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Abstract: Land managers are often inadequately informed to make management decisions in
contemporary watersheds, in which sources of impairment are simultaneously shifting due to the
combined influences of land use change, rapid ongoing human population growth, and changing
environmental conditions. There is, thus, a great need for effective collaborative adaptive
management (CAM; or derivatives) efforts utilizing an accepted methodological approach that
provides data needed to properly identify and address past, present, and future sources of impairment.
The experimental watershed study design holds great promise for meeting such needs and facilitating
an effective collaborative and adaptive management process. To advance understanding of natural
and anthropogenic influences on sources of impairment, and to demonstrate the approach in a
contemporary watershed, a nested-scale experimental watershed study design was implemented in a
representative, contemporary, mixed-use watershed located in Midwestern USA. Results identify
challenges associated with CAM, and how the experimental watershed approach can help to objectively
elucidate causal factors, target critical source areas, and provide the science-based information
needed to make informed management decisions. Results show urban/suburban development and
agriculture are primary drivers of alterations to watershed hydrology, streamflow regimes, transport of
multiple water quality constituents, and stream physical habitat. However, several natural processes
and watershed characteristics, such as surficial geology and stream system evolution, are likely
compounding observed water quality impairment and aquatic habitat degradation. Given the
varied and complicated set of factors contributing to such issues in the study watershed and other
contemporary watersheds, watershed restoration is likely subject to physical limitations and should
be conceptualized in the context of achievable goals/objectives. Overall, results demonstrate the
immense, globally transferrable value of the experimental watershed approach and coupled CAM
process to address contemporary water resource management challenges.
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1. Challenges in Contemporary Watershed Management

1.1. Collaborative Adaptive Management

Contemporary watershed management problems are complex, consisting of multiple, conflicting,
and non-linear and/or stochastic variables. Research has shown that the management of watersheds is
most effective using an adaptive and integrated approach based on iterative applications of best (or
better) practices guided by ecosystem process responses. Adaptive management comprises critical
steps that include (but are not limited to) problem assessment, remediation design, implementation,
monitoring, evaluation, and management plan adjustment [1–5]. Based on initial problem assessments,
a project is often designed and implemented, and then, with regular monitoring and (re)evaluation,
adjustments may be applied, and projects revised. This iterative process helps update management
plans over time while incorporating additional precautions and experiences garnered from new
information. In addition to complexity and uncertainty, natural resource management is interconnected
through equally complex and intermingled land use needs (practices) of humans. Land and water
management, therefore, benefit from a collaborative approach that includes multiple stakeholders.
Collaborative Adaptive Management (CAM) facilitates the introduction of local stakeholders as a
major component of sustainable decision-making. It is recognized that there may be other approximate
derivatives to CAM, but for simplicity, here we reference CAM. The primary goal of CAM is to integrate
knowledge and science with experience and the perspectives of scientists, stakeholders, and managers
for more effective management decision-making [6–9].

Collaborative Adaptive Management has been applied broadly in landscape-level planning and
management globally [10]. There have been various applications of the collaborative adaptive process in
regions of the world including (but not limited to) Southeast Asia [11], Brazil [12,13], and Europe [14–20].
Most CAM applications have been in the United States and Australia [21–23]. One such application in the
United States is the Chesapeake Bay Program (CBP), a globally recognized model for the collaborative
management and restoration of large aquatic ecosystems [24]. The Chesapeake Bay Total Maximum
Daily Load (TMDL) [25], administered by the U.S. Environmental Protection Agency (EPA), is one of
the largest and longest-running pollution control programs in history. The Chesapeake Bay Watershed
Agreement (2014) was drafted based on contributions from numerous federal and state agencies,
citizens, stakeholders, academic institutions, local governments, and non-profit organizations [26].
The regulatory program is currently implemented in six states (Delaware, Maryland, New York,
Pennsylvania, Virginia, West Virginia), and the District of Columbia, and mandates reductions of three
primary constituents of concern (i.e., nitrogen, phosphorus, and suspended sediment) to improve
various indicators of Bay-water quality and aquatic habitat (e.g., dissolved oxygen, turbidity, submerged
aquatic vegetation). The Chesapeake Bay Program provides a model for CAM activities, including
stream restoration, upland pollutant source reduction, infrastructure improvements such as urban
green streets, and retrofitting existing stormwater facilities to improve water quality [27]. Another
leading example of CAM in the United States is the Mississippi River Basin, Gulf Hypoxia Program
coordinated by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force (Hypoxia Task
Force or HTF). The HTF is a collaborative management effort by state and federal agencies established,
at least in part, to reduce the size and persistence of “The Dead Zone”, a large area of hypoxia (i.e.,
oxygen concentration less than 2 mg L−1) in the Gulf of Mexico [28–32]. The CAM model has been
similarly utilized to improve the management of various natural resources, including (but not limited
to) wild fisheries management [33], surface and groundwater resource allocation [34], and urban water
management [35] in Australia. Collectively, action plans associated with CAM programs highlight the
importance of accounting for future monitoring information, changing environmental conditions, and
lessons learned globally [21,31,32], thereby emphasizing the need for high-quality environmental data
to inform effective management of natural resources.
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1.2. Environmental Monitoring to Improve Management

