extreme events.

Keywords: smart rainwater tanks; real-time control; urban flooding; simulation-optimization;
genetic algorithms

1. Introduction

Urban water supply systems are experiencing unprecedented changes due to population growth [1],
increased urbanization [2], and climate change [3]. Population growth and increased urbanization lead
to an increase in demand for water resources [4], while climate change is more likely to reduce the
amount of water that is available to meet this demand [5]. These are creating a number of challenges
for current urban water systems, as well as the design of and planning for future systems.

Household rainwater tanks have been shown to be an effective means of assisting with addressing
this problem, as they have the ability to supplement existing water supplies by using a water resource
that would otherwise not be utilized. For example, Coombes and Barry [6] reported that household
rainwater tanks can significantly increase the resilience of water supply systems under natural variations
and future climate change. Similarly, Newman et al. [7] and Burns et al. [8] suggested that tank water
usage can lead to a reduction in mains water use, which will help existing water supply systems to
meet required demand. Paton et al. [9,10] and Beh et al. [11,12] found that additional supplies from
household rainwater tanks, along with those from other sources, such as stormwater harvesting and
desalinated water, can form a part of optimal integrated strategies for increasing regional water supply
security for cities.

In addition to increasing water supply security, household rainwater tanks have a number of
other benefits, such as improving the water quality of receiving waters [13,14] and reducing peak flows
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for short-duration storm events [15–19]. The ability of household rainwater tanks to reduce peak flows
is of particular interest, as not only water supply systems, but also stormwater systems, are likely
to be adversely affected by increased urbanization and climate change. Increased urbanization is
often associated with urban infill and densification, which will increase the imperviousness of urban
catchments, and hence result in increased runoff [20]. In addition, climate change is likely to cause
more extreme rainfall events [21], placing further pressure on existing stormwater systems.

However, the capacity of rainwater tanks to reduce discharge rates from connected roofs is
generally not fully utilized in practice, as they are commonly not empty during storm events [22].
This limitation can be overcome with the aid of smart technologies, which enable rainwater tanks to be
emptied based on knowledge of impending rainfall events, thereby maximizing available retention
storage [14,23–25]. For example, South East Water (Melbourne, Australia) use controlled outlets to
empty rainwater tanks before a forecasted storm event, which can maximize retention capacity to
reduce peak flows [26,27]. However, smart rainwater tanks operated by simply emptying tanks prior
to a storm event, so that they essentially behave like a retention tank during a storm event, can be
limited in their ability to reduce peak flows for storm events that have large volumes of runoff [18,28].
Consequently, while tanks that are emptied prior to the arrival of storm events with the aid of smart
technologies are able to deal with nuisance flooding, they are generally unable to prevent the upgrade
of existing stormwater systems to cope with storms associated with the increased runoff resulting from
the impacts of urbanization and climate change [18].

In order to address this shortcoming, Di Matteo et al. [29] introduced an approach for controlling
the outflow from systems of rainwater tanks in real time during a storm event so as to minimize system
peak flow rate based on knowledge of future rainfall patterns. They showed that by using a real-time
systems control strategy during the storm, this approach is able to reduce peak flows by up to 48%
under conditions that result in large runoff volumes (i.e., 1 in 100 year rainfall event of 24 h duration),
compared with no reduction in peak flow when tanks are emptied prior to the rainfall event, but not
operated as systems during the rainfall event.

However, Di Matteo et al. [29] only considered a single return period, a single rainfall duration
and a single location (Adelaide, SA, Australia). While this provides a proof-of-concept of the approach,
it does not provide a comprehensive assessment of the effectiveness of the approach under the range
of conditions likely to be experienced for different urban catchments. Consequently, the objective of
this paper is to compare the effectiveness of tanks that are emptied prior to the arrival of a storm and
then operated as systems in real time during storm events (referred to as “real-time smart systems
approach” henceforth) and tanks that are emptied prior to the arrival of storms, but not controlled
during storm events, under a range of return periods, storm durations, and tank sizes for locations
with different climates.

The remainder of this paper is organized as follows. The methodology used to perform the
assessment of the effectiveness of the real-time smart systems approach under different conditions
is given in Section 2, followed by details of the case study and experimental methods to which this
approach is applied in Section 3. An outline and discussion of the case study results are given in
Section 4 and a summary and conclusions are provided in Section 5.

2. Real-Time Smart Systems Approach

2.1. Conceptual Outline

By controlling a number of smart rainwater tanks as systems during storm events, the timing
of the peak flows from the sub-catchments contributing to each tank can be shifted, which will lead
to a reduction in the peak discharge rate of the system as a whole. In order to illustrate this concept,
a typical two-storage smart rainwater tank system is used (Figure 1). In this system, each tank is
fed from roof runoff via a system of gutters and downpipes and the outflow from the tanks feeds
into a drainage system (simplified as a freely draining stormwater pipe in the schematic in Figure 1).
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Both tanks are emptied prior to the arrival of a storm and the outflow from each tank is controlled
independently throughout the storm event via remote-controlled, actuated orifices so as to minimize
the total system outflow based on information on the temporal distribution of the incoming rainfall.
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Figure 1. Schematic of an example two-tank system operated using the real-time, smart systems approach.

A conceptual representation of how the use of the real-time, smart systems approach is able to
reduce peak flows is given in Figure 2. In this figure, the behavior of the real-time smart systems
approach is compared with that of a benchmark approach, as part of which the tanks are drained prior
to the arrival of the storm, as is the case with the real-time, smart systems approach, but where the
orifices remain closed during the rainfall event so that the tanks behave as retention tanks during the
storm. As can be seen, when the benchmark approach is used (Figure 2a), both tanks are starting to fill
from the beginning of the storm. Once the tanks are full, but rainfall continues, both tanks overflow,
and the system operates as though there is no storage from that point onwards. As a result, the peak
flows from the two sub-catchments are coincident, resulting in a relatively large outflow from the
system as whole.

