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Abstract: This paper presents the results of a study to assess the groundwater quality in an
industrial town located in Punjab, India. A total of 99 samples of groundwater were analyzed
during the premonsoon and postmonsoon periods of 2018, which revealed the presence of numerous
environmentally sensitive elements (ESEs), namely, arsenic (As), aluminum (Al), chromium (Cr),
iron (Fe), mercury (Hg), nickel (Ni), selenium (Se), and lead (Pb). Geographic information system
(GIS)-based spatial interpolation showed higher contamination levels around the industrial areas
and the drainage channel where industrial effluent is generally discharged. Further, groundwater
quality was assessed using the heavy metal pollution index (HPI) and the metal index (MI), which
indicated poor drinkability of the groundwater. Human exposure to groundwater contaminated with
ESEs can pose serious health risks; therefore, noncarcinogenic and carcinogenic health risks due to
presence of these elements were also evaluated. Reported health risks to humans from exposure to
contaminated groundwater indicate the importance of regular monitoring of groundwater for ESEs
vis-a-vis industrial effluent disposal practices.

Keywords: environmentally sensitive elements; groundwater quality; GIS; health risk assessment;
heavy metal pollution index; metal index

1. Introduction

Groundwater is a key natural resource which serves the drinking, agricultural, and industrial needs
of one-third of the human population [1,2]. In recent years, the diminishing quantity and degraded quality
of surface water bodies have substantially increased the burden on earth’s groundwater [3]. Activities
such as mining, dumping of solid biomass in landfills, leaching of agrochemicals, and improper disposal
of industrial effluents have contaminated the groundwater with various environmentally sensitive
elements (ESEs), such as heavy metals, arsenic, pesticides, fertilizers, and so forth. [4]. Groundwater
quality is a major concern in both developed and developing nations [5]. Several studies from various
parts of the world have highlighted the issue of deteriorating groundwater quality in Bangladesh [6],
China [7], South Africa [8], Iran [9], Italy [10], Korea [11], Pakistan [12], and Thailand [13]. Some of
these studies have also indicated public health issues arising out of human exposure to contaminated
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groundwater. In India, groundwater serves 85%, 50%, and 60% of the drinking, urban water use, and
irrigation needs, respectively [14]. Owing to potential cumulative toxicity and persistence, contamination
of groundwater with heavy metals has become a focus area for researchers in various states of India,
such as Andhra Pradesh [15], Chandigarh [16], Goa [17], Punjab [18], Rajasthan [19], Tamilnadu [20],
Uttrakhand [1], and Uttar Pardesh [21]. Geogenic sources, rapid urbanization, unplanned and improper
industrial waste disposal, agricultural practices, and so forth, have been identified as the major causes
of groundwater contamination [22–24]. Continuous exposure to different heavy metals through water
may pose toxicological problems in human beings [25–27].

Ludhiana, Punjab, India is a fast-growing industrial hub. The indiscriminate disposal of domestic,
agricultural, and industrial waste in the area poses a potential threat to its groundwater [28]. However,
no comprehensive evaluation of the groundwater pollution caused by ESEs such as heavy metals and
arsenic and its associated health risk assessment has been conducted in the area.

Keeping this in view, the present study focused on a comprehensive evaluation of ESEs in
the groundwater of Ludhiana, Punjab, India during pre- and postmonsoon periods of 2018 (the
postmonsoon period was defined as 1–2 months after the monsoon). The objectives of the study were
(1) to assess the concentration of ESEs, namely, As, Al, Cr, Fe, Hg, Ni, Se, and Pb, in groundwater; (2) to
compare the variation in concentration of the ESEs in groundwater during pre- and postmonsoon
periods; (3) to determine the geospatial variation of ESEs and their statistical source apportionment
during pre- and postmonsoon periods; (4) to identify the major hotspots by using pollution assessment
index approaches, such as the heavy metal pollution index (HPI) and the metal index (MI); and
(5) to evaluate the possible human health risks due to exposure to ESE-contaminated groundwater in
terms of noncarcinogenic and carcinogenic effects through ingestion and dermal pathways. Statistical
analysis of the findings of the field study helped to deduce the inferences. The geographic information
system (GIS) was used to present the geospatial variation of the ESEs. The findings of this study
should attract the attention of pollution control agencies and policy makers towards the degrading
groundwater quality of the region and emphasize the need of establishing stringent policies to reduce
the groundwater contamination.

