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Abstract: Knowing the dynamics of spatial–temporal precipitation distribution is of vital significance
for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several
models of large-scale precipitation variability are based on the normal distribution, not taking
into consideration the excess of null observations that are prevalent in the daily or even monthly
precipitation information of the region under study. This research proposes a novel way of modeling
the trend component by using an inflated gamma distribution of zeros. The residuals of this regression
are generally space–time dependent and have been modeled by a space–time covariance function.
The findings show that the new techniques have provided reliable and precise precipitation estimates,
exceeding the techniques used previously. The modeling provided estimates of precipitation in
nonsampled locations and unobserved periods, thus serving as a tool to assist the government in
improving water management, anticipating society’s needs and preventing water crises.

Keywords: water resources; GAMLSS; geostatistics

1. Introduction

An effort has emerged in several areas of knowledge, especially in the climate sciences, to analyze a
phenomenon by both space and time [1–3]. It is already established that the spatial–temporal behavior
of rainfall is of great importance for the water resources of a region and that it has a direct influence on
human activities, such as agriculture and commerce [4].

The northeast region of Brazil (NEB) is characterized by irregular distributions of rainfall, resulting
in high spatial and temporal variability of precipitation [4]. In this region, it is common to observe
high rainfall indices in a particular location and no record of rain in its surroundings [5]. The state
of Paraíba, located in this region, presents the same characteristics, with periods of drought in rainy
seasons and behavior different from the precipitation between the mesoregions that constitute the
region [6]. Consequently, Paraíba presents a problem concerning the spatiotemporal variability of
rainfall. The high variability of recorded rainfall in this region may be attributed to the characteristics
of the meteorological systems and their dates of installation in different regions of the state. The
periodicity is related to the general behavior of sea surface temperature (SST) in the tropical Pacific
region, contributing to the events of El Niño and La Niña, and most notably, by the behavior of the SST
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in the tropical Atlantic region due to its proximity to the study area. In the literature, several studies
have evaluated precipitation in this region using spatial statistics techniques [7,8]. However, these
previous works did not take spatial and temporal dependence into account simultaneously.

Several previous works used multiple linear regression to model the deterministic component,
such as the Gaussian model [9–11]. These works assumed that the variable response to be studied
presented a behavior that could be correctly modeled by a Gaussian approach.

However, recent studies have evaluated non-Gaussian models, including generalized linear
models (GLM), with variable response Gamma [12,13]. Once the Gamma model is assumed, the
variable domain has to be strictly positive, and it does not include the value zero. For example,
Menezes et al. (2016) [12] and Monteiro et al. (2017) [13] analyzed the concentration of NO2, which
had asymmetric behavior with excesses of zero. However, when using GLM with Gamma distribution,
it is not possible to model the frequency of zeroes in the variable under study. To circumvent this
limitation, some models captured the frequency of zeroes in continuous variables. Stauffer et al.
(2017) [3] analyzed the spatial–temporal distribution of daily precipitation at 117 stations located in
Tirol, Austria, over 42 years. These authors pointed to the high frequency of zero observations in the
data, suggesting the use of the normal zero-censored model. However, only the trend component was
modeled, not taking into account the spatial–temporal dependence of precipitation in this region.

In this study, we analyzed the total monthly rainfall measured in the State of Paraíba, Brazil, which
presents an asymmetrical behavior and has a high incidence of zeros, which is a climate characteristic
of the region under study. Thus, to model this behavior, a new approach in the regression adjustment
is proposed by applying generalized additive models for location, scale, and shape (GAMLSS) [14].
These models have several advantages, such as all distribution parameters can be modeled as covariate
functions, cases of over-dispersion and excess of zeroes in the data can be modeled, and any distribution
to the response variable can be adjusted.

2. Materials

The study region was Paraíba State, Brazil (Figure 1), located in the NEB, which is positioned
between parallels 6◦ and 8◦ S and meridians 34◦ and 39◦ W, with an area of approximately 56,500 km2.
Paraíba is included in the Tropical Region, and its area is divided into four geographical mesoregions:
Zona da Mata, Agreste, Borborema, and Sertão.
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Table 1. Pluviometric stations with an identification number (ID), name of the mesoregion, name
of rainfall station, latitude (Lat), longitude (Long), Altitude (Alt), and precipitation quantiles 2.5%,
50%, 97.5%.