Over 100 years ago, watershed managers recognized the need to better understand land use and
water quality and quantity relationships, in order to improve management practices and stewardship
and to sustain natural resource commodities. There was an urgency to understand how the water
balance of a given watershed is controlled by climate, soil, and vegetation interactions, and how
alterations of such factors may affect the water regime (i.e., timing and quantity of water), water quality,
and various related natural resources [36,37]. Among the first studies in the United States to address
nationwide watershed issues was the Wagon Wheel Gap Experimental Watershed Study, which started
in 1909 to protect navigable streams at the watershed scale [38,39]. Other early studies focused on the
effects of road building and forest harvest practices on water quantity and quality (e.g., flow and flow
velocity, erosion, sediment, nutrients). Later studies included agricultural impacts. However, despite
advancements generated through early studies, watershed mismanagement continues to be identified
as primarily responsible for anthropogenic disturbances of waterways [40–43], and land managers
remain poorly equipped to address contemporary mixed-land-use watershed issues that are set in
a continuum of forested, agriculture, and urban land use types and are associated with aggressive
human population growth. For context, a recent report published by the United Nations [44] showed
approximately 30% of the global human population (751 million people) lived in metropolitan areas
during 1950. By 2018 that percentage had grown to 55% (4.2 billion urban inhabitants) [44]. By 2050, it is
projected that almost 70% of the global human population, approximately 6.7 billion people, will live
in metropolitan areas [44]. Moreover, there are concomitant, growing, human health and quality-of-life
issues related to water resources that are global in scale. There are increasing demands for management
solutions and guarantees of sustainable water resources and water quality for future generations, which
will depend on research, education, outreach, collaboration, adaptive management, and understanding
the cultural anthropology of water [45]. Considering the scope of these complexities, is there any
question that we must reconsider all that we think we know, and reimagine watershed management,
given the rapid succession of intermingled impacts in recent decades alone?

1.3. Contemporary Application of the Experimental Watershed Approach

The nested-scale and/or paired experimental watershed study designs (and other derivations) have
been shown to be effective approaches for quantitatively characterizing hydrologic and water quality
perturbations in mixed-land-use watersheds [46–57]. Nested watershed study designs utilize a series
of sub-catchments inside a larger watershed to monitor land use impacts on environmental variables
of interest. A paired watershed study design includes data collection from at least two watersheds
(control and treatment) with similar physiographical characteristics. Sub-catchments are delineated
to isolate land use types and hydrologic characteristics. While often applied at the watershed scale,
the design concept can be applied at any scale, from the reach level (scale-nested) to the basin level.
Ultimately, the design enables researchers to partition and quantify the influencing processes observed
at the sub-catchment scale [58], and thereby determine the influence and cumulative effect of dominant
land use types on the response variable of interest. By applying a nested-scale experimental watershed
approach, factors (e.g., land use, hydroclimate) contributing to a given variable of interest may be
more effectively (objectively) disentangled, producing quantitative information regarding hydrologic
and water quality regimes related to specific land-uses. For example, Tetzlaff et al. [57] discussed how
the experimental watershed approach has yielded several benefits, including (but not limited to) (1)
science-based information to answer site-specific management questions, (2) quantitative information
needed for ongoing model development, and (3) ground-truthing of large-scale remote sensing data.
Experimental watershed studies can elucidate unknown problems in a watershed of interest, where
unique combinations of natural and anthropogenic (legacy and ongoing) conditions would otherwise
confound planning efforts [59]. Additionally, experimental watershed studies can enable the discovery
of previously unknown phenomena and/or processes that contribute to globally important natural
resources security issues. For example, results from Hubbard Brook Experimental Forest involving
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the acid rain phenomenon were especially transformative, with important global implications for
natural resources management [48]. A study by Felson and Pickett [60] showed that scientists and
urban designer partnerships could result in a deeper understanding of urban land-use influence on
ecological response across spatial scales, and rural-urban land use gradients [57]. Such information is
important considering the combined influence of hydroclimate extremes and land use change that is
expected to continue to degrade water resources and ecological health in future decades [41].

