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Abstract: With growing concerns over renewable energy, the cascade hydropower reservoirs operation
(CHRO), which balances the development of economic benefits and power supply security, plays an
increasingly important role in hydropower systems. Due to conflicting objectives and complicated
operation constraints, the CHRO problem considering the requirements of maximizing power
generation benefit and firm power output is determined as a multi-objective optimization problem
(MOP). In this paper, a chaotic adaptive multi-objective bat algorithm (CAMOBA) is proposed
to solve the CHRO problem, and the external archive set is added to preserve non-dominant
solutions. Meanwhile, population initialization based on the improved logical mapping function is
adopted to improve population diversity. Furthermore, the self-adaptive local search strategy and
mutation operation are designed to escape local minima. The CAMOBA is applied to the CHRO
problem of the Qingjiang cascade hydropower stations in southern China. The results show that
CAMOBA outperforms the multi-objective bat algorithm (MOBA) and non-dominated sorting genetic
algorithms-II (NSGA-II) in different hydrological years. The spacing (SP) and hypervolume (HV)
metrics verify the excellent performance of CAMOBA in diversity and convergence. In summary, the
CAMOBA is demonstrated to get better scheduling solutions, providing an effective approach for
solving the cascade hydropower reservoirs operation (CHRO).

Keywords: cascade hydropower reservoirs operation; firm power output; multi-objective bat
algorithm; Qingjiang

1. Introduction

In recent years, with the increasing awareness of environmental protection and sustainable
development, renewable energy has attracted more and more people’s attention [1]. Hydropower
generated by fast running or falling water has become an important part of renewable energy [2,3].
The total generation of hydropower in China exceeded 1 trillion kWh by the end of 2015, while the
total installed capacity of hydropower reached 320 million kilowatts [4]. Therefore, the operation of
cascade hydropower stations is becoming an important issue in the optimization of power systems in
China. Generally, properly increasing the output of hydropower stations in dry seasons is of great
significance to meet the load balance of power systems and improve the safety of power supplies.
However, increasing the output in dry seasons will cause the water level to drop faster. The loss of
water head will reduce the total annual generating capacity of the power station. Therefore, in order to
meet actual requirements of the cascade hydropower reservoirs operation (CHRO) problem, this paper
establishes the reservoir operation model of cascade hydropower stations with consideration of annual
power generation benefit and firm power output.
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Obviously, the CHRO problem of power generation benefit and firm power output is extended
to a multi-objective optimization problem (MOP) with two conflicting objectives. In the past few
decades, researchers have made many efforts to handle the MOP problem using the modern heuristic
multi-objective evolutionary algorithm (MOEA). Algorithms such as the multi-objective genetic
algorithm (MOGA) [5,6], multi-objective particle swarm optimization (MOPSO) [7], multi-objective
harmony search (MOHS) [8], multi-objective ant colony optimization (MOACO) [9], the multi-objective
evolutionary algorithm based on decomposition (MOEA/D) [10] and non-dominated sorting genetic
algorithms-II (NSGA-II) [11] have become increasingly prominent in methods for addressing various
aspects of MOP issues.