ID Mesoregion Station Lat Long Alt (m)
Quantiles

2.5% 50.0% 97.5%

1 Zona da Mata Alhandra −7.43 −34.91 56.28 6.49 119.85 481.71
2 Zona da Mata Jacaraú −6.61 −35.29 181.19 0.88 55.90 311.01
3 Zona da Mata Mamanguape −6.84 −35.12 16.62 2.60 66.70 403.02
4 Zona da Mata Pedras de Fogo −7.40 −35.12 175.36 4.71 79.25 399.52
5 Zona da Mata Sapé −7.09 −35.22 116.84 1.86 64.35 324.14
6 Agreste Alagoinha −6.96 −35.55 168.64 0.00 70.50 306.56
7 Agreste Araçagi −6.83 −35.39 104.62 0.00 56.95 290.73
8 Agreste Araruna −6.53 −35.74 575.41 0.00 53.40 235.32
9 Agreste Areia −6.98 −35.72 572.28 4.34 95.55 331.73

10 Agreste Areial −7.05 −35.93 693.09 0.00 38.55 182.72
11 Agreste Boa Vista −7.26 −36.24 486.00 0.00 20.30 127.07
12 Agreste Campina Grande −7.23 −35.90 544.37 0.93 48.00 244.28
13 Agreste Casserengue −6.79 −35.89 396.63 0.00 18.00 137.88
14 Agreste Cuité −6.49 −36.15 668.96 0.00 33.35 190.79
15 Agreste Dona Inês −6.61 −35.63 421.72 0.00 51.25 242.04
16 Agreste Ingá −7.29 −35.61 155.56 0.00 44.35 191.81
17 Agreste Mogeiro −7.31 −35.48 108.28 0.00 40.95 194.68
18 Agreste Pocinhos −7.08 −36.06 650.32 0.00 21.45 140.05
19 Agreste Soledade −7.06 −36.36 523.63 0.00 17.75 139.61
20 Borborema Barra de São Miguel −7.75 −36.32 488.63 0.00 15.30 142.21
21 Borborema Boqueirão −7.49 −36.14 355.08 0.00 21.65 148.11
22 Borborema Camalaú −7.89 −36.83 519.16 0.00 11.15 185.53
23 Borborema Caraúbas −7.73 −36.49 442.24 0.00 10.60 161.65
24 Borborema Congo −7.80 −36.66 491.99 0.00 12.25 164.82
25 Borborema Juazeirinho −7.07 −36.58 553.96 0.00 20.10 175.97
26 Borborema Junco do Seridó −7.00 −36.71 589.56 0.00 22.40 210.18
27 Borborema Pedra Lavrada −6.76 −36.46 521.82 0.00 13.55 180.72
28 Borborema Prata −7.70 −37.08 584.00 0.00 18.85 220.19
29 Borborema Salgadinho −7.10 −36.85 430.45 0.00 13.60 240.85
30 Borborema Santa Luzia −6.87 −36.92 311.24 0.00 9.80 246.99
31 Borborema São João do Tigre −8.08 −36.85 572.84 0.00 13.80 161.03
32 Borborema São José dos Cordeiros −7.39 −36.81 530.49 0.00 14.30 313.51
33 Borborema São Seb. do Umbuzeiro −8.15 −37.01 595.79 0.00 20.10 200.60
34 Borborema Sumé −7.67 −36.90 519.88 0.00 15.70 264.53
35 Borborema Várzea −6.77 −36.99 267.64 0.00 10.65 270.29
36 Sertão Agua Branca −7.51 −37.64 732.80 0.00 41.40 274.52
37 Sertão Bom Sucesso −6.44 −37.93 289.12 0.00 27.20 296.80
38 Sertão Brejo do Cruz −6.35 −37.50 200.67 0.00 27.70 320.60
39 Sertão Cajazeiras −6.89 −38.54 299.44 0.00 38.80 409.20
40 Sertão Catolé do Rocha −6.34 −37.75 298.89 0.00 34.55 301.66
41 Sertão Conceição −7.56 −38.50 388.28 0.00 27.90 272.48
42 Sertão Condado −6.92 −37.59 260.82 0.00 23.75 336.19
43 Sertão Lagoa −6.59 −37.91 275.56 0.00 31.30 314.85
44 Sertão Mãe D’Água −7.26 −37.43 411.10 0.00 15.65 277.71
45 Sertão Manaíra −7.71 −38.15 767.40 0.00 28.95 284.65
46 Sertão Nova Olinda −7.48 −38.04 321.00 0.00 27.55 326.82
47 Sertão Passagem −7.14 −37.05 305.04 0.00 14.65 273.24
48 Sertão Patos −7.00 −37.31 256.69 0.00 26.25 303.92
49 Sertão Piancó −7.21 −37.93 261.16 0.00 24.90 321.85
50 Sertão Pombal −6.77 −37.80 191.56 0.00 22.85 353.35
51 Sertão Riacho dos Cavalos −6.44 −37.65 206.93 0.00 24.45 269.48
52 Sertão Santa Teresinha −7.08 −37.45 307.16 0.00 22.55 368.42
53 Sertão São J. do Rio do Peixe −6.73 −38.45 248.20 0.00 31.90 325.64
54 Sertão Sousa −6.77 −38.22 235.44 0.00 30.30 327.17

The total monthly precipitation data measured at 54 pluviometric stations were considered
during the period from 1994 to 2014. Table 1 shows the identification number, name of pluviometric
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station, latitude, longitude, altitude above sea level, and quantiles of precipitation (mm) at 2.5%, 50%,
and 97.5%.

3. Methods

In space−time geostatistics, observations are modeled as a stochastic process using a random
function

{
Z(s, t) : (s, t) ∈ D ⊆ Rd

×R
}
. We assumed that Z has the first and second moments.