2. Materials and Methods

2.1. Study Area Description

The Ludhiana district of Punjab, India, which is one of the industrial hubs of North India, was
the study area. Figure 1 shows the geographical location, landuse, landcover, and the sampling
locations of the study area. Sutlej River flows along its northern boundary. The entire geographical
area is 3767 km2 and has 3.5 million human inhabitants [29]. The mean annual rainfall is about
577 mm [30]. The mean maximum and minimum temperatures are 45 and 6 ◦C in the months of
June and December, respectively [31]. The major water requirements of the area are for agricultural,
domestic, and industrial demands. Groundwater, rainwater, and canal water are used to meet the
agrarian needs; however, the domestic and industrial demands are met with groundwater sources
only. Major industries located in the study area include micro, small, medium, and large businesses of
different types, namely, chemicals, fabricated metals, bicycle and bicycle parts, machine tools, rubber
goods, hosiery goods, beverages, textiles, dyeing, paper products, and electroplating. There are 37,047
(micro, small, and medium) businesses and 151 large-scale businesses which are registered in the study
area [32]. Studies have reported increasing groundwater quality deterioration in the study area due to
activities such as industrial wastewater disposal, disposal of garbage, use of fertilizers, and pesticides
on agricultural land [28].
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1:1 HNO3 and rinsed three times using triple-distilled water. Further, bottles were dried in a hot air 
oven at a temperature of 80 °C for 4 h. Cellulose filter paper (Whatman® filter paper, grade 42, GE 
Healthcare Companies, UK) was used to filter groundwater samples. For the preservation of 
groundwater samples, each sample was acidified by adding 2 mL of HNO3 to pH < 2, and acidified 
samples were put into an ice box. Each sample was labeled properly to prevent misidentification 
between samples and it was ensured that no air bubbles were present in the samples. Within 12 h of 

Figure 1. The study area.

2.2. Hydrogeology

The study area consists of Indo-Gangetic alluvium of quaternary age. Subsurface strata consist of
clay, fine sand, medium sand, and hard clay. Moreover, kankar and gravel with sand are also present
in some places. Two aquifers, confined and unconfined, mainly exist in the area and the subsurface
water flows from N–SW and E–SW. The lithological data of the study area indicate the presence of
many sand beds forming the principal aquifers separated by clay beds at various depths. It consists of
five prominent sand horizons down to 400 m depth separated by thick clay horizons. The first aquifer
generally occurs between 10 and 30 m. The second through fifth occur between 50 and 120 m, 150 and
175 m, 200 and 250 m, and 300 and 400 m, respectively. The depth to water level in the area ranges
between 9 and 26 m below ground level (bgl). During the premonsoon period, the depth to water level
varies between 4 and 31 m bgl, and postmonsoon, it ranges between 3 and 27 m bgl [33].

2.3. Collection of Samples and Analysis

Ninety-nine groundwater sampling locations (93 deep tube wells with depths ranging from 90 to
150 m and 6 shallow tube wells from 10 to 20 m deep), as shown in Figure 1, were sampled to cover
the entire study area. Samples were collected during premonsoon (April–May) and postmonsoon
(November–December) periods of 2018. The premonsoon and postmonsoon periods were defined as
1–2 months before and after the monsoon, respectively. The schedule of the sample collection is given
in Supplementary Table S1. The coordinates of all the sampling locations were determined with a
portable global positioning system (GARMIN Etrex 10). Standard protocols as prescribed in standard
methods were followed during sampling and preserving the samples [34]. Glass bottles of 1000 mL
capacity were utilized for sample collection. Sample bottles were washed by 1:1 HNO3 and rinsed
three times using triple-distilled water. Further, bottles were dried in a hot air oven at a temperature of
80 ◦C for 4 h. Cellulose filter paper (Whatman® filter paper, grade 42, GE Healthcare Companies, UK)
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was used to filter groundwater samples. For the preservation of groundwater samples, each sample
was acidified by adding 2 mL of HNO3 to pH < 2, and acidified samples were put into an ice box.
Each sample was labeled properly to prevent misidentification between samples and it was ensured
that no air bubbles were present in the samples. Within 12 h of sampling, all water samples were
transferred to the laboratory and stored at 4 ◦C for further analysis.