Despite the potential for experimental watershed studies to yield valuable information for land
and water resource managers [59], the approach is rarely applied in contemporary, mixed-land-use
watersheds due to seemingly daunting challenges. Felson and Pickett [60] noted challenges associated
with collaborative urban planning, and science-based experimental design efforts include, (1) the
need for enhanced communication between planners, scientists, and stakeholders, (2) a lack of control
over experimental installation during initial urban planning and development, and (3) associated
costs and financial limitations typically faced by local municipalities. However, given the increasing
rate and intensity of global water resource degradation, effective methods must be utilized to
overcome obstacles to implementation, regardless of the level of complexity. Therefore, while the
challenges noted by previous authors are certainly affirmed, investment costs in the shorter term
might be outweighed by long-term irretrievable effects of less informed management. Contemporary
application of the experimental watershed approach is an effective method that can provide the
detailed information necessary to improve management, conservation, and sustainability of water
resources while driving down long-term costs. To date, one of the few examples of a mixed-land-use,
contemporary experimental watershed study is Hinkson Creek Watershed [53]. The purpose of this
article is to provide an example of the successful integration of the experimental watershed study
design and collaborative adaptive management to advance policy and management practices in
contemporary watersheds.

2. Case Study: Hinkson Creek Watershed

2.1. Case Study Setting

To provide important context for the reader, in particular, pertaining to transferability to other
mixed (multi) use watersheds globally, we provide information about the case-study watershed
used for the current work as follows. Hinkson Creek Watershed (HCW) is located within the Lower
Missouri-Moreau River Basin (LMMRB) in central Missouri, USA (Figure 1) [53]. The main channel,
Hinkson Creek, is a 3rd order stream that flows through a basin of approximately 231 km2 [53].
At the time of this work, urban areas of HCW were primarily residential with progressive commercial
expansion from the City of Columbia (population approximately 122,000) [61]. Land use in the
watershed was approximately 32% forest, 37% pasture or cropland, and 29% urban (Table 1).
The regional climate is dominated by continental polar air masses and maritime and continental
tropical air masses during the winter and summer, respectively. The mean annual total precipitation
is approximately 1096 mm, and the mean annual air temperature is approximately 13.5 ◦C. A wet
season occurs primarily from March through June. A portion of the LMMRB was targeted as critical
for controlling erosion and nonpoint source pollution in 1998 [53]. Watershed restoration efforts in
the LMMRB were accelerated by mandates of the Clean Water Act (CWA) and subsequent lawsuits.
Hinkson Creek Watershed is representative of the LMMRB, and many developing watersheds globally,
with respect to hydrologic processes, water quality, climate, and land use. Similar to many watersheds,
the impaired use for Hinkson Creek was identified as “protection of warm water aquatic life” from
unknown pollutants [62].
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Figure 1. Locations of gauge sites (where #4 includes the USGS gauging station) and corresponding
drainage area to each gauge (bold line) in the Hinkson Creek Watershed (HCW), in Central Missouri,
USA. A model urban nested-scale experimental watershed study.

Table 1. Cumulative land use and land cover (LULC), drainage area, and stream length corresponding
to each gauging site located in Hinkson Creek Watershed (HCW), Missouri, USA. Percent cumulative
LULC is shown parenthetically.

Variable [km2 (%)] Site #1 Site #2 Site #3 Site #4 Site #5 HCW

Agricultural 45.0 (57.0) 56.4 (54.9) 57.6 (49.5) 78.5 (43.1) 79.7 (38.4) 85.4 (36.7)
Forested 28.4 (35.9) 37.5 (36.4) 41.1 (35.4) 62.8 (34.5) 68.6 (33.1) 74.9 (32.2)
Urban 3.7 (4.7) 6.6 (6.4) 15 (13.0) 37.1 (20.4) 54.9 (26.5) 67.6 (29.0)

Wetland 1.9 (2.4) 2.4 (2.3) 2.5 (2.1) 3.6 (2.0) 4.4 (2.0) 4.9 (2.1)
Total area 79.0 102.9 116.2 182.0 207.5 232.8

Stream length § 22.8 29.8 35.4 43.6 53.0 56.1
§ Stream length is shown in km.