The bat algorithm (BA) is a new heuristic algorithm based on microbats echolocation behavior [12],
which integrates the advantages of particle swarm optimization (PSO), harmony search (HS) and
the simulated annealing algorithm (SA). As a promising evolutionary algorithm, BA can effectively
solve the problem of high nonlinearity and is easy to implement [12]. Case studies include micro-grid
operation management [13], reservoir operation [14], interconnected power systems [15], dynamic
economic dispatch [16] and others. In 2011, the BA, originally developed solving single-objective
optimization problems (SOP), was modified by Yang [17] for multi-objective optimization problems
(MOP). In the multi-objective bat algorithm (MOBA), all objectives are merged into one objective
by a weighted sum, and the weights are generated randomly from the uniform distribution. Many
scholars put forward some improved methods and applied them in many fields. Yang [18] proposes
a modified multi-objective bat algorithm, adding inertia weight into the velocity updating equation
to enhance the convergence of the algorithm. The results show that the proposed method is feasible
and effective for solving passive power filter (PPF) design problems. Aiming at solving the combined
economic/emission dispatch problem, Liang [19] proposed a multi-objective hybrid bat algorithm. The
modified comprehensive learning strategy and random black hole model are introduced to overcome
drawbacks of MOBA. The new multi-objective self-adaptive learning bat-inspired algorithm (SALBA)
was proposed by Niknam [16] to solve practical reserve constrained dynamic economic dispatch. A
novel self-adaptive learning method is used in SALBA to increase the population and modify the
convergence criterion. Bansal [20] proposed a novel parallel hybrid multi-objective bat algorithm
(PHMOBA) for solving multi-objective engineering design problems, and concludes that PHMOBA
has a better convergence and success rate than MOBA. However, there are some limitation in MOBA
and the proposed algorithms: (1) When the MOP problem has a non-convex Pareto optimal front, the
weighted sum method cannot obtain Pareto optimal solutions. Meanwhile, the uniform distribution
of the weight vector may not obtain the Pareto optimal solution with uniform distribution in most
nonlinear MOP problems [21]. So, the weighted sum method is not the best way to solve MOP
problems; (2) the initial population is generated randomly in MOBA, which may lead to repeated
solutions occupying memory spaces, and the initial solution may be concentrated in a limited space;
(3) algorithms may converge prematurely and fall into a local solution; (4) a few scholars extend the
MOBA to the CHRO problem, especially for the large-scale reservoir system. Therefore, this paper
proposes a chaotic adaptive multi-objective bat algorithm (CAMOBA) and applies it to solve the CHRO
problem. In CAMOBA, (1) the external archive set EAS( ) is added to preserve the non-dominant
solutions found during evolution. The crowding distance is used to maintain the size of the external
archive set; (2) the population initialization based on chaos theory is adopted to improve population
diversity; (3) the self-adaptive local search strategy based on the normal cloud model is proposed to
update solutions. The mutation operation is designed to mitigate the premature convergence and
jump out of local solutions.

This paper is organized as follows. The mathematical modeling of the CHRO problem is
introduced in Section 2. The standard bat algorithm and multi-objective bat algorithm are described
in Section 3. Section 4 demonstrates the details of the proposed chaotic adaptive multi-objective bat
algorithm for solving the CHRO problem. Section 5 reports the application in Qingjiang River and
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the comparison between results of the proposed method and other algorithms. In the end, Section 6
outlines the conclusions of this work.

2. Mathematical Modeling of the CHRO Problem

2.1. Objective Function

A multi-objective model is developed to optimize the CHRO problem that needs to meet two
objective functions during scheduling.

(1) Maximizing the annual power generation of the hydropower system:

f1 = max
K∑

k=1

T∑
t=1

Nk,t × ∆t = max
K∑

k=1

T∑
t=1

Lk ×QLEC
k,t ×Hk,t × ∆t (1)

(2) Maximizing the firm power output:

f2 = max
1≤ t ≤T

min
K∑

k=1

Nk,t

 (2)

where Nk,t is the power output of the kth reservoir at tth period; Lk is the synthetic output
coefficient of the kth reservoir; Hk,t is the hydraulic head of the kth reservoir at the tth period (m);
QLEC

k,t is the generation flow of the kth reservoir at the tth period (m3/s); ∆t is the time duration of
a single period.

2.2. Constraints

Objective functions are subject to the following constraints when solving the CHRO problem.

(1) Reservoir water balance equation:

SVk,t = SVk,t−1 + (Ik,t −QOUT
k,t ) × ∆t k = 1, 2, · · · , K, t = 1, 2, · · · , T (3)

(2) Reservoir storage conversion:

SVk,t = svk(Zk,t) k = 1, 2, · · · , K, t = 1, 2, · · · , T + 1 (4)

(3) Reservoir water head:

Zk,t = sv−1
k

[(
SVk,t + SVk,t−1

)
/2

]
k = 1, 2, · · · , K, t = 1, 2, · · · , T (5)

Zdown
k,t = zk

(
QOUT

k,t

)
k = 1, 2, · · · , K, t = 1, 2, · · · , T (6)

Hk,t = Zk,t −Zdown
k,t k = 1, 2, · · · , K, t = 1, 2, · · · , T (7)

(4) Reservoir water level constraint:

Zmin
k,t ≤ Zk,t ≤ Zmax

k,t k = 1, 2, · · · , K, t = 1, 2, · · · , T+1 (8)

(5) Reservoir outflow constraint:

QOUT
k,t = QLEC

k,t + QS
k,t k = 1, 2, · · · , K, t = 1, 2, · · · , T (9)

Qmin
k,t ≤ QOUT

k,t ≤ Qmax
k,t k = 1, 2, · · · , K, t = 1, 2, · · · , T (10)
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Qmax
k,t = qk(Zk,t) k = 1, 2, · · · , K, t = 1, 2, · · · , T (11)