Analysis of ESEs, namely, As, Al, Cr, Hg, Fe, Ni, Se, and Pb, was accomplished with an atomic
absorption spectrophotometer (model AAS 4141, Electronics Corporation of India Ltd., Hyderabad,
India). Hollow cathode lamps were used for determining the As, Al, Cr, Hg, Fe, Ni, Se, and Pb
at different wavelengths of 193.7, 309.3, 357.9, 253.7, 248.3, 232.0, 196.0, and 217.0 nm, respectively.
Cr, Fe, Ni, and Pb were determined by the aspirating direct air–acetylene flame method with lamp
currents of 7, 5, 3.5, and 10 mA, respectively. Al and Hg were estimated by the aspirating direct
nitrous-oxide–acetylene flame method with a lamp current of 10 mA and the cold vapor atomic
absorption spectrophotometer method with a lamp current of 5 mA, respectively. As and Se were
determined by the continuous hydride generation method using nitrogen–acetylene gases with a lamp
current of 10 mA.

2.4. Reagents, Standards, and Quality Assurance

High-purity, analytical-grade reagents and chemicals were used during the entire process for
analyzing the heavy metals in groundwater samples. All the reagents and standards were prepared
with triple-distilled water throughout the experimental work. For quality analysis, ready-made
standard stock solutions of selected heavy metals of the concentration 1000 mg/L in HNO3 were
used (CDH Pvt. Ltd., New Delhi, India). To prepare calibration curves of each metal, four standard
solutions for each metal at different concentrations were prepared. AAS was aspirated with blanks
(triple-distilled water) and by zeroing the instrument at regular intervals to ensure its accuracy. Also,
after analysis of 10 groundwater samples, 1 sample was examined in triplicate, so that consistent
outcomes were maintained. The standard error between standards and measured samples were
<5% [18,23].

2.5. Statistics and GIS Analysis

For statistical analysis, IBM Statistical Package for Social Sciences (SPSS®, version 25, IBM,
New York, NY, USA) was used. The basic descriptive statistics feature of the package was used to
analyze the range, mean, standard deviation, and so forth. For the paired t-test, the normality of the
period differences was checked using the Kolmogorov–Smirnov test, and the compare mean module
of SPSS was used to calculate the p-value. Pearson’s correlation was performed with the assistance
of the correlate module/bivariate correlations modules in SPSS. The Ludhiana district base map was
digitized using ArcGIS® (version 10.4), ESRI, India. All the spatial and attribute data were input in
the database of ArcGIS. All the thematic maps were prepared using the spatial analysis tools and the
inverse distance weighted (IDW) interpolation technique. In this study, the search radius of 12 points
was selected. The IDW interpolation technique uses the measured values of the surrounding locations
to interpolate the values the prediction location.

2.6. Evaluation of Groundwater Quality by Indexing Approach

In this study, two pollution indexing approaches were applied to determine the groundwater
quality and they are explained in the following subsections.

2.6.1. HPI

The HPI method was used to calculate the overall heavy metal contamination in groundwater.
This method primarily depends on two factors: unit weightage (Wi) and the standard prescribed limit
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(Si) of each heavy metal. HPI calculation is based on the weighted arithmetic mean and, in this study,
the HPI model, as developed and reported by Mohan et al. [35], described in Equation (1), was applied:

HPI =

∑n
i=1 WiQi∑n

i=1 Wi
(1)

where Wi and Qi are the unit weight and subindex of the ith parameter, respectively, and n is the
number of parameters/ESEs considered. Unit weightage Wi is inversely proportional to the Si, the
recommended standard permissible limit of ith parameter in milligrams per liter, of all the selected
heavy metals and was calculated by using Equation (2):

Wi ∝
1
Si
−→ Wi =

K
Si

(2)

where K is the constant of proportionality, the value of which ranges from 0 to 1.The subindex (Qi) for
each heavy metal in Equation (1) was calculated by using Equation (3):

Qi =
n∑

i=1

(M i(−) Ii)

(S i−Ii)
×100 (3)

where Mi and Ii are the analytical concentration and ideal value of the ith parameter/heavy metal in
milligrams per liter, respectively. Si is the recommended standard permissible limit of the ith parameter
in milligrams per liter. In Equation (3), the (-) sign indicates the numerical difference between two
values, eliminating the algebraic sign. The critical value of the HPI is 100, greater than which ingestion
of groundwater will pose serious health effects to the human body [36]. The HPI method has previously
been used to evaluate the status of metal pollution in surface water bodies, such as the River Bogayi in
Turkey [37] and the Harike Wetland in Punjab, India [38]. The HPI in groundwater studies has also
been used in Iran [39], Bangalore [40], Jharkhand [41], and West Bengal [42].