Hinkson Creek’s listing on the Clean Water Act (CWA) 303(d) list as impaired by unknown
pollutants in 1998 [59] came about due to many issues identified by state and federal agencies and
local residents, including (but not limited to), (1) larger and more frequent floods; (2) lower base
flows; (3) increased soil erosion in construction and development areas with subsequent transport
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of the soil to streams (i.e., altered suspended sediment regimes); (4) water contamination from
urban stormwater flows; (5) degradation of habitat for aquatic organisms due to the concerns listed
above; and (6) degradation of aquatic habitat due to the physical alteration of stream channels and
streamside (riparian) corridors [55,63–69]. In 2008, the watershed was instrumented with a nested-scale
experimental watershed study design [53] to generate data that address the uncertainties of the
303(d) listing, while providing a scientific basis for developing a TMDL target. The experimental
watershed program was designed to investigate the problems suspected to have led to the 1998
listing and improve understanding of contemporary land-use effects on hydrologic processes (stream
response, water yield), water quality, and biological community health. Each nested monitoring site
in Hinkson Creek was designed to monitor water stage and a complete suite of climate variables.
Multiple additional water quality variables (e.g., suspended sediment, nitrogen, phosphorus, chloride,
pH, and other constituents) were monitored at the nested sites shortly after implementation of the
study. A United States Geological Survey gauging station (USGS-06910230) had collected stage data
intermittently since 1966 and provided flow data for site 4 (Figure 1). Articles from the Hinkson Creek
Experimental Watershed (HCEW) program were being published as early as 2010. To date, there have
been over 50 publications in peer-reviewed journals and 21 graduate student theses and dissertations.

2.2. Collaborative Adaptive Management

In 2011, a Collaborative Adaptive Management (CAM) program was developed to provide
direction and support for the 303(d)-delisting process (www.helpthehinkson.org) [64]. The CAM
process was designed to be fundamentally science-based as doing so acknowledges uncertainties and/or
unknowns about complex systems, engages scientists, decision-makers, and stakeholders, and applies
continuous process improvements to reduce those uncertainties and maximize the opportunity for
success [70,71]. In this manner, a science-driven CAM process can support efforts aimed at improving
water quality and aquatic habitat in contemporary watersheds, because scientific results and the
understanding they foster can guide informed decision-making. This approach is important because,
in complex contemporary watershed systems, applying a mitigation strategy may improve one or
more characteristics of the stream, but not achieve the ultimate goal. Typically, when a stream or other
water body is listed as impaired, a Total Maximum Daily Load (TMDL) analysis is conducted to define
the maximum pollutant load compatible with full compliance of the stream with designated uses [72].
However, this approach can be confounded when no specific pollutant has been identified. From the
outset of the regulatory process, impairment of Hinkson Creek was assumed predominantly a result of
urban development. Given the listing of the creek for “unknown pollutants”, a volume-based flow
reduction strategy was initially adopted, which was focused on urban stormwater runoff reduction
as a means to reduce unknown pollutant concentrations and loadings [53]. Specifically, a target
of 50% volume reduction was set for HCW in the waste load allocation (proportion of stormwater
attributed to point sources) developed by the Missouri Department of Natural Resources (MDNR) [73].
The wasteload allocation was required to be met by urban and developed areas, while the load
allocation (proportion of stormwater attributed to nonpoint sources) was assigned to rural areas [53].
Such volume-based approaches are encouraged by USEPA and the National Research Council [74];
therefore, the application of stormwater reduction as a surrogate for pollutants is not uncommon [53].
These details, and those that follow, chronicle the cumulative results of research conducted within the
context of the HCW study and demonstrate the immeasurable value of the experimental watershed
approach and the CAM program to water resource management.