Thus, Z(s, t) was decomposed by the sum of the trend components and the stochastic residue:

Z(s, t) = m(s, t) + ε(s, t). (1)

In Equation (1), the trend component m(s, t) = E[Z(s, t)] is not constant in space and time,
representing the large-scale variation. The residual component ε(s, t) describes random fluctuations on
a small scale and encompasses the three components: spatial, temporal, and interaction.

3.1. Trend Component

The trend component is responsible for the large-scale variation of the stochastic process.
In spatiotemporal datasets, this component is not a deterministic function. It was, therefore, necessary
to specify stochastic patterns that represented the observed variability. The specification of the trend
component included the geographic coordinates as covariables, as well as time. The purpose of this
study was to adjust this component using GAMLSS models. In the GAMLSS models, it is assumed
that the observations zi are independent, with i = 1, 2, . . . , n and conditioned to θk = (µ,σ,ν, τ), with
k = 1, 2, . . . , n. So, Z

∣∣∣θk ∼ G(µ,σ,ν, τ) , where G represents Z distribution. The parameters µ,σ,ν, and
τ are classified as the parameters of the location, scale, asymmetry, and kurtosis, respectively, where
the latter two represent the distribution shape [14]. Thus, according to these authors, the GAMLSS
models were expressed in the form,

gk(θk) = ηk = Xkβk +

Jk∑
j=1

Y jkγ jk, (2)

where gk(·) is a monotonic link function, and θk is related to explanatory variables and random effects;
θk and ηk are vectors of size n; βk is a parameter vector of size J′k; Xk and Y jk are the fixed (covariate)
matrices of size n× J′k and n× qi j, respectively; and γ jk is a random variable of dimension qi j. In a purely

parametric linear model, we have that
∑Jk

j=1 Y jkγ jk = 0, that is, there are no additive terms associated
with the distribution parameters in the model. In the space–time case, we have η(s, t) = g(m(s, t)).

In the modeling of the trend, the component was considered Y jk = In, where In is the identity

matrix of order n× n and γ jk = f jk = f jk
(
x jk

)
. Thus, Equation (2) is rewritten as:

gk(θk) = ηk = Xkβk +

Jk∑
j=1

f jk

(
x jk

)
. (3)

The model given in Equation (3) was fitted to the data of this study, where f jk is an unknown

function of the explanatory variable x jk and f jk

(
x jk

)
is a vector that evaluates the function f jk in x jk. This

model is called the semiparametric additive GAMLSS and may contain parametric, nonparametric and
random effects terms [14].

We considered the geographic coordinates (latitude and longitude) and the temporal index (time)
as covariables to model the trend. This time index was constructed as follows: an index equal to
1 denoted Jan/1994, the index equal to 2 denoted Feb./1994, and so on. In all covariates, cubic splines
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(cs) were inserted, including the covariate time that was designed to model the seasonal effect of
precipitation. Thus, the terms of the trend component were expressed as:

g1(µ) = ln(µ) = β10 + β11x11 + β12x12 + β13x13

g2(σ) = β20

g3(ν) = ln
(
ν

1−ν

)
= β30x13,

(4)

where x11, x12, and x13 represent the covariates of longitude, latitude, and time, respectively
(Equation (4)). The parameters β10, β11, β12, and β13 are related to the lease vector of the GAMLSS
model, β20 is the parameter related to the intercept for the scale vector, and β30 is the parameter
associated with covariable time and that is responsible for modeling the occurrence of no zeroes in the
response variable.

In order to obtain the parameter estimates for this regression model, the penalized maximum
likelihood method was used, which differs from conventional methods because it assigns the value
zero to the coefficients of nonsignificant variables. However, this method does not take into account
the assumption that errors are uncorrelated. Thus, it was necessary to evaluate the residuals of this
model, taking into account the correlation structure. For this, we proposed to fit a valid nonseparable
space–time variogram model.

3.2. Spatiotemporal Variogram

When inserting structures in the trend component, one advantage is that it describes the large-scale
variation of the phenomenon being studied, causing the residuals to present small-scale variations,
consequently reducing the prediction error in the kriging. After obtaining the estimates of the trend
component parameters, the stochastic residue is obtained by difference, ε̂(s, t) = Z(s, t) − m̂(s, t).
Therefore, the next step of the analysis was the empirical estimation of the covariance function or
spatiotemporal variogram to model this residue [2].

Spatiotemporal covariates are usually described using a space–time variogram (γst), which
measures the mean difference between separated data in the space–time domain using the distance
vector. The estimate of this variogram, obtained by the moment’s method, was given by:

γ̂st(rs, rt) =
1

2
∣∣∣L(rs, rt)

∣∣∣ ∑
L(rs,rt)

[ε̂(s + rs, t + rt) − ε̂(s, t)]2, (5)

where
∣∣∣L(rs, rt)

∣∣∣ is the cardinality for the set L(rs, rt). It is noted in Equation (5) that the empirical
variogram depends only on spatial and temporal distances, and this may not result in a valid variogram.
Thus, to obtain estimates of γ̂st in any arbitrary lag, the empirical variogram must be smoothed. As
a solution to this limitation found in the empirical variogram, one should use a theoretical model,
γst(hs, ht,ω), which fits, as best as possible, the space–time dependence structure of the residues [15].
The vector ω contains all the unknown parameters to be estimated.