2.6.2. MI

The MI demonstrates the overall groundwater quality with respect to the heavy metal pollution.
It was calculated using Equation (4), as defined by Tamasi and Cini [43]:

MI =
n∑

i=1

Ci

(MAC)i
(4)

where Ci is the monitored concentration of the ith heavy metal (mg/L) and (MAC)i is the maximum
allowable concentration of the ith metal. The threshold value for the MI quality index is 1. MI > 1
indicates water quality may not be suitable for long-term use due tothe potential for harmful
chronic exposure.

2.7. Human Health Risk Assessment

The metal-contaminated groundwater could pose critical health risks via two common routes:
ingestion (through drinking) and dermal exposure (through skin absorption). The United States
Environmental Protection Agency (US EPA) has proposed a model for human health risk. The intake
dose of ingestion and dermal activities was calculated using Equations (5) and (6), as suggested by the
US EPA [44]:

Intakeingestion =
C × IRingestion ×EF × ED

BW ×AT
(5)

Intakedermal =
C ×Kp × ET × CF × EF × ED × EV

BW ×AT
. (6)
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A description of the parameters used in the above equations for adults and children is given in
Supplementary Table S2.

2.7.1. Noncarcinogenic Risk Assessment

The noncarcinogenic health risk of each metal was assessed by calculating the hazard quotient (HQ).
The HQ was calculated by dividing the intake value by the reference dose (RfD) using Equations (7)
and (8). RfDingestion represents the reference dose for ingestion of a selected metal, which was obtained
from US EPA IRIS [45] and Li et al. [46], and RfDdermal is the dermal reference dose calculated according
to Equation (9) using the gastrointestinal absorption factor (GIABS) of selected metals, as suggested by
the US EPA [47].

Further, the hazard index (HI) was calculated to determine the total noncarcinogenic effect of
metals in groundwater by adding the HQingestion and HQdermal intake pathways of all selected metals
using Equation (10) and then calculating HItotal using Equation (11), as detailed by the US EPA [44]:

HQingestion =
Intakeingestion

RfDingestion
(7)

HQdermal =
Intakedermal

RfDdermal
(8)

RfDdermal = RfDIngestion× GIABS (9)

HIingestion =
∑

HQingestion; HIdermal =
∑

HQdermal (10)

HItotal = HIingestion+HIdermal. (11)

All the RfDingestion and RfDdermal values are presented in Supplementary Tables S3 and S4,
respectively. Groundwater samples having HItotal > 1 suggest detrimental noncarcinogenic health
effects to humans, whereas HItotal < 1 suggests that the groundwater would not pose any impact on
human health [48].

2.7.2. Carcinogenic Risk Assessment

Exposure to polluted groundwater might create cancer-causing effects to humans. In this study,
As, Cr, and Pb were considered as carcinogenic substances and the total carcinogenic risk (Rtotal) was
calculated using Equations (12)–(15) [49]. As there was no specified cancer slope factor (CSF) for metals
such as Al, Fe, Hg, Ni, and Se, carcinogenic risk was not calculated for these metals.

Ringestion= Intakeingestion × CSFingestion (12)

Rdermal= Intakedermal × CSFdermal (13)

Ringestion =
∑

Ringestion ; Rdermal =
∑

Rdermal (14)

RTotal= Ringestion+Rdermal. (15)

If the Rtotal value is less than 1 × 10−6, the chances of cancer risk are considered to be negligible,
while an Rtotal value more than 1 × 10−4 indicates a substantial cancer risk [45]. CSF values of ingestion
and dermal exposure were obtained from the Li et al. [46] and US EPA [47] (Supplementary Table S3).
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3. Results and Discussion

3.1. Environmentally Sensitive Elements in Groundwater

Table 1 depicts the level of contamination of the groundwater samples with various ESEs, during
premonsoon and postmonsoon periods, in comparison to the Bureau of Indian Standards (BIS) [50].
Further, the geospatial variation of ESEsin the groundwater of the study area is shown in Figure 2.
The IDW interpolation technique of ArcGIS software (version 10.4), was used to prepare the spatial
distribution maps.

Table 1. Environmentally sensitive elements (ESEs) in groundwater during pre- and postmonsoon
periods.