(6) Power output constraint:

Nk,t ≤ Nmax
k,t k = 1, 2, · · · , K, t = 1, 2, · · · , T (12)

where SVk,t and SVk,t−1 are storage capacity of the kth reservoir at the tth and (t−1)th period,
respectively (m3); Ik,t and QOUT

k,t are inflow and outflow of the kth reservoir at the tth period,

respectively (m3/s); Zk,t is the water level of the kth reservoir at the tth period (m); svk(Zk,t) is the
storage-capacity curve of the kth reservoir; zk

(
QOUT

k,t

)
is the function between the outflow and

tail water level of the kth reservoir; Zdown
k,t is the tail water level of the kth reservoir (m); Zmin

k,t and
Zmax

k,t are the lowest and highest water level of the kth reservoir at the tth period, respectively

(m); QOUT
k,t is the outflow of the kth reservoir at the tth period (m3/s); QS

k,t is the spillage of the kth

reservoir at the tth period (m3/s); Qmin
k,t and Qmax

k,t are minimum and maximum outflow of the kth

reservoir at the tth period, respectively (m3/s); qk(Zk,t) is the function between the water level and
maximum outflow of the kth reservoir; Nmax

k,t is the maximum power output of the kth reservoir at
the tth period.

3. Overview of the Multi-Objective Bat Algorithm

The bat algorithm (BA) is a new heuristic algorithm based on the microbat echolocation behavior
and proposed by Yang in 2010 [12]. In order to simplify and facilitate application, the algorithm adopts
three idealized conditions: (1) The bat uses the echolocation principle to confirm the distance and
accurately distinguish between obstacles and prey; (2) bats fly with speed Vj and a fixed frequency
Fmin to search for prey at coordinate position (solution) Xj. They can flexibly amend the frequency F
and adjust the pulse emission rate r j based on their distance from the target; (3) assume the loudness
A j changing from a maximum value to a small value.

In the BA, new solutions and velocity updates can be obtained from Equations (13) and (14).

Vg
j = Vg−1

j +
(
Xg

j −X∗
)
× (Fmin + (Fmax − Fmin)β) (13)

Xg
j = Xg−1

j + Vg
j (14)

where β ∈ [0, 1] is a random vector; j is the number of bats; g is the iteration number; X∗ is the current
global best location; F ∈ [Fmin, Fmax] is the frequency; Vg

j is the velocity of the jth bat in the gth

generation; Xg
j is the position (solution) of the jth bat in the gth generation.

For each bat, if rand > rj, the new solution Xg
j,new is generated around the current best solution to

complete the local search according to the Equation (15).

Xg
j,new = Xg

j,old + ε×Ag (15)

where Xg
j,old is the best solution of the jth bat in the first to gth generation; Xg

j,new is the new solution of

the jth bat in the gth generation; ε ∈ [−1, 1] is a random vector; Ag is the mean loudness of all the bats
in the gth generation.

If rand > Aj and the fitness of Xg
j,new is better than that of X∗, X∗ is replaced by Xg

j,new. Then reduce
A j and increase r j according to Equations (16) and (17).

Ag+1
j = α×Ag

j (16)

rg+1
j = r1

j × [1− exp(−γ× g)] (17)
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where α and γ are constants; Ag+1
j is the loudness of the jth bat in g+1th generation; rg+1

j is the pulse
emission rate of the jth bat in the g+1th generation; g is the iteration number.

In 2011, Yang proposed the MOBA algorithm based on BA to solve multi-objective optimization
problems. The weighted sum is used to combine all objectives fm into a single objective in MOBA
according to Equation (18) [17].

f =
M∑

m=1

ωm × fm,
M∑

m=1

ωm = 1 (18)

where ωm is the weight of the mth objective. All weights are generated randomly from the uniform
distribution (0, 1).

4. Implementation of CAMOBA for solving the CHRO problem

Assuming that the D dimensional real space is the search space of the optimization problem, the

algorithm is a generation population Rg =
{
Xg

1 , Xg
2 , · · · , Xg

j , · · · , Xg
NG

}T
composed of NG D dimensional

real parameter vectors Xg
j =

{
xg

j,1, xg
j,2, · · · , xg

j,d · · · , xg
j,D

}
. Where j is the number of individuals in the

population, j = 1, 2, · · · , NG; g is the iteration number, g = 1, 2, · · · , gmax. In the CHRO problem, D is
the number of operation periods. The water levels of all reservoirs are chosen as the decision variable
and encoded. The solution Xg

j is shown as follows.