2.3. Experimental Watershed Design Outcomes

The experimental watershed study design applied in HCW facilitated the identification and
quantification of factors contributing to impairment of the stream and provided the information needed
to target mechanistic drivers, both natural and anthropogenic, of hydrologic alteration. Detail is
provided here to give the reader a sense of the scope of possible findings that can be obtained via

www.helpthehinkson.org
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the methodological approach. The analysis showed that annual streamflow metrics (i.e., peak flow,
baseflow) had not significantly increased or decreased in Hinkson Creek from 1967 to 2010 [63].
However, more recent work indicated that significant changes in runoff volume and timing in the
watershed (largely due to urbanization) have occurred in the years up to 2015 [75]. Additionally,
event-based (30-min interval) rainfall-streamflow response showed increased explained variance at
urban sites relative to rural sites, indicating the potential for increased streamflow response to rainfall
events at urban sites [61]. Multiple (n = 12) event-based streamflow regime metrics (e.g., peak flow
magnitude and timing), which were calculated from observed paired-independent storm events were
correlated with urban land use [67]. A positive relationship between developed land uses (i.e., urban
and suburban) and volumetric streamflow was consistently observed through various analyses [76–81],
thus highlighting the importance of land use impacts on streamflow characteristics and sediment
transport [56,59,77,80,82,83].

Suspended sediment levels in Hinkson Creek may be high for the region [82]. There was a
disproportionately high contribution of fine sediment reported from the City of Columbia, relative to
Hinkson Creek [84,85]. While the variability of spatiotemporal distributions of suspended sediment
particle densities (e.g., organic material) in Hinkson Creek can confound loading estimations [86,87],
work conclusively showed that average suspended sediment particle size decreased in Hinkson Creek
as cumulative urban land use increased in the watershed. Moreover, a doubling of streamflow more
than doubled (i.e., a non-linear relationship) fine suspended sediment concentrations in Hinkson
Creek [88,89]. In addition, studies showed that nearly all (99%) of the total suspended sediment load
was transported during high flows (Q10) [76].

A study in 2011 showed that stream bank erosion contributed approximately 67% of suspended
sediment loading over the 2011 water year, illustrating the potential contribution of in-stream vs.
terrestrial suspended sediment in the watershed [90]. Kellner and Hubbart [81] showed that channel
widening and incision in Hinkson Creek (e.g., erosion of streambed and banks) were spatially correlated
to developed land uses, and associated streamflow characteristics, in the middle and lower watershed.
Increased erosion of streambeds and banks due to urban runoff may help explain observed suspended
sediment patterns and further emphasizes the importance of streamflow to sediment and pollutant
transport dynamics. However, suspended sediment is only one of the set of factors influencing water
quality. Alterations to multiple nutrient constituents, driven by land use practices, were observed in
HCW [56,76]. Zeiger and Hubbart [56] showed total inorganic nitrogen and nitrate concentrations
were relatively higher in the agricultural headwaters. Increased nitrate levels are quite common
in the agricultural areas of the Midwest, particularly the Upper Mississippi River Basin, where
nitrogen fertilizer applications can exceed 2.5 t km−2 yr−1. However, total ammonia yields greater
than 1.25 kg ha−1 yr−1 and total phosphorus yields exceeding 2.0 kg ha−1 yr−1 in Hinkson Creek were
high for the Mississippi River Basin [56]. Total phosphorus concentrations exceeded 1.13 mg L−1 at
suburban/urban sites.

Urban land uses also correlated with adverse physicochemical characteristics in Hinkson Creek,
including toxic chloride concentrations and loadings [64], altered dissolved oxygen trends (both
above and below established water quality standards [91,92]), and increased pH and total dissolved
solids [83]. Hubbart et al. [64] showed chloride in Hinkson Creek reaches seasonally-mediated
acute (860 mg L−1) and chronic (230 mg L−1) concentrations with lower concentrations persisting in
floodplain shallow groundwater year-round. Collectively, the results of stream physicochemistry
investigations suggest the potential for aquatic biota stress throughout the main stem of Hinkson
Creek and identify land-use practices as a primary driver of water resource degradation. Results also
showed that urbanization (Columbia, Missouri) has resulted in significantly (p < 0.05) altered stream
water temperature regimes [54,93,94]. Daily maximum stream temperature exceeded a threshold of
potential mortality of warm-water biota (i.e., 35.0 ◦C). Additionally, maximum stream temperature
was 4.0 ◦C greater at an urban monitoring site, relative to a rural site for 10.5 h, indicating urban land
use exacerbates the influence of summertime drought on thermal stream conditions. Sudden increases
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in stream temperature (stream temperature surges) were observed at urban sites. Stream temperature
surges were significantly correlated to urban land use, downstream distance, and discharge (p = 0.02).