In contrast, when the real-time smart systems approach is used, the outlet of one of the tanks
remains open at the beginning of the rainfall event. As a result, the peak outflows from the two
tanks do not occur at the same time, but are distributed over a longer time period, reducing the peak
outflow from the system as a whole (Figure 2b). By offsetting the outflows from the two tanks, both the
stormwater system and the available storages are being utilized more effectively. With regard to the
stormwater system, the real-time smart systems approach enables the system to be used throughout
the duration of the entire rainfall event, rather than being idle for part of the rainfall event while
the tanks are being filled and then receiving a high load once both tanks spill. With regard to the
storages, the real-time smart systems approach enables the available storage to be used at different
times, ensuring empty storage is available throughout the rainfall event and enabling the outflow
hydrographs from the two sub-catchments to be staggered.
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With the help of real-time control, numerous control strategies can be used to reduce the system
peak flow rate. Which strategy is optimal is a function of several complex, interacting factors, such as
rainfall pattern, time of concentration, tank capacity, etc. Despite this complexity, the principle
illustrated above underpins most of these strategies. However, which strategies maximize peak
system outflow needs to be determined for particular systems and storm events using advanced
optimization techniques. Details of the formulation of the above optimization problem are given in the
following sub-section.
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Figure 2. Conceptual illustration of performances of (a) “benchmark approach” (i.e., tanks emptied
prior to the arrival of the storm, but not controlled during the storm) and (b) “real-time smart systems
approach” (i.e., tanks emptied prior to the arrival of the storm, and controlled as a system during the
storm so as to minimize peak system outflow).
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2.2. Formulation of Optimization Problem

As mentioned above, as part of the real-time smart systems approach, the outlets of systems
of tanks can be operated independently during a rainfall event. Given the large number of choices
associated with when to open and close each of the tank outlets, and by how much, as well as the
variability in rainfall events, it is challenging to identify control schemes that maximize flood peak
reduction. Consequently, the optimal control strategies for each tank are identified using a formal
optimization approach, based on knowledge of the hyetograph of an incoming rainfall event. It should
be noted that these hyetographs are assumed to be known as part of the experiments conducted in
this study, as was the case in Di Matteo et al. [29], thereby providing a theoretical upper bound on the
effectiveness of the real-time smart systems approach.

In order to enable the peaks of the hydrographs from different roofs to be offset, the outflow from
each tank is adjusted by changing the timing and degree of opening of the orifices. Consequently,
the decision variables of the formal optimization problem are the percentage opening of the orifice for
each tank, ranging from 0% (fully closed) to 100% (fully open), for each control time step during a
rainfall event. The number of control time steps and the control horizon depend on the storm duration
and number of time steps desired. For this optimization problem, the decision variables for the ith
control strategy are given as:

DVi =
[
Ot=0

T=1, Ot=1
T=1, . . . , Ot=N

T=1, . . . , Ot=0
T=S, Ot=1

T=S, . . . , Ot=N
T=S

]
(1)

where, Ot
T is the orifice opening fraction for the tth control time step for a control horizon with N time

steps, and for tanks T = 1, 2, . . . S, where S is the number of tanks being controlled in the system.
The optimization objective is to identify the control scheme(s) that minimize(s) the peak flow rate

leaving the system. The objective function of the formal optimization problem is therefore given by:

MINIMIZE
{
max

(
Qsystem

)}
(2)

where, max(Qsystem) is the peak flow rate measured at the system outlet.

2.3. Optimization Process

In order to solve the optimization problem outlined in Section 2.2, a simulation-optimization
approach is used [30,31] (Figure 3). An evolutionary algorithm [30] is used to select values of the
decision variables (i.e., the combination of the degree of opening of the orifices of each tank at each time
step) (see Section 2.2). A stormwater simulation model is then used to evaluate the peak flow rate at the
system outlet for the selected values of decision variables. Based on the relative success of the selected
decision variable values in reducing system peak flow rates, these values will be adjusted using the
operators of the evolutionary algorithm (i.e., selection, cross-over, and mutation) so as to further reduce
peak flows. This process of selecting a particular control strategy with the aid of the evolutionary
algorithm, evaluating the effectiveness of this strategy using a simulation model, adjusting the control
strategy based on the relative success of the previous strategies using the evolutionary algorithm, etc.
is repeated hundreds or thousands of times until certain stopping criteria have been met, such as
completing a fixed number of iterations or until there has been no reduction in peak flows for a certain
number of iterations [31].
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Figure 3. Details of the simulation-optimization approach used to identify tank outflow control
strategies that minimize system peak outflows.

3. Case Study and Experimental Methods

3.1. System Configuration

The effectiveness of the real-time smart systems approach is tested for a theoretical residential
two-allotment catchment adapted from Di Matteo et al. [29], as illustrated in Figure 1. Details of the
configuration of the case study system are given in Table 1. The catchment consists of two 200 m2 roofs,
each of which is fully connected to a rainwater tank. The outlets of the rainwater tanks are directly
connected to the stormwater pipe, which is assumed to discharge freely. It is assumed that there is
no initial loss for the storm event, which enables the volumes of runoff from various storms to be
directly compared. The tank height is set as 2 m to represent typical above-ground rainwater tanks.
As mentioned previously, the orifice opening percentages are the decision variables and are therefore
determined with the aid of a genetic algorithm as part of the optimization process. This simple system
was selected to enable the impact of the control rules on the ability to reduce system peak flows to be
isolated and to enable the results to be applicable to other catchments with different roof sizes.

Table 1. Configuration of case study system.

Design Parameter Value

Orifice opening percentage (%) Variable
Tank height (m) 2

Roof catchment size (m2) 200
Percentage of roof connected to tank (%) 100

Initial loss (mm) 0
Number of roofs 2
Number of tanks 2

3.2. Implementation of Simulation-Optimization Approach

The simulation-optimization approach (Section 2.3) was implemented by linking two existing
software packages in the Python language: DEAP (Distributed Evolutionary Algorithms in Python,
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developed by the Computer Vision and Systems Laboratory at Université Laval, in Quebec City,
Canada. [32]) and PySWMM (Python Wrapper for Stormwater Management Model, developed by
EmNet LLC in South Bend, the United States [33]). DEAP (v1.3.0) is an evolutionary computation
framework developed for solving real-world problems by applying evolutionary algorithms to
simulation modules and is used to select the decision variable values i.e., the degree and timing
of the opening of the tank outlets (see Sections 2.2 and 2.3) [34]. The NSGA-II genetic algorithm
(Non dominated sorting genetic algorithm) was chosen in the DEAP package, as its variants have
already been used successfully for the optimization of urban stormwater systems [29,35,36]. For each
optimization run, a population size of 500 was used and the optimization process was continued for
1000 generations to ensure the convergence of the optimization process [29]. All optimization runs
were repeated three times from different random starting positions in the decision variable space due
to the stochastic nature of genetic algorithms.