ESEs
(mg/L)

# BIS10500:
2012 Limit

(mg/L)

Premonsoon Postmonsoon

Range Mean ± SD No. of Samples
above Limit Range Mean ± SD No. of Samples

above Limit

Al 0.2 *; 0.03 ** ND–0.847 0.255 ± 0.172 57 *;94 ** 0.014–1.186 0.346 ± 0.262 62 *;94 **
Astotal 0.05 *; 0.01 ** ND–0.021 0.0036 ± 0.004 0 *; 15 * ND–0.020 0.0044 ± 0.0051 0 *;14 **
Crtotal 0.05 * ND–0.078 0.021 ± 0.018 6 * ND–0.158 0.033 ± 0.031 25 *

Fe 0.3 * 0.004–0.942 0.281 ± 0.143 38 * 0.120–1.010 0.321 ± 0.151 45 *
Hg 0.001 * ND–0.004 0.0007 ± 0.0005 2 * ND–0.005 0.00013 ± 0.0007 3 *
Ni 0.02 * ND–0.786 0.155 ± 0.171 72 * ND–1.272 0.204 ± 0.226 79 *
Pb 0.010 * ND–0.435 0.070 ± 0.072 88 * ND–0.656 0.098 ± 0.106 91 *
Se 0.010 * ND–0.052 0.011 ± 0.010 31 * ND–0.040 0.010 ± 0.008 39 *

Note: * (Permissible Limit); ** (Acceptable Limit); ND—Not Detected; # Bureau of Indian Standards (BIS 10500: 2012).

It can be seen from Table 1 that in the case of Pb contamination, 88 and 91 samples exceeded the
permissible limits during premonsoon and postmonsoon periods, respectively. The concentration of
Pb in the NE-SE parts of the study area was found to be higher during both periods. In addition, the
concentration of Ni exceeded the permissible limit in 72 samples during the premonsoon period and in
79 samples during the postmonsoon period. The concentration of Al also exceeded the permissible
limit in 57 and 62 samples during the pre- and postmonsoon periods, respectively. Shrivastava [26] also
reported high concentrations of Al, Ni, and Pb in groundwater samples collected from other districts
of Punjab, which are located in the vicinity of the study area. The mean concentration of the ESEs was
observed to increase during the postmonsoon period. The paired t-test for pre- and postmonsoon
periods showed significant variation during the postmonsoon period, as there was a p-value < 0.05
for seven parameters, namely, Fe, Pb, Ni, Al, Se, Cr, and As. However, Hg did not show a significant
variation. The probable reason could be the lesser/statistically insignificant number of samples (two
premonsoon and three postmonsoon samples) indicating Hg contamination. Paired t-tests for pre- and
postmonsoon periods for all heavy metals are shown in the Supplementary Table S5. The reasons for
the increased concentration postmonsoon could be due to dissolution of the metals from parent bedrock
into groundwater at higher temperatures during the monsoon season [18]. In general, concentrations of
most of the ESEs were found to be high in samples collected in and around industrial areas. Therefore,
it could also be attributed to the seepage of ESEs from the surface to the aquifer during monsoon season
in the industrial areas. Similar studies from other parts of India have also reported that groundwater
beneath industrial establishments is generally contaminated with heavy metals [51–53]. Although
Fe is an essential element for human beings, a higher Fe concentration in drinking water can cause
certain health impacts [54]. In 38 and 45 samples, the Fe concentration was above the permissible
limit during premonsoon and postmonsoon periods, respectively. For Crtotal, only 6 samples were
above the permissible limit during the premonsoon period, while in the postmonsoon period, the
concentration of Crtotal in groundwater samples exceeded the limit in 25 samples. Brindha and
Elango also reported the higher concentration of Cr near the industrial sites of Chennai, India [55].
The concentration of As exceeded the acceptable limits in 10 and 15 groundwater samples collected
during pre- and postmonsoon periods, respectively. Hg was found to be above the permissible limits
in two and three samples from shallow wells located in and around the industrial area during pre-
and postmonsoon periods, respectively. Higher concentrations of Hg and As in groundwater samples
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around the industrialized region of Maharashtra, India were reported by Bhagure and Mirgane [56].
Further, mean concentrations of the various ESEs in groundwater samples were observed to be in the
following order: Premonsoon—Fe > Al > Ni > Pb > Cr > Se > As > Hg; Postmonsoon—Al > Fe > Ni >

Pb > Cr > Se > As > Hg.
Water 2019, 11, 2350 8 of 20 
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3.2. Pearson’s Inter-ESE Correlation