Studies identified an urban micro-climate gradient and an urban heat island (UHI) effect in the
city of Columbia, and noted that strategically located urban forest patches can be used to optimize
localized cooling, carbon storage and cycling [95]. Similarly, floodplain work indicated that bottomland
hardwood forest soils in Hinkson Creek Watershed store larger amounts of carbon relative to non-woody
floodplain sites in the urban environment [96,97]. This information was not only useful in CAM
discussions, and for local restoration policies, but also in current management discussions regarding
the potential for bottomland hardwood forest restoration to meet carbon sequestration targets globally.
Moreover, results repeatedly and conclusively supported the reestablishment of floodplain forests,
where practicable, for the conservation of both groundwater and surface water quality. Studies
showed that floodplain forests reduce subsurface shallow groundwater temperature fluctuations [98],
can accept and thus process significantly (α = 0.05, approximately 120 mm yr−1) more water to storage
than agricultural or grassland areas [99], significantly increase soil infiltration and soil volumetric water
content holding capacity [100], increase consumptive use by vegetation [58], and improve freshwater
routing, water quality, aquatic ecosystem conservation, and flood mitigation in mixed-land-use
watersheds [98,101–103].

Program results also highlighted the effects of agricultural practices, specifically in the upper
watershed, on the hydrologic regime of Hinkson Creek. For example, Zeiger and Hubbart [56]
reported high concentrations of suspended sediment in the upper watershed, related to agricultural
land uses. Similarly, Kellner and Hubbart [83] found indications of poor water quality in the
agricultural upper watershed, as illustrated by levels of dissolved oxygen and pH values outside
the recommended range for aquatic biota [91,92]. Such results suggest water quality and aquatic
habitat degradation in Hinkson Creek is not limited to the activities and spatial extent of the city
of Columbia, but rather is a complex watershed-scale issue involving integrated anthropogenic and
natural processes. Similarly, a physical habitat assessment (PHA) showed that Hinkson Creek is altered
by agricultural and urban land uses [104,105] that have also impacted macroinvertebrate assemblages in
Hinkson Creek. This information was important in CAM discussions, considering macroinvertebrates
are key species indicating general aquatic ecosystem status [55,106]. Results from the PHA clearly
identified agricultural and urban land use alterations to channel geomorphology [105]. Results also
showed increased substrate embeddedness (e.g., 80% vertical embeddedness of pool habitats) in
the agricultural headwaters and in the lower urbanized reaches of Hinkson Creek [105]. The PHA
assessment also revealed an increased frequency of fine streambed sediments coupled to increased
substrate embeddedness in urbanized reaches. These results are in agreement with sediment studies
in HCW that showed increased suspended sediment concentrations and increased fine suspended
sediment particles in urban reaches [87–89].

Long-term multi-constituent datasets collected across a rural-urban land use gradient during
the study included wet, average, and dry water years, and thus provided a distinct opportunity
to assess the Soil Water Assessment Tool (SWAT). Results indicated “satisfactory” (Nash-Sutcliffe
efficiency (NSE) values greater than 0.5) estimates of streamflow in Hinkson Creek during successive
wet years [107]. The SWAT model also produced satisfactory estimates of monthly streamflow
without model calibration [108]. However, uncalibrated SWAT model estimates of monthly sediment,
total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen were unsatisfactory
with NSE values less than 0.05. Model calibration at nested gauging sites increased NSE values
above the aforementioned “satisfactory” threshold. The SWAT model was also used to simulate
daily stream temperature with satisfactory results in Hinkson Creek [54]. Results identified useful
model applications, including forecasting future hydrologic responses to urban growth and climate
change [109–111], and pre-settlement land use model assessment [68,69]. Sunde et al. [109–111]
simulated potential hydrologic consequences of increased impervious surfaces and climate change
in HCW. For example, Sunde et al. [109] simulated three impervious growth scenarios using the
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Imperviousness Change Analysis Tool (I-CAT) in HCW, and utilized climate change modeling results
from the Coupled Model Intercomparison Project—Phase 5 (CMIP5) multimodel ensemble [110].
The simulated impervious growth and climate change data were used as model forcing’s in SWAT
to quantify the influence of projected impervious growth and climate change on water balance
components. Collectively, results highlight the potential for combined and competing influences of
climate change and development to result in decreased annual streamflow (−6.1%), and increased
evapotranspiration (3.9%) in HCW [111]. The SWAT model was also used to simulate pre-settlement
hydrologic conditions in HCW. Results confirmed the potential for agricultural and urban land-use
influences on ecologically relevant daily streamflow regime metrics (streamflow magnitude, frequency,
duration, timing, and rate of change) [68], and pollutant loading [69] in HCW. Critically, results
indicated restoration of historic (i.e., pre-settlement) streamflow regimes are not fiscally obtainable
targets in HCW and similar watersheds, where past and present land uses have extensively altered
watershed hydrology and pollutant loading processes. This information is in agreement with the
current understanding of environmental flows [41]. Ultimately, modeling results emphasize the great
utility of the experimental design in advancing predictive potential and improving the accuracy of
management practices.