The stormwater simulation model used to evaluate the peak flow performance of the controlled tank
systems was SWMM (Stormwater Management Model, developed by the United States Environmental
Protection Agency [34]). SWMM (v5.1.012) is a widely used dynamic rainfall-runoff-subsurface
runoff model that enables the flows from the outlets of rainwater tanks to be controlled with the aid
of PySWMM (v0.5.1) (An example SWMM model is available in Supplementary Materials File S3).
As mentioned above, these control schemes are selected by the genetic algorithm implemented in the
DEAP package, thereby operationalizing the approach illustrated in Figure 3.

3.3. Computational Experiments

In order to test the effectiveness of the real-time smart systems approach, a number of computational
experiments were conducted for storm events with different annual exceedance probabilities (AEPs),
which correspond to the percentage of a particular storm event being exceeded in any one year,
durations and storm patterns in three Australian capital cities (Adelaide, Melbourne and Sydney),
as summarized in Table 2. These cities were chosen as their different climates produce different
extreme rainfall intensity (see Table 3 for examples of the design rainfall intensity for the 1% AEP).
As summarized in Li et al. [37], Adelaide’s Mediterranean climate with wet winters and hot dry
summers has the lowest rainfall intensity of all three cities (see Table 3). Melbourne’s moderate oceanic
climate produces severe events in spring and summer due to thunderstorms, resulting in higher rainfall
intensity than in Adelaide. Sydney’s temperate climate produces the highest rainfall intensity of all
three cities, with the extreme rainfall produced in summer, by convective processes.

Table 2. Summary of experiment configurations.

Parameter Value

Location in Australia
Adelaide, South Australia

Melbourne, Victoria
Sydney, New South Wales

Storm frequency (% AEP) 50, 10, 5, 2, 1

Storm duration 30 min, 1 h, 6 h, 12 h, 24 h

Storm pattern ten burst patterns

Tank size
(
m3 ) 2, 10

Orifice opening percentage (%) 0% (Fully closed), 10%, . . . , 90%, 100% (Fully open)

Orifice diameter 20 mm

Control update time step 5 min for 30 min, 1 h storms
1 h for 6 h, 12 h, 24 h storms
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Table 3. Design Rainfall Intensity (mm/h) for the 1% annual exceedance probability (AEP) event.

Duration 30 min 1 h 6 h 12 h 24 h

Adelaide 67.4 43.5 12.3 7.2 4.1
Melbourne 78.3 48.6 13.5 8.54 5.46

Sydney 118 76.7 26 18 12.5

Source: Australian Bureau of Meteorology Design Rainfall System [38].

As the real-time smart systems approach is optimized for a particular rainfall event, its performance
can be quite sensitive to the characteristics of this event. Consequently, experiments were repeated for
five annual exceedance probabilities, including 1%, 2%, 5%, 10%, and 50%, as well as five different
durations, including 30 min, 60 min, 360 min (6 h), 720 min (12 h), and 1440 min (24 h). These were
selected as they represent typical ranges of AEPs and critical durations that might be of interest for
sub-catchment scale urban drainage infrastructure.

Storm temporal patterns can have a significant impact on design peak flow estimates. Use of a
single storm temporal pattern could introduce significant biases in the estimate of the design flow [39].
Consequently, in order to obtain unbiased estimates of peak design flow so that the effectiveness of the
real-time smart systems approach can be evaluated in a robust manner, the approach recommended by
Australian Rainfall and Runoff 2019 (ARR2019) [39] was adopted. As part of this approach, design
peak flows for a given duration and AEP are estimated by taking the average peak flow from ten
different storm temporal patterns, instead of using a single storm temporal pattern. These temporal
patterns were selected based on the recommendations provided by ARR2019 [39]. Consequently,
for the remainder of this paper, the term ‘peak flow’ for a given duration and AEP refers to the design
peak flow estimated from the average of the 10 storm temporal patterns.

All computational experiments were repeated for two tank sizes, including 2 m3 and 10 m3. A 2 m3

tank was considered to be a reasonably popular size for a rainwater tank in Australia, while a 10 m3

rainwater tank was selected as a reasonable upper limit to a publicly acceptable size for residential
allotments in an urban infill area.

For the real-time smart system approach, eleven different degrees of opening were considered
for each tank outlet, consisting of orifice openings corresponding to 0% (fully closed), 10%, 20%, . . . ,
100% (fully open) open, for an orifice diameter of 20 mm. These openings were implemented for two
different control time steps, depending on storm duration. As can be seen from Table 2, a 5 min control
time step was used for storms of 30 and 60 min duration, whereas a 1 h time step was used for storms
of 6, 12 and 24 h duration. This was done to strike an appropriate balance between search space size
and the ability to identify the control strategy that minimizes system peak outflow.

3.4. Performance Assessment

In order to assess the effectiveness of the real time, smart systems approach, its performance was
compared to that of the benchmark approach, as defined in Section 2.1. For both these approaches,
the tanks were assumed to be empty prior to the start of the rainfall event. As mentioned previously,
the key difference between the two approaches is that for the benchmark approach, tank outflows are
not controlled during the rainfall event, with the orifice remaining closed, whereas for the real-time
smart systems approach, the orifice opening/closing of each tank is optimized independently during
the rainfall event so as to maximize system peak flow reduction, as explained in Section 3.

To evaluate the performance of both of these approaches, a baseline scenario with no tanks
was chosen as a basis of comparison. Therefore, the peak flow rate reduction for the ith experiment
configuration and jth storm event is given by:

System peak flow reduction =

1−
max

(
Qi, j

Max

)
max

(
Qbaseline, j

Max

)
× 100(%), (3)
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where, max
(
Qi, j

Max

)
is the peak flow of one specific trial, and max (Qbaseline, j

Max ) is the peak flow from the
case without a tank (“No tank”).