The interrelationship between the ESEs was evaluated using Pearson’s correlation. The correlations
of heavy metals (As, Al, Cr, Hg, Fe, Ni, Se, and Pb) during pre- and postmonsoon periods are presented
in Tables 2 and 3, respectively. The critical values for Pearson’s coefficient (r) for 99 groundwater
samples were 0.197 and 0.257 at p ≤ 0.05 and p ≤ 0.01, respectively. Correlation analysis at the p = 0.01
and 0.05 levels indicated significant relationships between the metals Al–Se, As–Ni, Fe–Ni, Ni–Pb,
Ni–Se, and Pb–Se and Al–Fe, As–Fe, As–Se, Cr–Ni, Cr–Pb, Fe–Pb, Fe–Se, Hg–Pb, respectively, during
the premonsoon period. Also, during the postmonsoon period, the correlation results indicated a
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positive relation between metals such as Al–Se, As–Se, Fe–Ni, Fe–Pb, Ni–Pb, Ni–Se, and Pb–Se at the
0.01 level and Cr–Hg, Cr–Se, and Fe–Se at the 0.05 level. Strong positive relations indicate that Pb, Ni,
and Se have the same source of pollution during both periods, which is evident from the outcomes
correlating higher concentrations of these metals in and around the industrial areas. It was implied
that, due to the strong correlation between Fe and Ni (r = 0.362) and Ni and Pb (r = 0.417) during
both periods, their source of contamination could be from dumping of electroplating industrial waste,
which is very common in the study area [57].

Table 2. Pearson’s correlation matrix during premonsoon period.

ESEs Al As Cr Fe Hg Ni Pb Se

Al 1 0.147 0.120 0.243 * 0.077 0.139 0.130 0.358 **
As 1 0.192 0.224 * 0.103 0.264 ** 0.143 0.229 *
Cr 1 0.076 0.097 0.207 * 0.242 * 0.178
Fe 1 0.122 0.362 ** 0.227 * 0.207 *
Hg 1 0.152 0.198 * 0.158
Ni 1 0.301 ** 0.340 **
Pb 1 0.282 **
Se 1

Note: ** Correlation significant at the 0.01 level (two-tailed); * Correlation significant at the 0.05 level (two-tailed).

Table 3. Pearson’s correlation matrix during postmonsoon period.

ESEs Al As Cr Fe Hg Ni Pb Se

Al 1 0.112 0.193 0.055 0.060 0.113 0.100 0.365 **
As 1 0.169 0.061 0.121 0.197 0.147 0.271 **
Cr 1 0.096 0.246 * 0.060 0.145 0.214 *
Fe 1 0.103 0.328 ** 0.309 ** 0.228 *
Hg 1 −0.066 0.005 0.163
Ni 1 0.417 ** 0.374 **
Pb 1 0.282 **
Se 1

Note: ** Correlation significant at the 0.01 level (two-tailed); * Correlation significant at the 0.05 level (two-tailed).

3.3. HPI and MI

Table 4 presents the classification of groundwater in terms of the indices HPI and MI.
The classification was adapted from Sankar (2019) [40]. The geospatial representation of water
quality indices based on HPI and MI during the premonsoon and postmonsoon periods are shown
in Figures 3 and 4, respectively. The HPI-based groundwater assessment revealed that 35.4% of the
groundwater samples during the premonsoon period and 52.5% of the groundwater samples during
the postmonsoon period were above the critical pollution index of 100. This indicates that at these
sampling points, the groundwater may pose health risks to humans if used for drinking. It can
also be seen from Figure 3 that the sampling wells near the industrial area and along the channel
(BudhaNullah) which receives the industrial effluent show higher HPI values. On the other hand, the
analysis using the MI indicated that 79.8% and 86.9% of the samples showed values greater than 1,
which is the critical MI. Figure 4 depicts the spatial variation of the MI in the study area. The MI also
exhibited a similar geographical pattern as that of the HPI in terms of level of heavy metal pollution.
However, the variations in the geographical spread of each class of water quality seen in Table 4 and
Figures 3 and 4 could be due to the difference in the definition of the indices. The HPI provides an
aggregated influence of individual heavy metals on the total water quality, whereas the MI gives only
an exceedance value from the standards. The quality of groundwater evaluated using both the HPI
and the MI strongly suggests that exposure to this groundwater may cause detrimental effects to
human health.
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Table 4. Classification based on the heavy metal pollution index (HPI) and the metal index (MI).