Xg
j =


Zg

1,1 Zg
1,2 · · · Zg

1,T
Zg

2,1 Zg
2,2 · · · Zg

2,T
· · · · · · Zg

k,t · · ·

Zg
K,1 Zg

K,2 · · · Zg
K,T

 (19)

where Zg
k,t is the water level of the kth reservoir at the tth period in the gth generation (m).

4.1. External Archive Set Maintenance and Updating Operation

Zitzler [22] proposed an external population (called an archive set) in 1999 to preserve the
non-dominant solutions found during evolution. The external archive set is added and named EAS( )
in this paper. The size of the external archive set is generally a constant NE due to the limitation of
the computation source. The following strategies are used to incorporate all non-dominant solutions
found in the current population g (called CSet (g)) into EAS( ): For each solution ng, j in CSet (g):

(1) If EAS ( ) is vacant, put ng, j into EAS( ) directly.
(2) Compare ng, j with other solutions in EAS( ). If ng, j is not dominated by any solution in EAS ( ),

add ng, j into EAS ( ) and delete the solution dominated by ng, j in EAS( ).
(3) If the number of individuals in EAS( ) exceeds the NE, a crowding distance comparison is

performed for each new solution addition. In this process, the solution with the smallest crowding
distance is eliminated. Non-dominated solutions are ranked based on one of the objective
functions. The boundary solutions (the smallest and largest solutions of the function values)
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are given a larger distance value to maintain the diversity of the external archive set [23]. The
crowding distance can be expressed as:

Crowd j =



M∑
m=1

(
Fitm

1 −Fitm
2

max{Fitm}−min{Fitm}

)2
∗ 100 j = 1

M∑
m=1

(
Fitm

j−1−Fitm
j+1

max{Fitm}−min{Fitm}

)2

j ∈ [2, NE]

M∑
m=1

(
Fitm

NE
−Fitm

NE+1

max{Fitm}−min{Fitm}

)2

∗ 100 j = NE + 1

(20)

where Crowd j is the crowding distance of the jth solution; Fitm
j is the fitness of the jth solution of

the mth objective; min{Fitm
} and max{Fitm

} are the minimum and maximum fitness of the mth
objective, respectively.

4.2. Initial Population Generation

The diversity and distribution of the initial population can influence the final optimal solutions of
the algorithm. In MOBA, the initial population is usually generated randomly, which may lead to
repeated solutions occupying memory space, and initial solutions may be concentrated in a limited
space (Figure 1a). In recent years, chaotic sequences have gradually replaced random sequences
and achieved good results in many applications due to nonlinear phenomena such as ergodicity,
randomness and certainty of chaos [24]. Thus, the initial population is generated based on chaos theory
to enhance distribution diversity and uniformity of the population (Figure 1b). There are many models
to generate chaotic sequences, and the improved logical mapping function [25] is adopted in this paper
to generate the chaotic sequences. Its equation is as follows:

yq+1
d = 1− 2×

(
yq

d

)2
d= 1, 2 · · · , D; q= 1, 2 · · · , qmax (21)

where yq
d is a chaotic variable and yq

d ∈ (−1, 1). Equation (21) is chaotic state when y1
d , 0.
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Generate D different initial values, and then generate D chaotic sequences with different trajectories
by iteration using Equation (21). Convert chaotic variables yq

d to the value interval of the decision
variables [xmin

d , xmax
d ], and initial positions x1

j,d of the bat algorithm are generated by Equation (22).

x1
j,d = xmin

d +
(
xmax

d − xmin
d

)
· yq

d j = q (22)

where xmax
d and xmin

d are the maximum and minimum value of the dth decision variable, respectively;
x1

j,d is the initial position of the jth bat in the dth dimension.

4.3. Self-Adaptive Local Search Strategy

Due to its properties of stable and randomness tendency, the normal cloud model [26] is integrated
into CAMOBA to maintain the diversity of solutions. Each cloud is determined by three main
parameters: Entropy parameter En, expectation parameter Ex and hyper entropy parameter He. The
cloud operator L(Ex, En, He) of the cloud model for the current best solution is formulated as follows:

Ex = Xg
j,old

En = 3Ag/2
He = En/10

(23)

where, Ex, En and He are the expectation value, entropy and hyper-entropy, respectively.
Steps of cloud drops generation are given as follows:
Step 1: Generate a random normal distribution value E′n with the expected value of En and hyper

entropy He.
Step 2: Generate a random normal distribution value xp with the expected value of Ex and hyper

entropy E′n generated in step 1.