4. Results and Discussion

4.1. Performance of Real-Time, Smart System Approach

The results for the two-tank case study considered show that the real-time smart systems approach
can be highly effective in reducing peak flows in urban stormwater systems, with minimum peak flow
reductions of ~30% under even the most severe rainfall conditions considered, provided the temporal
variation of the incoming rainfall event is known (dashed orange lines, Figure 4). For Adelaide
and Melbourne, this level of performance can be achieved using a 2 m3 tank (dashed orange lines,
Figure 4a,c, respectively), whereas for Sydney, this requires a 10 m3 tank (dashed orange line, Figure 4f),
as a result of the higher intensity rainfall, and hence higher runoff volumes, experienced in this city.
For less severe events, such as those with an AEP of 10%, use of the real-time, smart systems approach
is able to achieve even greater minimum peak flow reductions of around 60% for 10 m3 tanks. (dashed
orange lines, Figure 4b,d,f).

The results in Figure 4 also show that long-duration events (24 h—solid orange lines) are more
critical than short duration events (30 min—dashed orange lines) in terms of the ability of household
rainwater tanks to reduce flood peaks, with the peak flow reductions obtained for the shorter duration
events generally on the order of 20% and 40% greater than those obtained for the corresponding longer
duration event for the 2 m3 (Figure 4a,c,e) and 10 m3 (Figure 4b,d,f) tanks, respectively. This trend in
the decreasing effectiveness of household rainwater tanks in reducing flood peaks for longer duration
events is confirmed by the results obtained for the intermediate durations (see Figure 5 for results for
Adelaide for 2 m3 tanks and Appendix A for similar results for other locations and tanks sizes) and is
in agreement with the findings and assumptions in previous studies [18,29]. It should be noted that
although shorter duration events generally result in larger peak flows for catchments without tanks,
this is generally not the case once tanks have been added. This is because the runoff volume produced
by shorter duration events can generally be fully contained within the tanks. In contrast, while the
intensity of long-duration events is less, the runoff volume produced is larger, often exceeding the
capacity of the tanks. As a result, for catchments with tanks, and downstream detention infrastructure
operating near capacity, attenuation of runoff for longer duration events is generally more critical,
as these events produce potentially significant peak flows leaving the catchment (post-tank, as can be
seen in Appendix B).

In general, the performance of the real-time smart systems approach (orange lines) is noticeably
better than that of the benchmark approach (blue lines) for the same rainfall duration (e.g., either
dashed or solid lines) (Figure 4, Figure 5 and Appendix A). As can be seen in Figure 4, Exceptions are:

(i) When the available tank storage exceeds the total rainfall volume, as is the case for the
short-duration rainfall events for the 10 m3 tanks for Adelaide (Figure 4b), Melbourne (Figure 4d)
and AEPs of 50%, 10%, and 5% for Sydney (Figure 4e), where both approaches result in 100%
peak flow reduction (i.e., the solid orange and blue lines are both at 100%), as all of the runoff is
able to be retained in the tanks.

(ii) When the available tank storage is only slightly less than the total rainfall volume, in which case
the benchmark storage still performs well, as is the case for an AEP of 50% for the long duration
events for the 10 m3 tank for Adelaide (Figure 4b) and Melbourne (Figure 4d) (i.e., the dashed
orange and blue lines are close together).

(iii) When long duration, extreme events at locations with higher rainfall intensity such as Sydney,
are combined with smaller tank volumes (Figure 4e, dashed orange and blue lines), suggesting
that the capacity of the tanks is insufficient to mitigate the large volume of runoff generated,
even with the real-time smart systems approach.
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Figure 4. Performance of real-time, smart tank systems versus benchmark tanks for the three locations
(Adelaide, Melbourne, and Sydney), two tank sizes (2 × 2 m3 and 2 × 10 m3), and five AEPs (50%, 10%,
5%, 2%, and 1%) considered. For the sake of clarity, only results for the shortest (30 min) and longest
(24 h) durations considered are shown, with results for the full set of durations considered shown
in Figure 5 and Appendix A. (A full dataset of peak flow reduction is available in Supplementary
Materials File S1). The figure shows the performance of 2 m3 real-time smart tank systems versus
benchmark tanks for (a) Adelaide, (c) Melbourne (e). Sydney and 10 m3 real-time smart tank systems
versus benchmark tanks for (b). Adelaide, (d). Melbourne (f) Sydney.
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Figure 5. Percentage peak flow reduction of benchmark tanks and real-time smart tank systems for a
range of durations and AEPs with 2 × 2 m3 tanks for Adelaide.

The above results suggest that the performance of both benchmark tanks and real-time smart
tank systems is affected by the volume of runoff generated by a rainfall event, which is a function of
location, AEP and rainfall duration, as well as available tank volume. Consequently, in order to enable
the above results to be generalized, the ratio of tank volume to total runoff is plotted against peak
flow percentage reduction for all computational experiments conducted (Figure 6). As can be seen,
the performance of benchmark tanks deteriorates rapidly once the tank volume to runoff ratio drops
below 1, to the point where (blue circles and dashed line, Figure 6):

(i) below ratios of 0.8, peak flow reduction generally drops to below 30%;
(ii) below ratios of 0.6, peak flow reduction generally drops to below 20%;
(iii) below ratios of 0.3, peak flow reduction generally drops to below 10%; and
(iv) below ratios of 0.15, peak flow reduction is generally 0%.

In contrast, use of the real-time smart systems approach is able to maintain much higher levels of
peak flow reduction as the tank volume to runoff volume ratios decrease, where a ratio >0.1 generally
results in a minimum peak flow reduction of 30%, which increases to more than 50% for ratios in excess
of 0.3 and to more than 60% for ratios in excess of 0.5 (orange circles and dashed line, Figure 6).