No. of Groundwater Samples

Index Classification Premonsoon Postmonsoon % Premonsoon % Postmonsoon

HPI

<25: Excellent 15 10 15.1% 10.1%
26–50: Good 15 7 15.1% 7.1%
51–75: Poor 16 21 16.2% 21.2%

76–100: Very poor 18 9 18.2% 9.1%
>100: Unsuitable for drinking 35 52 35.4% 52.5%

MI

<0.3: Very pure 5 2 5.1% 2%
0.3–1: Pure 15 11 15.1% 11.1%

1–2: Slightly affected 32 27 32.3% 27.2%
2–4: Moderately affected 31 36 31.3% 36.4%

4–6: Strongly affected 11 12 11.1% 12.1%
>6: Seriously affected 5 11 5.1% 11.1%
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3.4. Health Risk Assessment

The concentration of ESEs in groundwater was examined to assess the health risk through
ingestion and dermal pathways for adults and children, and the outcomes of this analysis are presented
in Table 5.

Table 5 shows that the HQingestion and HQdermal during the premonsoon period followed the order
of Pb > As > Ni > Cr > Se > Fe > Al > Hg and Cr > Ni > As > Hg > Se > Pb > Fe > Al, respectively,
for both adults and children. However, during the postmonsoon period, the order of HQingestion and
HQdermal was Pb > As > Cr > Ni > Se > Fe > Hg > Al and Cr > Ni > As > Hg > Pb > Se > Fe > Al,
respectively, for both adults and children. Pb and Cr were found to be the main contributors to HQ. The
HQ values for all heavy metals were found to be < 1 for both ingestion and dermal pathways during
both seasons, except for Pb. Moreover, Pb was found to be > 1 for children through the ingestion
pathway, and mean observed values were 1.32 and 1.87 during the pre- and postmonsoon periods,
respectively (Table 5). It can be inferred that, in the study area, Pb contamination has a higher potential
to pose noncarcinogenic health risks to children. Similar health risk assessment studies reported from
China found higher health risks due to heavy metals in children than adults [58].
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Table 5. Hazard quotient (HQ) of different ESEs during pre- and postmonsoon periods.

Metals

Al As Cr Fe Hg Ni Pb Se

Children a
HQingestion

Range 0–5.59 × 10−2 0–4.62 0–1.72 0–8.88 × 10−2 0–8.80 × 10−1 0–2.59 0–8.20 0–6.86 × 10−2

Mean 1.68 × 10−2 7.91 × 10−1 4.62 × 10−1 2.65 × 10−2 1.56 × 10−2 5.13 × 10−1 1.32 1.53 × 10−1

HQdermal
Range 0–3.73 × 10−4 0–3.08 × 10−2 0–8.80 × 10−1 0–5.92 × 10−4 0–8.38 × 10−2 0–8.65 × 10−2 0–5.47 × 10−3 0–4.58 × 10−3

Mean 1.12 × 10−4 5.27 × 10−3 2.37 × 10−1 1.77 × 10−4 1.48 × 10−3 1.71 × 10−2 8.82 × 10−4 1.02 × 10−3

Adult a
HQingestion

Range 0–2.80 × 10−2 0–2.31 0–8.58 × 10−1 0–4.44 × 10−2 0–4.40 × 10−1 0–1.30 0–4.10 0–3.43 × 10−1

Mean 8.42 × 10−3 3.96 × 10−1 2.31 × 10−1 1.32 × 10−2 7.78 × 10−3 2.57 × 10−1 6.62 × 10−1 7.64 × 10−2

HQdermal
Range 0–1.47 × 10−4 0–1.22 × 10−2 0–3.48 × 10−1 0–2.34 × 10−4 0–3.31 × 10−2 0–3.42 × 10−2 0–2.16 × 10−3 0–1.81 × 10−3

Mean 4.44 × 10−5 2.09 × 10−3 9.38 × 10−2 6.98 × 10−5 5.86 × 10−4 6.77 × 10−3 3.49 × 10−4 4.03 × 10−4

Children b
HQingestion

Range 0–7.83 × 10−2 0–4.40 0–3.48 0–9.52 × 10−2 0–1.10 0–4.20 0–1.24 × 10−1 0–5.28 × 10−1

Mean 2.29 × 10−2 9.73 × 10−1 7.46 × 10−1 3.03 × 10−2 2.89 × 10−2 6.74 × 10−1 1.87 1.39 × 10−1