Step 3: Calculate the membership degree up, where up = e
−(xp−Ex)2

2(E′n)
2 .

Step 4: One drop
(
xp, up

)
is attained. Steps 1 to 3 are repeated until enough cloud drops

are generated.
Step 5: Each cloud drop represents a potential solution. If the newly generated cloud drop (bat)

dominates the current best solution Xg
j,old, the Xg

j,old will be replaced.
The self-adaptive local search strategy is described as in Equation (24). In order to judge whether

the bat individual is in a stable state, two variables stable (g) and move (g) are introduced. The
stable state is defined as: Bat individual j satisfies stable(g) < 10−6 & move(g) < 10−6 in successive
0.05gmax generations.

Xg
j,new =

 Xg
j,old + ε×Ag bat individual j is in the move state

cloud drop bat individual j is in the stable state
(24)

 stable(g) = abs
(

f
(
Xg

j,old

)
− f

(
X∗j,old

))
move(g) = abs

(
f
(
Xg

j,old

)
− f

(
Xg−1

j,old

)) (25)

where, f
(
Xg

j,old

)
is the fitness of bat individual j; f

(
X∗j,old

)
is the optimal fitness of bat individual j in

iteration; stable(g) is the gap between the current fitness of the jth bat and the optimal fitness in iteration;
move(g) is the fitness increment of the jth bat in the gth generation; gmax is the maximum iteration.
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4.4. Mutation Operation

In the multi-objective bat algorithm (MOBA), the decreased diversity may cause precocity
convergence (Figure 1a). Therefore, the mutation operation, as shown in Figure 1b, is proposed to
diversify bats and enhance the ability of the global search, which can be expressed as:

Xg
j, EAS = Xg

R 1, EAS + δ(Xg
R 2, EAS −Xg

R 3, EAS) (26)

where, Xg
R 1, EAS, Xg

R 2, EAS and Xg
R 3, EAS are three archive individuals randomly chosen from the external

archival set EAS( ). δ is the mutation constant that is used to regulate the size of the disturbance and
enhance the performance of the bat. Then, the bat Xg

j, EAS is compared with other solutions in EAS( ) to
update the EAS( ).

4.5. Procedures of CAMOBA for Solving the CHRO Problem

The flowchart of CAMOBA for solving the CHRO problem is presented in Figure 2.Water 2019, 12, x FOR PEER REVIEW 8 of 16 
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5. Case Study

5.1. Case Study Description

The three hydropower stations on the Qingjiang River in China are used to verify the practical
feasibility of CAMOBA for solving the CHRO problem. The Qingjiang River is the first main tributary
of the Yangtze River below the Three Gorges. The 423 km long Qingjiang River has a catchment area
of 1.7 × 103 km2. The Qingjiang cascade hydropower project plays an important role in promoting
social and economic development of the Yangtze River with multiple functions, including hydropower
generation, flood control, ecological protection, etc. Figure 3 shows a diagram of the Yangtze River
Basin and locations of the study area in the Qingjiang River. In this study, some basic constraints
are set as follows. The upper water level bounds of the Shuibuya Reservoir, Geheyan Reservoir and
Gaobazhou Reservoir in the flood season (from June to July) are set to 391.8 m, 193.6 m and 78.5 m,
respectively. Meanwhile, during the non-flood season, the water level of the Shuibuya Reservoir,
Geheyan Reservoir and Gaobazhou Reservoir cannot exceed the normal water levels of 400 m, 200 m
and 80 m, respectively. The lower water level bounds of the three cascade reservoirs all year are 350 m,
160 m and 78 m, respectively. The Shuibuya Reservoir, Geheyan Reservoir and Gaobazhou Reservoir
are installed with capacities of 1840 MW, 1210 MW and 270 MW, respectively.
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The hydrological year can be divided into three types, wet, normal and dry years, according to
the annual runoff [27]. According to the runoff data of the Qingjiang River basin from 1971 to 2006, the
typical representatives of June 1995 to May 1996, June 2004 to May 2005 and June 1985 to May 1986 are
selected as the wet, normal and dry years, respectively. The whole operation time is divided into 12
periods, each of which is one month. The monthly inflow data of the Qingjiang cascade reservoirs in
these three typical years are shown in Figure 4.
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5.2. Parameter Settings