For tank to runoff volume ratios between approximately 0.15 and 0.8, the additional peak flow
reduction that can be achieved by using the real-time smart system approach, compared with using
the benchmark approach, is in the order of 35–50% (green solid line, Figure 6). For ratios greater than
this, the benefit of using the real-time smart system approach reduces, not because of a reduction in the
performance of these systems, but because of the significantly increased performance of the benchmark
approach as the available tank volume approaches the runoff volume generated. For ratios less than
0.15, the performance of the real-time smart system approach deteriorates rapidly, as storage that is
less than 15% of the runoff volume is insufficient to balance the outflows from the two tanks in a way
that is able to offset their peaks.



Water 2019, 11, 2428 12 of 23

Water 2019, 11, x FOR PEER REVIEW 11 of 23 

 

(i) When the available tank storage exceeds the total rainfall volume, as is the case for the short-

duration rainfall events for the 10 m3 tanks for Adelaide (Figure 4b), Melbourne (Figure 4d) and 

AEPs of 50%, 10%, and 5% for Sydney (Figure 4e), where both approaches result in 100% peak 

flow reduction (i.e., the solid orange and blue lines are both at 100%), as all of the runoff is able 

to be retained in the tanks. 

(ii) When the available tank storage is only slightly less than the total rainfall volume, in which case 

the benchmark storage still performs well, as is the case for an AEP of 50% for the long duration 

events for the 10 m3 tank for Adelaide (Figure 4b) and Melbourne (Figure 4d) (i.e., the dashed 

orange and blue lines are close together). 

(iii) When long duration, extreme events at locations with higher rainfall intensity such as Sydney, 

are combined with smaller tank volumes (Figure 4e, dashed orange and blue lines), suggesting 

that the capacity of the tanks is insufficient to mitigate the large volume of runoff generated, 

even with the real-time smart systems approach. 

The above results suggest that the performance of both benchmark tanks and real-time smart 

tank systems is affected by the volume of runoff generated by a rainfall event, which is a function of 

location, AEP and rainfall duration, as well as available tank volume. Consequently, in order to 

enable the above results to be generalized, the ratio of tank volume to total runoff is plotted against 

peak flow percentage reduction for all computational experiments conducted (Figure 6). As can be 

seen, the performance of benchmark tanks deteriorates rapidly once the tank volume to runoff ratio 

drops below 1, to the point where (blue circles and dashed line, Figure 6): 

(i) below ratios of 0.8, peak flow reduction generally drops to below 30%; 

(ii) below ratios of 0.6, peak flow reduction generally drops to below 20%; 

(iii) below ratios of 0.3, peak flow reduction generally drops to below 10%; and 

(iv) below ratios of 0.15, peak flow reduction is generally 0%. 

 
Figure 6. Relationship between the ratio of tank to runoff volume and peak flow reduction for all
computational experiments (i.e., for all locations, AEPs, rainfall durations, and tank sizes considered)
for benchmark tanks (blue circles and dashed line) and real-time smart tank systems (orange circles and
dashed line). The green solid line represents the additional peak flow reduction that can be achieved
by using real-time smart tank systems control based on the difference between the two trendlines
fitted to the data sets. The trendlines were developed by trial and error and visual inspection for
data where x < 0.9 (Trendline—Real-time, smart tank systems: y = 2 × ln(x) + 90 (r2 = 0.7953) and
Trendline—Benchmark tanks: y = 70 x4

− 20 x3 + 10 x2 + 10 x (r2 = 0.8327). Results for tank to runoff

volume ratios in excess of 1 are not shown, as they all result in peak flow reductions of 100%.

In summary, the results of the computational experiments conducted suggest that significant
peak flow reductions can be achieved by using the real-time smart systems approach under a wide
range of conditions, including extremes. There is a defined relationship between the percentage of
peak flow reduction achieved and the ratio of tank to runoff volume for both the benchmark (blue
dashed line, Figure 6) and real-time smart tank systems (orange dashed line, Figure 6) approaches.
These relationships indicate that while the peak flow reduction ability of the benchmark approach
deteriorates rapidly as the ratio of tank to runoff volume decreases, this is not the case for tanks
controlled as systems in real-time. In fact, the latter are able to achieve peak flow reductions of 50%
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with tank volumes that are less than 40% of the runoff volume and only require tank volumes of
20% to achieve peak flow reductions in excess of 40%. In relative terms, use of the real-time smart
systems approach is able to achieve between 35% and 60% greater peak flow reductions than use of the
benchmark approach for the majority of ratios of tank to runoff volumes (green solid line, Figure 6).
This highlights the potential of using real-time, smart tank systems for reducing urban flooding or
prevent the need to upgrade existing stormwater systems in certain circumstances.

4.2. Reasons for Increased Performance of Real-Time Smart Systems Approach

The way the real-time control of systems of tanks is able to result in significantly greater peak flow
reductions than the use of benchmark tanks is illustrated in Figure 7 for a long duration (24 h) event
with an AEP of 1% for Adelaide. (An example dataset of operation rules is available in Supplementary
Materials File S2).

Figure 7a,b shows that for the benchmark tanks, both orifices are closed throughout the rainfall
event (Figure 7c). Consequently, both tanks fill to capacity during the early stages (t = 5 h) of the
storm event, which leads to a lack of ability to accommodate the first (t = 12 h) and second (t = 22 h)
peaks (Figure 7a,e). As a result, the benchmark tanks spill for the remainder of the rainfall event and
have no further influence on outflow (Figure 7e,g). In contrast, when the real-time smart tank systems
approach is used, the orifices of both storages are mostly open before the arrival of the first rainfall
peak, which occurs from t = 1 h to t = 11 h (Figure 7b,d), providing sufficient storage capacity to capture
this peak and reduce the system outflow (t = 12 h). This is achieved by partially closing the orifices of
both tanks (80% closed for Storage 1, and 40% closed for Tank 2).

After the first peak has passed, Tank 1 is emptied (t = 12–13 h), followed by Tank 2, once all of
the water has been drained from Tank 1 (t = 13 h) (Figure 7b,f). Before the arrival of the second peak,
the orifices of both tanks are almost open to ensure available storage capacity is maximized. Once the
second peak arrives (t = 20 h), the orifice of Tank 2 is closed, while the orifice of Tank 1 is closed one
time step later at t = 21 h. Both tanks are nearly full (t = 23 h) when Tank 2 is starting to be drained,
while the orifice of Tank 1 remains closed. This staggers the outflows from the tanks, enabling the
system peak outflow to be reduced from 1.49 L/s when benchmark tanks are used (Figure 7g) to 0.78 L/s
when real-time smart tank system controls are used, corresponding to a 48% reduction (Figure 7h).