HQdermal
Range 0–5.22 × 10−4 0–2.93 × 10−2 0–1.78 0–6.35 × 10−4 0–1.05 × 10−1 0–1.40 × 10−1 0–1.58 × 10−2 0–3.52 × 10−3

Mean 1.53 × 10−4 6.49 × 10−3 3.83 × 10−1 2.02 × 10−4 2.75 × 10−3 2.28 × 10−2 1.30 × 10−3 9.26 × 10−4

Adult b
HQingestion

Range 0–3.91 × 10−2 0–2.20 0–1.74 0–4.76 × 10−2 0–5.50 × 10−1 0–2.10 0-6.19 0–2.64 × 10−1

Mean 1.14 × 10−2 4.87 × 10−1 3.73 × 10−1 1.52 × 10−2 1.44 × 10−2 3.37 × 10−1 9.33 × 10−1 6.95 × 10−2

HQdermal
Range 0–2.06 × 10−4 0–1.16 × 10−2 0–7.05 × 10−1 0–2.51 × 10−4 0–5.80 × 10−2 0–5.53 × 10−2 0–3.26 × 10−3 0–1.39 × 10−3

Mean 6.03 × 10−5 2.57 × 10−3 1.51 × 10−1 8.00 × 10−5 1.26 × 10−3 8.88 × 10−3 5.14 × 10−4 3.66 × 10−4

Note: a—Premonsoon; b—Postmonsoon.
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Further, the total hazard index (HItotal) was calculated for both children and adults during both
periods and it was observed that HItotal mean values for adults and children were > 1 in the premonsoon
(1.76 and 3.57, respectively) and postmonsoon (2.41 and 4.90, respectively) periods, as shown in Table 6.
Figure 5 shows that during the premonsoon period, 76.5% and 93.5% of the study area had HItotal >

1 for adults and children, respectively, and during the postmonsoon period, 89.3% and 98.9% of the
study area had HItotal > 1 for adults and children, respectively. It was also observed that HItotal values
of children were higher than adults for ingestion and dermal pathways. This is because children weigh
less than adults. A similar observation from Punjab was reported by Sharma et al. [18].

Table 6. HItotal and total carcinogenic health risk (Rtotal).

Total Health Risk Category Calculated Mean

HItotal (Premonsoon) Children 3.57
Adult 1.76

HItotal (Postmonsoon) Children 4.90
Adult 2.41

Rtotal(Premonsoon) Children 8.87 × 10−4

Adult 4.43 × 10−4

Rtotal (Postmonsoon) Children 1.37 × 10−3

Adult 6.85 × 10−4
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The total carcinogenic health risk (Rtotal) was also calculated through ingestion and dermal
pathways during pre- and postmonsoon periods, as presented in Table 6, and its geospatial distribution
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is presented in Figure 6. The calculated mean values for Rtotal, as shown in Table 6, are greater than 1 ×
10−4, which indicates potential carcinogenic effects.
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4. Conclusions

Based on the findings of the study, it can be concluded that the groundwater of the study area
can pose serious health impacts due to presence of ESEs. The spatial distribution of the ESEs in the
groundwater and the Pearson’s correlation of different metals clearly indicate the contribution of
industrial activities to contaminating the groundwater. HPI-based water quality analysis revealed that
1734 and 2219 km2 of the area were above the critical pollution index during pre- and postmonsoon
periods, respectively. Further, MI-based analysis indicated that 3003 and 3328 km2 of the area were
above the threshold limit during the pre- and postmonsoon periods, respectively. The presence of
ESEs in the groundwater of the study area can pose noncarcinogenic health risks. The carcinogenic
health risks through ingestion and dermal pathways are mainly due to the presence of As, Pb, and Cr
contamination. Rtotal for adults revealed that 167 and 635 km2 of the study area posed carcinogenic
health risks during pre- and postmonsoon periods, respectively. Rtotal for children showed that 1316
and 2314 km2 of the study area could pose carcinogenic health risks during pre- and postmonsoon
periods, respectively. The outcomes of this study will be helpful to understand the extent of ESE
contamination in the groundwater of the study area and its effect on consumers due to long-term
exposure. Therefore, it is recommended that ESEs should also be included in the routine monitoring of
the groundwater, and evidence-based policies should be framed to mitigate ESE contamination of the
groundwater in the region.
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