The typical approach is to fit a theoretical model to the empirical variogram. The least-squares
estimation method is the most common approach. However, there are other methods, such as maximum
likelihood, generalized estimation equations, and composite likelihood, among others [16]. In this
study, the least-squares method was used.

There are no assumptions about the probability distribution of the empirical variogram’s generated
values in the least-squares method. The approach considers the statistical model of the form γ̂(hs, ht) =

γ(hs, ht) + ε′(hs, ht). Assume that ε′(hs, ht) has null mean and covariance matrix R = R(ω), which
depends on ω. We suggested that the diagonal of R(ω) can be approximated to:

Var
[
γ̂
(
hsi , ht j

)]
2

≈

γ
(
hsi , ht j ,ω

)2∣∣∣∣N(
hsi , ht j

)∣∣∣∣ , (6)
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where N
(
hsi , ht j

)
is the number of pairs at each space–time distance. Thus, the weights assigned in the

weighting matrix are proportional to the number of pairs in a given space–time distance.
The adjustment of the theoretical space–time variogram model was made by using the weighted

least-squares (WLS) method, which replaces R(ω) with the diagonal matrix W(ω). The elements of
W(ω) were obtained from Equation (6). Thus, using the weights given in this Equation (7), the WLS
method is given by:

(γ̂(hs, ht) − γ(hs, ht,ω))
′W(ω)−1(γ̂(hs, ht) − γ(hs, ht,ω))

=
I∑

i=1

J∑
j=1

∣∣∣∣∣N(
hsi ,ht j

)∣∣∣∣∣
γ
(
hsi ,ht j ,ω

)2

{
γ̂
(
hsi , ht j

)
− γ

(
hsi , ht j ,ω

)}2
.

(7)

Generally, statistical assumptions are considered, which comprise a space–time covariance function
and ensure that this function is defined as positive [17–19]. Several researchers have studied the
construction of valid space–time covariance functions [15,20,21]. Although this type of construction is
a difficult task, the complexity becomes more significant when it is desired to determine valid models
of space–time covariance. In the space–time approach, there are two types of general model classes:
the separable and the nonseparable.

The separable models assume that spatial and temporal processes are uncorrelated and that
variograms are composed of purely spatial and purely temporal models. As an example, the
space–time covariance function can be expressed as the product between purely spatial and purely
temporal components. The major drawback of this type of model is the nonincorporation of the
spatial–temporal interaction component [18]. However, the nonseparable models assume that the
space–time phenomenon is correlated in space–time [22]. We used the generalized sum–product model,
which belongs to the nonseparable covariance model class.

The stationary covariance model product–sum [17,23] is given by C(hs, ht) =

k1Cs(hs)Ct(ht)+ k2Cs(hs) + k3Ct(ht). Assuming that ε(s, t) is second-order stationary, we have that:
γs(hs) = Cs(0) −Cs(hs)⇒ Cs(hs) = Cs(0) − γs(hs) and γt(ht) = Ct(0) − Ct(ht) ⇒ Ct(ht) =Ct(0) −
γt(ht), in which, based on the assumption of second-order stationarity, we have that the product–sum
covariance function is defined as:

C(hs, ht) = −γs(hs)[k1Ct(0) + k2] − γt(ht)[k1Ct(0) + k3] + k1γs(hs)γt(ht) + C(0, 0), (8)

where k1 > 0, k2 ≥ 0 e are constants that ensure that the covariance function is positive definite
(Equation (8)). Cs(0) e Ct(0) are the spatial and temporal thresholds, respectively. Applying the
relation, γ(hs, ht) = C(0, 0) −C(hs, ht), we have the product–sum variogram. This model gives origin
to the following relations:

γ(hs, 0) = γs(hs)(k2 + k1Ct(0)) = ksγs(hs) and
γ(0, ht) = γt(ht)(k3 + k1Cs(0)) = ktγt(ht),

(9)

where ks and kt are the proportionality coefficients between the space–time variograms, γs(hs, 0) and
γt(0, ht), and the spatial and temporal variograms, γs(hs) and γt(ht), respectively. Therefore, modeling
γ(hs, 0) is equivalent to modeling γs(hs). Likewise, estimating and modeling γ(0, ht) is equal to
estimating and modeling γt(ht). The two relations established in Equation (9) can be simplified by
imposing three constraints: k2 + k1Ct(0) = 1, k3 + k1Cs(0) = 1, and k1 + k2 + k3 = 1