However, as discussed in Section 4.1, real-time smart systems do not perform markedly better
than benchmark tanks when the tank to runoff volume is less than 0.15, as there is insufficient storage
to offset peak flows. An example of this is shown in Figure 8 for a long duration (24 h) event with an
AEP of 1% for Sydney, for which the storage to runoff volume is 0.034. The reason the real-time smart
systems approach achieves less than 5% reduction in this instance is due to a combination of the higher
rainfall intensity and the temporal pattern, producing an inflow rate that fills both tanks within the
control update time step of 1 h (see Table 2).

During the period t = 4–11 h, the orifices of both tanks remain open (Figure 8b) to ensure the tank
is empty prior to the arrival of the main peak of the inflow (Figure 8a). However, the much higher
inflow rate that starts around t = 12 h of greater than 3–4 LPS (liter per second) means the 2 m3 tanks
become full in the t = 11–12 h period (Figure 8c). An inflow rate of 3 LPS produces an inflow volume of
3.6 m3 in 1 h. This is close to the capacity of the 2 × 2 m3 tank. As the capacity of the tanks is exceeded
in a 1 h period, there is limited opportunity to delay the peak using either of the tanks. Hence, the peak
of the outflow is similar to the peak of the inflow. A larger storage size is able to solve this problem,
so that the volume produced by a high inflow rate during a control update time step can be contained
in one of the tanks.
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5. Conclusions

This study demonstrates that smart rainwater tanks operated as a system in real-time during a
storm event, an approach proposed in Di Matteo et al. [29], can significantly reduce the downstream
peak runoff flow rate for a wide range of storm durations (30 min to 24 h) and frequencies (50% to 1%
AEP). To the authors’ knowledge, this is the first study to demonstrate that household-scale rainwater
tanks could potentially provide peak flow attenuation performance across a wide range of storm event
durations for rare events (i.e., 10% to 1% AEP). Importantly, the real-time smart systems approach
can provide harvesting and other benefits during non-critical periods using the same controlled
outlet infrastructure.

In the study, an optimization-simulation model was developed to identify the optimal control
strategies that maximize the peak flow reduction performance of a simple two-tank system. The system
consisted of 2 × 200 m2 roof catchments, each connected to a smart rainwater tank with the tank outlets
discharging at one point. Two tank sizes, 2 m3 and 10 m3, were tested for design storm events for three
Australian cities: Adelaide, Melbourne, and Sydney. The optimal peak flow reduction performance
for the real-time smart tank systems approach was compared with the performance of a benchmark
approach, where the tanks are emptied prior to a storm event, but behave as retention tanks during
the storm.

The results demonstrate that the real-time smart systems approach has significant potential to
provide a mitigation option for urban flooding problems that require peak flow rate attenuation at
the allotment scale. The results showed that by applying an optimal control strategy for each tank,
during a storm event, the tanks could provide from 35% to 85% peak flow attenuation of runoff from
the roof catchments connected to the tanks where the tank volume to runoff volume ratios range from
0.15 to 0.8, respectively. This performance represents a peak flow reduction improvement in the order
of 35% to 50% compared with the benchmark approach. For tank:runoff volume ratios outside of
this range, the relative advantage of the real-time smart systems approach declines, as for ratios >0.8,
the benchmark approach also performs well, and for ratios <0.15, the performance of real-time smart
tank systems approach reduces significantly.

The underlying reason for the high peak flow reductions achieved using the real-time smart
systems approach is that operating tanks as a system provides the potential to apply a control strategy
such that water can be released in a way where: (1) there is enough capacity in the tanks to detain
peaks in runoff inflows, (2) release of stored water from multiple tanks is staged so as to reduce the
occurrence of coincident runoff peaks leaving the system outlet, and (3) there is sufficient capacity
to detain subsequent runoff inflow peaks if needed. The critical component of the optimal control
strategies that enable this to be achieved is the timing of the opening/closing of the orifices to control
tank outflows.

The systems model tested was based on several assumptions in order to identify an upper limit to
the theoretical performance of the real-time smart systems approach. These assumptions included:
(1) perfect knowledge of incoming storm characteristics prior to the event, (2) accurate orifice control,
(3) a simple two-allotment system, and (4) 100% roof to tank connection with no losses (e.g., spill from
gutters). Consequently, further research is required before this approach can be applied in practice.
Such research should assess the sensitivity of the peak flow reductions achieved in this study to the
above assumptions, as well as the applicability of this approach to larger, street-scale systems, especially
when integrated with existing stormwater systems. In addition, further technological advances are
required in order to be able to reliably control the tank outlets in real time. However, while the
proposed approach does not provide a ready-made alternative to more traditional solutions at present,
the rapid advances in rainfall forecasting and smart technologies suggest that this approach could
provide a viable alternative for reducing flood peaks in urban areas in the not-too-distant future.
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Appendix B

Table A1. Critical duration of no tank system, benchmark tanks and real-time, smart tank systems for a
range of AEPs with 2 × 2 m3 tanks in Adelaide, Melbourne and Sydney.

Climate AEP (%) No Tank System Benchmark Tanks Real-Time, Smart Tank Systems

Adelaide

1 30 min 30 min 30 min
2 30 min 30 min 30 min
5 30 min 30 min 30 min
10 30 min 30 min 60 min
50 30 min 60 min 60 min

Melbourne

1 30 min 30 min 30 min
2 30 min 30 min 30 min
5 30 min 30 min 30 min
10 30 min 30 min 30 min
50 30 min 60 min 60 min

Sydney

1 30 min 30 min 30 min
2 30 min 30 min 30 min
5 30 min 30 min 30 min
10 30 min 30 min 30 min
50 30 min 30 min 30 min
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Table A2. Critical duration of no tank system, benchmark tanks and real-time, smart tank systems for a
range of AEPs with 2 × 10 m3 tanks in Adelaide, Melbourne and Sydney.