To testify the feasibility and effectiveness of CAMOBA in the application of the CHRO problem,
CAMOBA is compared with MOBA [17] and NSGA-II [24]. NSGA-II is a high-performance
multi-objective evolutionary algorithm that has been widely used in various disciplines [28]. The three
optimization methods perform 10 independent runs. The maximum iteration gmax is set at 1000 for the
three algorithms. For CAMOBA and NSGA-II, the population size NG and the external archive set size
NE are set at 200 and 30. For MOBA, the population size NG is 30. The maximum iteration of the chaos
operator qmax is 200 in CAMOBA. The mutation constant δ is 0.1 in CAMOBA. The other parameters
of CAMOBA and MOBA are taken from reference [17]. The frequency F is varied from 0 to 1; α and γ
are set at 0.9. The parameters of NSGA-II take the recommended values specified in reference [29]; the
probabilities of crossover and mutation are set at 0.8 and 0.33, respectively.

5.3. Results and Discussion

The Pareto optimal fronts of different hydrological years calculated by the three methods are
drawn in Figure 5. It can be seen from Figure 5 that the CHRO problem can be solved by CAMOBA,
MOBA and NSGA-II. Meanwhile, it can be clearly observed that there is a competitive relationship
between two targets in wet, normal and dry years, and the greater the annual power generation, the
smaller the firm power output. The annual power generation in a wet year is larger than that in a
normal year, and the annual power generation in a dry year is the smallest. Moreover, it can be easily
concluded that when solving the complex CHRO problem by NSGA-II and MOBA, the resulting Pareto
solution is dominated by CAMOBA, which shows that CAMOBA can generate more annual power
generation with the same firm power output. For example, when the maximal firm power output is
considered, the proposed CAMOBA method can increase the firm power output by about 21.1423 MW
and 32.5989 MW, respectively, compared to the MOBA and NSGA-II in a normal year while increasing
the annual power generation 0.0668 × 108 kWh and 0.1551 × 108 kWh, respectively. Meanwhile, it
can be seen that CAMOBA has a more widely distributed optimal solution than MOBA and NSGA-II,
which means that CAMOBA performs better in terms of solution diversity. The maximum (Max),
mean (Mean) and standard deviation (Std) of the maximum annual power generation and firm power
output are listed in Table 1. As shown in Table 1, it can be clearly seen that solutions of CAMOBA
are close to the best solution, while all the indexes of CAMOBA are better than those of MOBA and
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NSGA-II. For example, the standard deviations of CAMOBA are 0.0173 and 29.5803 with respect to
two objectives and less than that of MOBA and NSGA-II in a normal year. Thus, the results show that
CAMOBA can provide better scheduling solutions compared to MOBA and NSGA-II when dealing
with the complex CHRO issue.
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Table 1. Operation results for the best annual power generation (108 kWh) and firm power output
(MW) with 10 runs obtained by three algorithms.

Hydrological
Years Objective Method Max ↑ Improve

(%) Mean ↑ Improve
(%) Std ↓ Improve

(%)

Wet year

Annual
power

generation

CAMOBA 115.6408 0.082% 115.5407 0.048% 0.0408 3.702%
MOBA 115.5694 0.021% 115.4885 0.003% 0.0414 2.172%

NSGA-II 115.5456 - 115.4851 - 0.0423 -

Firm
power
output

CAMOBA 560.6503 3.368% 539.3225 5.774% 22.6059 31.829%
MOBA 550.5622 1.508% 525.0124 2.967% 26.9268 18.798%

NSGA-II 542.3833 - 509.8830 - 33.1604 -

Normal year

Annual
power

generation

CAMOBA 72.8236 0.005% 72.8125 0.054% 0.0173 67.544%
MOBA 72.8227 0.004% 72.7947 0.029% 0.0415 22.043%

NSGA-II 72.8199 - 72.7735 - 0.0532 -

Firm
power
output

CAMOBA 483.0351 7.237% 431.6210 9.679% 29.5803 19.650%
MOBA 461.8928 2.543% 409.1474 3.968% 30.5043 17.140%

NSGA-II 450.4362 - 393.5319 - 36.8142 -

Dry year

Annual
power

generation

CAMOBA 56.0700 0.002% 56.0621 0.046% 0.0145 47.405%
MOBA 56.0697 0.001% 56.0582 0.040% 0.0203 26.570%

NSGA-II 56.0690 - 56.0360 - 0.0276 -

Firm
power
output

CAMOBA 338.1704 5.592% 299.2050 4.398% 20.4751 11.893%
MOBA 326.3672 1.906% 288.7327 0.744% 22.2445 4.279%

NSGA-II 320.2625 - 286.6007 - 23.2388 -

Note: ↓ denotes that smaller value is better. ↑means that the bigger value is better. Improvement in CAMOBA =
|CAMOBA-NSGA-II|/NSGA-II × 100%. Improvement in MOBA = |MOBA-NSGA-II|/NSGA-II × 100%.