These constraints facilitate the estimation of the model parameters γ(hs, 0) and γ(0, ht) using
γs(hs) and γt(ht), for this it is necessary to determine k1, k2, and k3. These three coefficients of the
model can be written in terms of the thresholds and parameters ks and kt [17]. In this particular case,
this leads to modeling γs(hs) and γt(ht), using the models of γ(hs, 0) and γ(0, ht), respectively. In
addition, these two parameters were combined into a single parameter k, resulting in the generalized
product–sum model (Equation (10)).
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By combining the parameters ks and kt to form a single parameter k, the space–time variogram
expression, γ(hs, ht), was simplified to,

γ(hs, ht) = (k2 + k1Ct(0))γs(hs) + (k3 + k1Cs(0))γt(ht) − k1γs(hs)γt(ht)

= ksγs(hs) + ktγt(ht) − k1γs(hs)γt(ht)

= γs(hs, 0) + γt(0, ht) − k1
γs(hs)

ks

γt(ht)
kt

= γs(hs, 0) + γt(0, ht) − kγs(hs)γt(ht),

(10)

where k = k1
kskt

. In Equation (11), the parameter k is expressed as:

k =

ktCt(0)+ksCs(0)−C(0,0)
Cs(0)Ct(0)

kskt
=

ktCt(0) + ksCs(0) −C(0, 0)
[ksCs(0)][ktCt(0)]

(11)

We used the covariance generalized product–sum model, and the variogram function of this
model is expressed by:

γst(hs, ht) = (k ·Ct(0) + 1)γst(hs, 0) + (k ·Cs(0) + 1)γst(0, ht) − kγst(hs, 0)γst(0, ht), (12)

where γst(hs, 0) and γst(0, ht) are the marginal spatial and temporal variograms, respectively
(Equation (12)). The great advantage of this type of model is that sample-based marginal adjustments
are used, and only one global threshold parameter is incorporated for space–time interaction [24]. In
Equation (13) the parameter k is positive and has an identity involving the global threshold, Cst(0, 0)
together with the spatial and temporal threshold, Cs(0) and Ct(0), respectively, given by:

k =
Cst(0, 0) −Cs(0) −Ct(0)

Cs(0) ·Ct(0)
. (13)

3.3. Geostatistical Prediction

Once the trend component was determined and estimated and a valid space–time variogram
model fitted, the next step consisted of the space–time kriging of the residuals using the ordinary
kriging method. The variogram model is crucial in space–time kriging to calculate the best invariant
linear predictor. Thus, it was necessary to obtain the space–time kriging equations, which provide
the weights of the observations in such a predictor and the prediction variation that indicates the
prediction accuracy [1].

Ordinary space–time kriging [15] consists of predicting the value ε(s0, t0), at the nonsampled
space–time point (s0, t0), from the stochastic component ε(s, t0). For this, the linear predictor,
ε∗(s0, t0) =

∑n
i=1 λiε(si, ti), is used, where λi are the kriging weights obtained by imposing the

condition that the prediction error expectation is zero and that it has minimum variance; that is, it is
the best linear unbiased predictor (BLUP). To obtain the weights, we used the ordinary space–time
kriging equations that were calculated in terms of the variogram:

n∑
j=1

λ jγst
(
si − s j, ti − t j

)
+ α = γst(si − s0, ti − t0),∀i = 1, 2, · · · , n

n∑
i=1

λi = 1
(14)

In the system of Equations (14), α is the Lagrange multiplier required to minimize the prediction
variance. The prediction variance (Equation (15)) is given by:

V(Z∗(s0, t0) −Z(s0, t0)) =
n∑

i=1

λiC(si − s0, ti − t0) + α (15)
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in which the final predictor (ẑ(s0, t0)) for the precipitation variable (Z), at the location (s0, t0), is
defined as:

ẑ(s0, t0) = m̂(s0, t0) + ε̂(s0, t0) (16)

where m̂(s0, t0) is the estimated value for the location (s0, t0) obtained by adjusting GAMLSS models
(Equation (16)). Figure 2 shows the flowchart of regression kriging with GAMLSS model.Water 2019, 11, x FOR PEER REVIEW 8 of 17 
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The interpolation performance in space–time kriging was evaluated using the leave-one-out
method, which consisted of removing an observed point from the precipitation in space–time (p(s0, t))
and then predicting its value (p̂(s0, t)). This process was then repeated for all remaining points, and the
residue (E) of this procedure was then obtained by the difference between the observed and predicted
values at each location (E = p̂(s0, t) − p(s0, t)). After that, the RMSE (root mean squared error), MAE
(mean absolute error), and R2 (coefficient of determination) were extracted as selection criteria.

All statistical analyses were performed in software R, using the libraries: gamlss [14], gstat [25],
and sp [26].

4. Results

4.1. Descriptive Analysis

The precipitation variable, measured monthly in each of the 54 locations, in the period 1994–2014,
presented a median value of 29.05 mm and an interquartile range of 3.60–90.20 mm. In the whole
historical series, approximately 20% of the observations presented 0.00 mm of total monthly precipitation.
In order to evaluate the precipitation distribution of the studied region, a histogram was initially
developed for the entire dataset (Figure 3).