Climate AEP (%) No Tank System Benchmark Tanks Real-Time, Smart Tank Systems

Adelaide

1 30 min 6 h 6 h
2 30 min 6 h 6 h
5 30 min 12 h 6 h
10 30 min 12 h 6 h
50 30 min 24 h 24 h

Melbourne

1 30 min 6 h 6 h
2 30 min 6 h 6 h
5 30 min 6 h 6 h
10 30 min 12 h 12 h
50 30 min 24 h 24 h

Sydney

1 30 min 60 min 60 min
2 30 min 60 min 60 min
5 30 min 60 min 6 h
10 30 min 6 h 6 h
50 30 min 6 h 6 h

References

1. Hoekstra, A.Y.; Buurman, J.; van Ginkel, K.C. Urban water security: A review. Environ. Res. Lett. 2018, 13,
053002. [CrossRef]

2. Van der Bruggen, B.; Borghgraef, K.; Vinckier, C. Causes of water supply problems in urbanised regions in
developing countries. Water Resour. Manag. 2010, 24, 1885–1902. [CrossRef]

3. Pandey, D.N.; Gupta, A.K.; Anderson, D.M. Rainwater harvesting as an adaptation to climate change.
Curr. Sci. 2003, 85, 46–59.

4. McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.;
Lehner, B.; Balk, D. Water on an urban planet: Urbanization and the reach of urban water infrastructure.
Glob. Environ. Chang. 2014, 27, 96–105. [CrossRef]

5. Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate
change and population growth. Science 2000, 289, 284–288. [CrossRef]

6. Coombes, P.J.; Barry, M.E. The relative efficiency of water supply catchments and rainwater tanks in cities
subject to variable climate and the potential for climate change. Australas. J. Water Resour. 2008, 12, 85–100.
[CrossRef]

7. Newman, J.; Dandy, G.; Maier, H. Multiobjective optimization of cluster-scale urban water systems
investigating alternative water sources and level of decentralization. Water Resour. Res. 2014, 50, 7915–7938.
[CrossRef]

8. Burns, M.J.; Fletcher, T.D.; Duncan, H.P.; Hatt, B.E.; Ladson, A.R.; Walsh, C.J. The performance of rainwater
tanks for stormwater retention and water supply at the household scale: An empirical study. Hydrol. Process.
2015, 29, 152–160. [CrossRef]

9. Paton, F.; Maier, H.; Dandy, G. Including adaptation and mitigation responses to climate change in a
multiobjective evolutionary algorithm framework for urban water supply systems incorporating ghg
emissions. Water Resour. Res. 2014, 50, 6285–6304. [CrossRef]

10. Paton, F.L.; Dandy, G.C.; Maier, H.R. Integrated framework for assessing urban water supply security of
systems with non-traditional sources under climate change. Environ. Model. Softw. 2014, 60, 302–319.
[CrossRef]

11. Beh, E.H.; Maier, H.R.; Dandy, G.C. Adaptive, multiobjective optimal sequencing approach for urban water
supply augmentation under deep uncertainty. Water Resour. Res. 2015, 51, 1529–1551. [CrossRef]

12. Beh, E.H.; Zheng, F.; Dandy, G.C.; Maier, H.R.; Kapelan, Z. Robust optimization of water infrastructure
planning under deep uncertainty using metamodels. Environ. Model. Softw. 2017, 93, 92–105. [CrossRef]

http://dx.doi.org/10.1088/1748-9326/aaba52
http://dx.doi.org/10.1007/s11269-009-9529-8
http://dx.doi.org/10.1016/j.gloenvcha.2014.04.022
http://dx.doi.org/10.1126/science.289.5477.284
http://dx.doi.org/10.1080/13241583.2008.11465337
http://dx.doi.org/10.1002/2013WR015233
http://dx.doi.org/10.1002/hyp.10142
http://dx.doi.org/10.1002/2013WR015195
http://dx.doi.org/10.1016/j.envsoft.2014.06.018
http://dx.doi.org/10.1002/2014WR016254
http://dx.doi.org/10.1016/j.envsoft.2017.03.013


Water 2019, 11, 2428 22 of 23

13. Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices in two urbanized
watersheds: Retrofitting with rain barrel/cistern and porous pavement. J. Environ. Manag. 2013, 119, 151–161.
[CrossRef] [PubMed]

14. Xu, W.; Fletcher, T.; Duncan, H.; Bergmann, D.; Breman, J.; Burns, M. Improving the multi-objective
performance of rainwater harvesting systems using real-time control technology. Water 2018, 10, 147.
[CrossRef]

15. Campisano, A.; Modica, C. Rainwater harvesting as source control option to reduce roof runoff peaks to
downstream drainage systems. J. Hydroinform. 2015, 18, 23–32. [CrossRef]

16. Coombes, P.; Barry, M. Determination of available storage in rainwater tanks prior to storm events. Proc. Water
Down Under 2008, 2008, 191.

17. Gilroy, K.L.; McCuen, R.H. Spatio-temporal effects of low impact development practices. J. Hydrol. 2009, 367,
228–236. [CrossRef]

18. Schubert, J.E.; Burns, M.J.; Fletcher, T.D.; Sanders, B.F. A framework for the case-specific assessment of green
infrastructure in mitigating urban flood hazards. Adv. Water Resour. 2017, 108, 55–68. [CrossRef]

19. Lund, N.S.V.; Borup, M.; Madsen, H.; Mark, O.; Arnbjerg-Nielsen, K.; Mikkelsen, P.S. Integrated stormwater
inflow control for sewers and green structures in urban landscapes. Nat. Sustain. 2019, 2, 1003–1010.
[CrossRef]

20. Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional
urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240.
[CrossRef]

21. Wasko, C.; Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within australian
storms. Nat. Geosci. 2015, 8, 527. [CrossRef]

22. Pezzaniti, D.; Argue, J.R.; Johnston, L. Detention/retention storages for peak flow reduction in urban
catchments: Effects of spatial deployment of storages. Australas. J. Water Resour. 2003, 7, 131–138. [CrossRef]

23. Oberascher, M.; Zischg, J.; Kastlunger, U.; Schöpf, M.; Kinzel, C.; Zingerle, C.; Rauch, W.; Sitzenfrei, R.
Advanced rainwater harvesting through smart rain barrels. In World Environmental and Water Resources
Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management,
2019; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 75–82.