The spacing (SP) [30] and hypervolume (HV) [31] metrics are used to further compare the
performance in diversity and convergence of the proposed CAMOBA method with MOBA and
NSGA-II. The three optimization methods perform 10 independent runs. The maximum (Max),
minimum (Min), mean (Mean), standard deviation (Std) and average execution times of SP and HV are
listed in Table 2, and best results are indicated in bold type. As the average computational time of
the three algorithms listed in Table 2 show, CAMOBA is faster than NSGA-II but slightly slower than
MOBA. CAMOBA consumes more computational time than MOBA because of the addition of the
external archive set and the mutation operation to the proposed CAMOBA method. However, the
primary purpose of algorithms is to obtain better Pareto optimal fronts. The running time of CAMOBA
in Table 2 is reasonable and acceptable. Besides, the maximum and minimum SP results of NSGA-II
are slightly better than CAMOBA in a wet year. However, the mean and standard deviation SP results
of CAMOBA are significantly better than MOBA and NSGA-II in the three hydrological years. The
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observations indicate that CAMOBAs are superior to MOBA and NSGA-II in most of the runs in terms
of diversity. Meanwhile, the HV results of CAMOBA are significantly better than those of MOBA and
NSGA-II in all typical years, indicating that CAMOBA is superior to the other two algorithms in terms
of convergence. The SP and HV convergence curves of the three algorithms are provided in Figure 6.
The whole convergence process and the detailed convergence trajectory in iteration 1 to 200 are shown
in the first and second rows, respectively. As can be seen from Figure 6, CAMOBA is the first one that
converges to a good level and remains stable in all hydrological years. Therefore, the feasibility and
superiority of the proposed CAMOBA method for solving the multi-objective CHRO problem in wet,
normal and dry years within a reasonable execution time have been verified.

Table 2. Spacing (SP) and hypervolume (HV) metric values and average execution times obtained by
the three algorithms in different hydrological years.

Hydrological
Years

Algorithm
SP HV

Time(s)
Max ↓ Mean ↓ Min ↓ Std ↓ Max ↑ Mean ↑ Min ↑ Std ↓

Wet year
CAMOBA 0.0247 0.0220 0.0190 0.0017 0.8183 0.8114 0.7949 0.0075 511.2

MOBA 0.0729 0.0662 0.0618 0.0042 0.7367 0.7220 0.7124 0.0085 461.4
NSGA-II 0.0245 0.0221 0.0165 0.0028 0.7320 0.7211 0.7057 0.0093 759.6

Normal year
CAMOBA 0.0194 0.0148 0.0112 0.0027 0.8147 0.8038 0.7812 0.0107 515.4

MOBA 0.0681 0.0626 0.0519 0.0048 0.7821 0.7449 0.7123 0.0252 456.8
NSGA-II 0.0398 0.0345 0.0298 0.0039 0.7414 0.7150 0.6968 0.0158 741.3

Dry year
CAMOBA 0.0223 0.0204 0.0187 0.0011 0.8979 0.8852 0.8732 0.0080 509.7

MOBA 0.1940 0.1748 0.1658 0.0076 0.8165 0.8007 0.7826 0.0111 457.6
NSGA-II 0.0384 0.0359 0.0317 0.0023 0.5525 0.5283 0.5213 0.0094 753.7

Note: ↓ denotes that the smaller value is better. ↑means that the bigger value is better.

For simplicity, only the results of the normal year are presented in detail. The reservoir operation
processes of the 1st, 15th and 30th schemes (Table 3) obtained by CAMOBA are displays in Figure 7.
From Figure 7, it can be seen that there is significant difference between the three scheduling schemes.
The main focus of the 1st scheme is maximizing annual power generation. The monthly power
generation of the 1st scheme varies greatly in a year. In the dry season (from December to February),
reservoirs in the 1st scheme reduce outflows to reserve water, and the power output is lower than other
schemes at this time. When inflow is large in March and April, a large amount of water is discharged
from reservoirs in the 1st scheme to generate more power generation than other schemes. The 30th
scheme focuses on maximizing the firm power output. Reservoirs in the 30th scheme discharge more
water than other schemes in the dry season to generate more power output and improve the power
supply safety of the power system. It can be seen that the monthly power generation of the 30th
scheme has the smallest variation in a year. The 15th scheme is a compromise between annual power
generation and firm power output. It is conducive to the balanced development of economic benefits
and power supply security.