In Figure 3, it is possible to observe the excess of zeroes values in the dataset and, consequently,
the presence of asymmetric behavior, indicating that the Gaussian model is not the most suitable
for modeling.

Box plots were built to explore the behavior of precipitation at the 54 pluviometric stations
(Figure 4).
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Due to the asymmetric behavior and the high variability of precipitation, the State of Paraíba
suffers from irregular distribution of rainfall throughout the region. This distribution presented high
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variability among the mesoregions analyzed in this work. A positive asymmetry was observed in all
the locations, as well as the presence of atypical points (Figure 4).

4.2. Trend Analysis

The distribution of precipitation relative to geographical coordinates (latitude and longitude) and
temporal index, with the corresponding adjustments through cubic splines, is presented in Figure 5.Water 2019, 11, x FOR PEER REVIEW 11 of 17 
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Figure 5. Distribution of precipitation data (mm) (blue dots) in the longitude direction (a) and in the
latitude direction (b) and respective trend lines (gray line) using cubic smoothing splines function
over the study region; time series of precipitation data (mm) (blue line) and adjusted temporal trend
(gray line) (c).

An exploratory analysis by adjusting the cubic smoothness function of the spline showed that
precipitation occurred more frequently in the extremes of the studied region, corresponding to the
mesoregions of Sertão and Zona da Mata, and that there was limited precipitation in the areas located
near the meridian 36◦ W, corresponding to the Borborema mesoregion (Figure 5a). The spatial
distribution of rainfall in the region presented a spatial tendency that varied with the latitudinal and
longitudinal gradients (Figure 5a,b). For the analysis of the time trend, the graph of the time series of
precipitation was calculated, based on the average of 54 pluviometric stations (Figure 5c). This series
showed an evident seasonal behavior of 12 months. Thus, for this series, a GAMLSS model was fitted
using cubic smoothing splines function.

To model the trend of precipitation data, the GAMLSS model was used, via zero-adjusted
gamma (ZAGA) distribution, as indicated in the system of Equations (4). Table 2 presents the
coefficient estimates, standard error, t value, p-value, and the coefficient of determination (R2) in the
model adjustment.
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Table 2. Estimates, standard errors (SE), p-values, and the coefficient of determination (R2) of the
GAMLSS regression model for the dataset used in this study.

Parameter Estimative SE t Value p-Value R2

µ

β10 −16.760 0.517 −32.399 <10−4

0.48

β11 <10−4 <10−4 12.717 <10−4

β12 0.002 <10−4 39.081 <10−4

β13 <10−4 <10−4 −5.955 <10−4

σ β20 0.855 0.005 163.700 <10−4

ν β30 −0.010 0.002 −59.350 <10−4

The results presented in Table 2 indicate, at the level of 0.01 of significance, that the covariates
longitude, latitude, and the temporal index are related to the precipitation. The R2 shows that 48%
of the large-scale variation of rainfall was explained by the trend component, corroborating with the
results found through the descriptive analysis.

After estimating the trend component, which was described in Equation (1), we then analyzed the
stochastic residue, ε̂(s, t) = Z(s, t)− m̂(s, t). Next, the space–time sampling variogram of these residues
was calculated, taking as reference the adjustment of the generalized product–sum theoretical model.

4.3. Geostatistical Analysis

The residuals, obtained from the regression via GAMLSS models, presented an evident pattern of
spatiotemporal correlation (Figure 6a). There was a strong spatial correlation between nearby sites,
and the spatial structure became weaker as time differences increased. Similarly, the same occurred
with the temporal structure (Figure 6b). Thus, spatial–temporal kriging of the residue was required.
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The behavior of the empirical space–time variogram estimates is presented in terms of the marginal
effects (Figure 7).
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The spatial variability exhibited by the marginal spatial variogram (Figure 7a) differed from
the temporal variability shown in the marginal temporal variogram (Figure 7b), since a difference,
concerning the threshold, was observed between the two marginal variograms. For this reason, the
spatiotemporal variability of the residues could be modeled through the generalized product–sum
model. One of the advantages of constructing marginal variograms is the fact that it is possible to
identify some theoretical variogram models (for example, Gaussian, Exponential, and Spherical) that
can compose the structure in the generalized product–sum model (Equation (12)).

As described above, the Normal, Gamma, and ZAGA models have been adjusted for large-scale
variations. The different structures of the generalized product–sum model were adjusted for the
residues obtained in each of these models, followed by the spatial–temporal kriging of that model. The
cross-validation results are provided in Table 3. The results of the validation were calculated after the
values adjusted by the trend component were added to the values interpolated in space–time kriging.

Table 3. Space-time kriging results combining the different trend models (NORMAL, GAMMA and
ZAGA) with the different variogram models: Gaussian (GAU), Exponential (EXP) and Spherical (SPH).
The RMSE (root mean squared error), MAE (mean absolute error), and R2 (coefficient of determination)
estimates were obtained by “leave-one-out” cross-validation.