24. Behzadian, K.; Kapelan, Z.; Mousavi, S.J.; Alani, A. Can smart rainwater harvesting schemes result in the
improved performance of integrated urban water systems? Environ. Sci. Pollut. Res. 2018, 25, 19271–19282.
[CrossRef] [PubMed]

25. Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.;
Rahman, A.; Furumai, H. Urban rainwater harvesting systems: Research, implementation and future
perspectives. Water Res. 2017, 115, 195–209. [CrossRef]

26. Burns, M.J.; Schubert, J.E.; Fletcher, T.D.; Sanders, B.F. Testing the impact of at-source stormwater management
on urban flooding through a coupling of network and overland flow models. Wiley Interdiscip. Rev. Water
2015, 2, 291–300. [CrossRef]

27. Lee, E.H. Advanced operating technique for centralized and decentralized reservoirs based on flood
forecasting to increase system resilience in urban watersheds. Water 2019, 11, 1533. [CrossRef]

28. Vaes, G.; Berlamont, J. The effect of rainwater storage tanks on design storms. Urban Water 2001, 3, 303–307.
[CrossRef]

29. Di Matteo, M.; Liang, R.; Maier, H.R.; Thyer, M.A.; Simpson, A.R.; Dandy, G.C.; Ernst, B. Controlling
rainwater storage as a system: An opportunity to reduce urban flood peaks for rare, long duration storms.
Environ. Model. Softw. 2019, 111, 34–41. [CrossRef]

30. Maier, H.R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.S.; Cunha, M.C.; Dandy, G.C.; Gibbs, M.S.;
Keedwell, E.; Marchi, A. Evolutionary algorithms and other metaheuristics in water resources: Current
status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [CrossRef]

31. Maier, H.R.; Razavi, S.; Kapelan, Z.; Matott, L.S.; Kasprzyk, J.; Tolson, B.A. Introductory overview:
Optimization using evolutionary algorithms and other metaheuristics. Environ. Model. Softw. 2018.
[CrossRef]

32. Fortin, F.-A.; Rainville, F.-M.D.; Gardner, M.-A.; Parizeau, M.; Gagné, C. Deap: Evolutionary algorithms
made easy. J. Mach. Learn. Res. 2012, 13, 2171–2175.

http://dx.doi.org/10.1016/j.jenvman.2013.01.019
http://www.ncbi.nlm.nih.gov/pubmed/23474339
http://dx.doi.org/10.3390/w10020147
http://dx.doi.org/10.2166/hydro.2015.133
http://dx.doi.org/10.1016/j.jhydrol.2009.01.008
http://dx.doi.org/10.1016/j.advwatres.2017.07.009
http://dx.doi.org/10.1038/s41893-019-0392-1
http://dx.doi.org/10.1016/j.landurbplan.2011.12.012
http://dx.doi.org/10.1038/ngeo2456
http://dx.doi.org/10.1080/13241583.2003.11465236
http://dx.doi.org/10.1007/s11356-017-0546-5
http://www.ncbi.nlm.nih.gov/pubmed/29086175
http://dx.doi.org/10.1016/j.watres.2017.02.056
http://dx.doi.org/10.1002/wat2.1078
http://dx.doi.org/10.3390/w11081533
http://dx.doi.org/10.1016/S1462-0758(01)00044-9
http://dx.doi.org/10.1016/j.envsoft.2018.09.020
http://dx.doi.org/10.1016/j.envsoft.2014.09.013
http://dx.doi.org/10.1016/j.envsoft.2018.11.018


Water 2019, 11, 2428 23 of 23

33. McDonnell, B.; Tryby, M.; Montestruque, L.; Kertesz, R.; Myers, F. Swmm5 Application Programming
Interface and Pyswmm: A Python Interfacing Wrapper. In Proceedings of the International Conference on
Water Management Modeling, Toronto, ON, Canada, 1–2 March 2017.

34. Sadler, J.M.; Goodall, J.L.; Behl, M.; Morsy, M.M. In Leveraging open source software and parallel
computing for model predictive control simulation of urban drainage systems using epa-swmm5 and
python. In Proceedings of the International Conference on Urban Drainage Modelling, Palermo, Italy, 23–26
September 2018; Springer: Berlin/Heidelberg, Germany, 2008; pp. 988–992.

35. Paseka, S.; Kapelan, Z.; Marton, D. Multi-objective optimization of resilient design of the multipurpose
reservoir in conditions of uncertain climate change. Water 2018, 10, 1110. [CrossRef]

36. Di Matteo, M.; Dandy, G.C.; Maier, H.R. Multiobjective optimization of distributed stormwater harvesting
systems. J. Water Resour. Plan. Manag. 2017, 143. [CrossRef]

37. Li, J.; Thyer, M.; Lambert, M.; Kuzera, G.; Metcalfe, A. Incorporating seasonality into event-based joint
probability methods for predicting flood frequency: A hybrid causative event approach. J. Hydrol. 2016, 533,
40–52. [CrossRef]

38. Australian Bureau of Meteorology Design Rainfall System. Available online: http://www.bom.gov.au/water/
designRainfalls/revised-ifd/ (accessed on 10 August 2019).

39. Ball, J.; Babister, M.; Nathan, R.; Weinmann, P.; Weeks, W.; Retallick, M.; Testoni, I. Australian Rainfall and
Runoff-A Guide to Flood Estimation; Australia Government: Canberra, Australia, 2019.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/w10091110
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000756
http://dx.doi.org/10.1016/j.jhydrol.2015.11.038
http://www.bom.gov.au/water/designRainfalls/revised-ifd/
http://www.bom.gov.au/water/designRainfalls/revised-ifd/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Real-Time Smart Systems Approach 
	Conceptual Outline 
	Formulation of Optimization Problem 
	Optimization Process 

	Case Study and Experimental Methods 
	System Configuration 
	Implementation of Simulation-Optimization Approach 
	Computational Experiments 
	Performance Assessment 

	Results and Discussion 
	Performance of Real-Time, Smart System Approach 
	Reasons for Increased Performance of Real-Time Smart Systems Approach 

	Conclusions 
	
	
	References