2.4. Identified Unrecognized and “Unknown” Sources of Impairment

While anthropogenic pressures such as land use practices can exert driving influences on hydrologic
and pollutant transport regimes, natural processes and landscape characteristics can compound impacts
and confound the attribution of simple causal relationships to observed effects. For example, abnormal
spatiotemporal streamflow relationships alerted the program director (Dr. Jason Hubbart) to possible
(previously unidentified) hydrologic sink/source behavior in the upper-watershed [112]. Subsequent
research uncovered archival evidence of historical subsurface coal mining, which may provide at
least a partial explanation. Additional investigation identified hydrologic processes associated with
natural landscape evolution, noted by early-20th-century researchers, which, when considered in
the context of recent works, provide compelling alternative explanations for water quality and flow
regime observations. Despite best-intentioned management, regulatory agencies, scientists, and local
decision-makers did not account for such legacy practices and processes and instead relied on recent
urban development as the proximate cause of designated impairment. Therefore, it is likely that
historical land-use (coal mining) and landscape processes comprise cumulative, yet often unconsidered
effects that contribute systemically to the observed hydrologic regimes of contemporary developing
watersheds. In this regard, findings in HCW hold important implications for contemporary watershed
management and suggest rethinking the case-by-case appropriateness of federal and state water
impairment listings, and the achievability of restoration requirements therein.

Similarly, an investigation of the spatiotemporal variability of suspended sediment particle size
class distribution (PSD) showed that the parameter best explaining the spatial pattern of PSD was
not land use, but rather the surficial geology of the watershed [59]. The spatial pattern of surficial
geology in the watershed (e.g., bedrock depth/constraints) also explained observations regarding
suspended sediment concentrations [77,82], and stream geomorphology [81]. Finally, evidence was
found to support the observation that the natural evolution of the Hinkson Creek hydrologic system is
a contributing factor to observed water quality and stream geomorphology trends [81,112]. Specifically,
historic Missouri River (confluence located approximately 8 km downstream) head-cutting and
back-watering processes, at least in part, explain both channel incision and suspended sediment
particle size characteristics in the lower watershed [81,112]. Notably, in conceptualizing the condition,
management, and potential restoration of Hinkson Creek, the contribution of natural factors has often
been overlooked in favor of a focus on anthropogenic disturbance [112]. However, these studies
showed that a proper accounting of all contributing factors is required for accurate descriptions of
system function and effective management [112].
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3. Discussion

Synthesis and Implications

Synthesized salient, emergent results (i.e., “takeaways”) of the work conducted during the HCW
program include, (1) anthropogenic land use in HCW, including urban/suburban development and
agriculture, is a primary driver of water quality degradation in Hinkson Creek; (2) land use practices
impact suspended sediment characteristics and dynamics in HCW, including the flux of fine particles,
which disproportionately contribute to water quality and aquatic habitat degradation; (3) streamflow
alterations due to urban/suburban development result in increased streambed and bank erosion in
Hinkson Creek, which increases sediment transport and disrupts aquatic habitat; (4) considering
spatiotemporal water quality trends in Hinkson Creek, including dissolved oxygen levels, chloride
concentrations, pH, water temperature, and suspended sediment concentrations, it is reasonable to
expect stress conditions for aquatic biota throughout the stream, not only in urbanized/developed
reaches; (5) several natural processes and watershed characteristics, such as surficial geology and stream
system evolution, are likely compounding observed water quality and aquatic habitat degradation;
and (6) given the varied and complicated set of factors contributing to water quality and aquatic habitat
degradation in HCW, restoration of Hinkson Creek is likely subject to physical limitations and should
be conceptualized in the context of achievable goals/objectives.