MODEL
NORMAL GAMMA ZAGA

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

GAU + EXP 36.099 21.881 0.813 36.652 22.065 0.807 36.116 21.920 0.812
GAU + SPH 36.881 22.414 0.805 36.708 22.090 0.807 37.596 22.895 0.797
EXP + EXP 34.710 21.011 0.827 35.381 21.253 0.821 34.598 20.970 0.828
EXP + SPH 34.991 21.181 0.824 35.388 21.262 0.821 35.342 21.430 0.820

The results presented in Table 3 indicate that the Exponential model was the best fit for the spatial
(γst(hs, 0)) and temporal (γst(0, ht)) structures in all regression models, since it presented higher R2

and smaller RMSE and MAE. Note that the ZAGA model (EXP + EXP) presented the best results,
with RMSE of 34.598 mm, MAE of 20.970 mm, and R2 equal to 82.8%. These results demonstrated
the effectiveness of adjusting the precipitation data to an adequate model that contemplates the
spatial–temporal characteristics presented by the phenomenon.

The components of the generalized product–sum model (Equation (12)) and their estimates are
shown in Table 4. The components were chosen based on the results in Table 3.

Table 4. Parameter estimates of the generalized product–sum variogram model adjusted to precipitation
residues. The final model is obtained by replacing these estimates in Equation (12).

Component Variogram Model Nugget Threshold Range K

Spatial (γst(hs, 0)) Exponential 0.757 4.350 171 km
15.689Temporal (γst(0, ht)) Exponential 17.479 52.058 47 days

The parameter estimates (Table 4) indicated that all components act on the spatial–temporal
pattern of the ZAGA regression residuals. The parameter estimation related to the spatial extent was
high, indicating that the residues were correlated in distances of up to 171 km. The temporal scale
estimate indicated that sites with a delay of up to 47 days had residual autocorrelation.

The main advantage of the methodology proposed in this study is that with the space–time kriging
technique, predictions can be made for unobserved locations and times [21,24]. As an example of this
methodology applicability, the spatial–temporal kriging of precipitation was carried out in the period
2015 (Figure 8).



Water 2019, 11, 2368 13 of 16
Water 2019, 11, x FOR PEER REVIEW 14 of 17 

 

 

Figure 8. Spatial–temporal prediction of total monthly rainfall (mm) in the study region for the year 

2015. The crosses (+) represent the positions of each pluviometric station. 

In Figure 8, it is possible to evaluate the precipitation behavior in nonsampled sites, as well as in 

times not observed in the sample, helping policymakers manage the allocation of water in the present 

and the future. It is noted that the spatial distribution of rainfall presented variability within each 

mesoregion and also among the four mesoregions. Precipitation in the region occurred more 

intensely during the first half of the year, but during the same period, there was an irregularity in the 

distribution of rainfall between the mesoregions. In the Sertão, the high spatial variability can be 

justified by meteorological systems in the area, such as the the intertropical convergence zone (ITCZ) 

and the high-level cyclonic vortices (VCAN). It is observed that in this region, the rainfall distribution 

during February to May occurred irregularly. In years when El Niño and La Niña occurred with 

strong intensity, there was substantial evidence that rainfall occurred, respectively, above or below 

the expected value, resulting in high temporal variability of precipitation [27]. The rainy season in 

this area is concentrated between February and May, presenting high variation in space and time. 

The low volume of rainfall and the irregularity of its distribution have contributed, for example, to 

the occurrence of the desertification phenomenon [5,28]. 

5. Discussion 

The state of Paraíba has abnormalities in the distribution of precipitation, with high spatial and 

temporal variability, resulting in heavy rains with short duration and prolonged periods of drought. 

Consequently, the scarcity of rain directly affects water resources, resulting in severe problems in the 

region's economy, which focuses on family agriculture and livestock [29]. Also, drought has affected 

water distribution for human consumption, electricity supply, the occurrence of diseases and 

migration, among other issues, resulting in an unprecedented water crisis [30]. Thus, a space–time 

distribution modeling of rainfall becomes of paramount importance for the water resources 

management to reduce the impacts caused by drought in this region. 

Irregular rainfall, resulting in periods of prolonged drought, is associated with meteorological 

phenomena. Strong El Niño years have caused intense droughts in Paraíba [27]. Rainfall periods are 

concentrated in a few months, occurring mainly in winter, which is associated with the ITCZ action 
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2015. The crosses (+) represent the positions of each pluviometric station.

In Figure 8, it is possible to evaluate the precipitation behavior in nonsampled sites, as well as
in times not observed in the sample, helping policymakers manage the allocation of water in the
present and the future. It is noted that the spatial distribution of rainfall presented variability within
each mesoregion and also among the four mesoregions. Precipitation in the region occurred more
intensely during the first half of the year, but during the same period, there was an irregularity in
the distribution of rainfall between the mesoregions. In the Sertão, the high spatial variability can be
justified by meteorological systems in the area, such as the the Intertropical Convergence Zone (ITCZ)
and the Upper Tropospheric Cyclonic Vortices (UTCV). It is observed that in this region, the rainfall
distribution during February to May occurred irregularly. In years when El Niño and La Niña occurred
with strong intensity, there was substantial evidence that rainfall occurred, respectively, above or below
the expected value, resulting in high temporal variability of precipitation [27]. The rainy season in this
area is concentrated between February and May, presenting high variation in space and time. The
low volume of rainfall and the irregularity of its distribution have contributed, for example, to the
occurrence of the desertification phenomenon [5,28].