Table 3. Non-dominated schemes obtained by CAMOBA in a normal year.

Scheme f 1 (108

kWh)
f 2 (MW) Scheme f 1 (108

kWh)
f 2 (MW) Scheme f 1 (108

kWh)
f 2 (MW)

1 72.8236 189.1719 11 72.7347 374.6256 21 72.5535 452.4976
2 72.8232 225.4624 12 72.7227 390.1868 22 72.5333 460.2505
3 72.8217 241.1590 13 72.7082 402.6378 23 72.5109 467.7229
4 72.8200 256.8327 14 72.6925 405.8924 24 72.4848 470.2905
5 72.8177 273.0836 15 72.6864 418.7940 25 72.4680 471.5678
6 72.8134 285.7809 16 72.6620 425.8439 26 72.4475 472.9724
7 72.8007 304.9514 17 72.6352 427.0217 27 72.4238 473.4131
8 72.7871 324.6124 18 72.6088 438.4034 28 72.3926 477.6139
9 72.7668 343.0365 19 72.5878 443.0313 29 72.3594 478.6686

10 72.7623 357.0580 20 72.5694 444.8507 30 72.3189 483.0351



Water 2019, 11, 2373 13 of 16

Water 2019, 12, x FOR PEER REVIEW 12 of 16 

 

Table 2. Spacing (SP) and hypervolume (HV) metric values and average execution times obtained 
by the three algorithms in different hydrological years. 

Hydrological years Algorithm 
SP  HV  

Time(s) 
Max↓ Mean↓ Min↓ Std↓  Max↑ Mean↑ Min↑ Std↓  

Wet year 
CAMOBA 0.0247 0.0220  0.0190 0.0017  0.8183 0.8114  0.7949 0.0075  511.2 

MOBA 0.0729 0.0662  0.0618 0.0042 0.7367 0.7220  0.7124 0.0085 461.4 
NSGA-II 0.0245 0.0221  0.0165 0.0028 0.7320 0.7211  0.7057 0.0093 759.6 

Normal year 
CAMOBA 0.0194 0.0148  0.0112 0.0027  0.8147 0.8038  0.7812 0.0107  515.4 

MOBA 0.0681 0.0626  0.0519 0.0048 0.7821 0.7449  0.7123 0.0252 456.8 
NSGA-II 0.0398 0.0345  0.0298 0.0039  0.7414 0.7150  0.6968 0.0158  741.3 

Dry year 
CAMOBA 0.0223 0.0204  0.0187 0.0011 0.8979 0.8852  0.8732 0.0080 509.7 

MOBA 0.1940 0.1748  0.1658 0.0076 0.8165 0.8007  0.7826 0.0111 457.6 
NSGA-II 0.0384 0.0359  0.0317 0.0023  0.5525 0.5283  0.5213 0.0094  753.7 

Note:↓denotes that the smaller value is better.↑means that the bigger value is better. 

 
Figure 6. SP (a,c,e) and HV (b,d,f) convergence curves of three algorithms in different hydrological
years during iteration 1 to 1000 (first row) and 1 to 200 (second row): (a,b) wet year; (c,d) normal year;
and (e,f) dry year.
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6. Conclusions

The CHRO is a complicated multi-objective optimization problem that simultaneously considers
annual hydropower generation and firm power output. In this paper, CAMOBA has been proposed to
handle the CHRO problem. In CAMOBA, the external archive set is added to preserve the non-dominant
solutions. The population initialization based on chaos theory is adopted to improve population
diversity. The self-adaptive local search strategy based on the normal cloud model is proposed to
update solutions. The mutation operation is designed to mitigate premature convergence. Finally,
CAMOBA is applied to the CHRO problem of the Qingjiang cascade hydropower stations in southern
China. The case verifies the validity and feasibility of the proposed CAMOBA method. Its superiority
in convergence and diversity is verified by comparing the results with other algorithms, including
MOBA and NSGA-II. The experimental results indicate that there is a competitive relationship between
the two targets in wet, normal and dry years. Compared to the MOBA and NSGA-II, the CAMOBA
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method proposed in this paper can generate more annual power generation with the same firm
power output within a reasonable computational time, so it provides a new approach for solving the
CHRO problem.
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