Results of the program highlight the compounding impacts of land use practices, hydroclimatic
variability, and physical watershed characteristics on the suspended sediment, streamflow, and water
quality regimes of Hinkson Creek. Land-use-driven alterations to the streamflow regime (e.g., increased
runoff and flow magnitude, advanced peak hydrograph) of Hinkson Creek have resulted in increased
pollutant transport and loading, and disturbance of aquatic habitat (bed incision, bank erosion,
elevated stream temperature) that disrupts the biological integrity of the aquatic ecosystem. Restated,
anthropogenic activities in the watershed exacerbate ecosystem vulnerabilities. Due to the many
investigations concluded by the program, a more detailed and comprehensive description of the system
is now available to stakeholders and decision-makers, which can be subsequently used to improve the
management of the watershed [59,64,78,80,81,83,112]. The program also provides valuable insights
regarding potential successes and challenges faced by collaborative adaptive management programs.
Three issues emerged that should be emphasized to improve future CAM applications. First is the
integrated approach with multiple objectives and multiple beneficiaries. For sustainable management,
environmental factors need to be equally, if not more, greatly emphasized, relative to the economic
aspects of project implementation. Second, local stakeholders must be involved as much and as early
as possible. Local knowledge, gained by time and experience is critical for stakeholder buy-in, and
project implementation and success. Ultimately, understanding values and opinions held by local
communities is of critical importance [21,113], and stakeholders should be encouraged, and provided
opportunities, to volunteer as team members to engage in the process [114]. Third, there must be
regular updates and improvements to the plan. Given the inherent complexity of natural ecosystems,
it is not surprising that effective resource management is dynamic, characterized by ongoing updates
and refinements [21,115]. Collectively, more scientific and socioeconomic information and effective
involvement of stakeholders are the primary components of collaborative adaptive management that
lead to improved management decision-making [116–119].

4. Conclusions

Assuming human-induced land use change and in-tandem environmental change continue as
expected, there is a need for streamlined (and normalized) collaborative adaptive management efforts to
continuously monitor and respond to anthropogenic and natural pressures on water resources. Results
from the experimental watershed approach and CAM processes highlighted here show the value of
integrating knowledge and science with experience and the perspectives of scientists, stakeholders,
and managers for more effective management decision-making. This is critical because, in the absence
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of adequate observed data, sources of impairment are often unrecognized and/or listed as “unknown”
in contemporary mixed-use watersheds. Additionally, sources of impairment can shift over time due to
the combined influences of land use change, human population growth, and changing environmental
conditions. Results from the case-study presented here clearly show that the experimental watershed
study design can be used to provide science-based information critically needed to make informed
management decisions in contemporary mixed-use watersheds. The design has the potential to be
systematically applied in any watershed, thereby normalizing and standardizing study designs across
watershed systems. In so doing, comparable inter- and intra-watershed information is collected,
broader (multi-watershed) practices are implemented, and multi-scale costs are driven down over time.

In the Hinkson Creek Watershed in the Midwest USA, long-term monitoring of hydroclimate
variables, streamflow, and multiple water quality constituents in nested sub-basins provided answers
to specific questions generated during the CAM process. Additionally, hydrologic data collected
and analyzed informed regional managers and advanced policy and science via generation of over
50 peer-review publications and 21 graduate student theses and dissertations. Key findings from
the program showed (1) legacy effects, urban/suburban development and agriculture are primary
drivers of alterations to watershed hydrology, streamflow regimes, multiple water quality constituents,
and physical habitat degradation in Hinkson Creek; (2) several natural processes and watershed
characteristics, such as surficial geology and stream system evolution, are likely compounding observed
water quality and aquatic habitat degradation; and (3) given the varied and complicated set of factors
contributing to water quality and aquatic habitat degradation, restoration of many USA CWA 303(d)
listed streams and rivers like Hinkson Creek are likely subject to physical and fiscal limitations and
should be conceptualized in the context of achievable goals/objectives. To this end, the nested-scale
experimental watershed monitoring approach has served as a scalable model for studying natural and
anthropogenic influences on water quantity, water quality, and stream physical habitat in contemporary
mixed-use watersheds.
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