5. Discussion

The state of Paraíba has abnormalities in the distribution of precipitation, with high spatial and
temporal variability, resulting in heavy rains with short duration and prolonged periods of drought.
Consequently, the scarcity of rain directly affects water resources, resulting in severe problems in the
region’s economy, which focuses on family agriculture and livestock [29]. Also, drought has affected
water distribution for human consumption, electricity supply, the occurrence of diseases and migration,
among other issues, resulting in an unprecedented water crisis [30]. Thus, a space–time distribution
modeling of rainfall becomes of paramount importance for the water resources management to reduce
the impacts caused by drought in this region.
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Irregular rainfall, resulting in periods of prolonged drought, is associated with meteorological
phenomena. Strong El Niño years have caused intense droughts in Paraíba [27]. Rainfall periods are
concentrated in a few months, occurring mainly in winter, which is associated with the ITCZ action
and the passage of cold fronts from the South Atlantic Ocean [31]. Due to the high rainfall variability
of the region, rainfall behavior can be classified into three periods, namely: pre-rainy season, rainy
season and post-rainy season. During the pre-rainy season, which runs from December to January
in the Sertão mesoregion, meteorological systems such as UTCV and instability associated with cold
fronts occur. The rainy season itself persists from February to May, when the ITCZ acts as the primary
meteorological system responsible for the recharge of water resources in the state. The post-rainy
season usually occurs between May and July in the Zona da Mata mesoregion and some localities of
the Southeast. The Eastern Wave Disturbances (EWDs) are the primary meteorological system acting
in this period.

In this study, we used the gamma distribution, which shows asymmetric behavior, to model
precipitation data. However, it is known that this probability distribution does not include values
equal to zero, not having a parameter that can be used to model the excess of zero that is common in
data of monthly total precipitation throughout the NEB. As an advantage, the methodology allowed
modeling the occurrence of null values, resulting in better estimates when compared with models that
do not contemplate the excess of zeroes in the dataset.

Several studies that deal with spatial–temporal modeling and which have null values in the
database have used the regression model with Normal distribution [11,32] or the Gamma regression
model [12,13]. However, the Normal regression does not solve the data asymmetry problem, and the
Gama regression does not contemplate in its domain the occurrence of zeroes. Thus, we propose a
new way of modeling the trend component through GAMLSS models, especially using the ZAGA
distribution, allowing one of its three parameters to model the excess of zeroes that occurs with high
frequency in data of monthly total precipitation.

The trend component alone does not model the spatiotemporal dependence that is present in the
regression residuals. Thus, the need for space–time modeling of these residues arises. Previous studies
did not take into account this spatial and/or temporal residue dependence [7,33]. Consequently, we
modeled the spatiotemporal dependence structure of this stochastic component, using a covariance
function. However, this approach has numerous parameters present in the space–time theoretical
variogram, resulting in great computational difficulties to determine the parameter estimates.

A significant benefit of the suggested methodology is that it can predict in nonsampled places
and in periods that have not been observed, thereby assisting water-related initiatives in the region.
The Agreste and Borborema mesoregions, with a reduced amount of precipitation, were discovered
to be an aggravating factor in the uneven rainfall distribution in the study region. The majority of
the state of Paraíba is part of the Brazilian semi-arid region, which has a climate characterized by
low humidity and rainfall. Studies in recent years have revealed the process of desertification in the
semi-arid Northeast regions [30]. This research can, therefore, identify areas that will soon be affected
by water supplies for human and animal consumption. These findings can serve as a supporting tool
to help government agencies in water management to predict societal needs and avoid water shortages
that are rapidly intensifying, not only in Paraíba State, but also in the NEB as a whole.

6. Conclusions

In this study, total monthly precipitation in the state of Paraíba was analyzed using spatiotemporal
geostatistical tools. Rainfall data of 54 pluviometric stations from 1994 to 2014 were analyzed.
Large-scale variation was modeled using spatial and temporal covariates to remove the spatiotemporal
trend in the regression residuals. It was proposed to use the adjustment of GAMLSS models with
different distributions for the response variable (Normal, Gamma, and ZAGA). The results of the
cross-validation indicated that the ZAGA distribution best fits the data, with the exponential model for
the spatial component and also for the time component of the generalized product–sum variogram
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model. Also, the results indicated the presence of the space–time correlation in the rainfall phenomenon,
implying in this way the proper use of space–time kriging proposed in this study. Finally, space–time
kriging in Paraíba state for the year 2015 evidenced the great irregularity in the distribution of rainfall
throughout the region, providing a detailed visual analysis of sectors suffering from scarcity and excess
of rain, favoring government policies that address water resources.
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