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Abstract: Numerous approaches in sediment mobility studies highlighted the key meaning of
channel roughness, which results not only from bed material granulation but also from various bed
forms presence, caused by continuous sediment transport. Those forms are strictly connected with
the intensity of particle transport, and they eventuate from bed shear stress. The present paper
comprised of local scours geometric dimensions research in three variants of lengthwise development
of laboratory flume in various hydraulic properties, both in “clear-water” and “live-bed” conditions
of sediment movement. Lots of measurements of the bed conformation were executed using the
LiDAR device, marked by a very precise three-dimensional shape description. The influence of the
bed shear stress downstream model on scours hole dimensions of water structure was investigated
as one of the key factors that impact the sediment transport intensity. A significant database of 39
experimental series, lasting averagely 8 h, was a foundation for delineating functional correlations
between bed shear stress-and-critical shear stress ratio and geometry properties of local scours
in various flume development cases. In the scope of mutual influence of bed shear stress and
water depth, high correlation coefficients were attained, indicating very good and good functional
correlations. Also, the influence of bed shear stress and the total length of the scour demonstrated a
high correlation coefficient.
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1. Introduction

The local scouring process is an effect of river bed destabilization, arisen as a result of existing
hydraulic parameters change, which took a significant role in water flow conditions and sediment
transport regime formation. Those changes could be invoked both by natural (such as ice blockages or
by wood rubble deposition) and by anthropogenic factors, connected with developing the channel by
water structures, for example, in the region of bridge pillars, or lengthwise structures, such as weirs or
dams [1–4].

Sediment accumulation in the upper stand of the water structure causes dynamic equilibrium
disturbance between water flow and sediment transport process. These disturbances, together with
stream energy increment, caused by holding back the water level upstream the obstruction, generate
the local scour process below the structure.

Water structure could interrupt the continuity of sediment transport, or this continuity could be
also preserved, what took place when the soil particles movement is conducted through the structure
(i.e., through bridge pillars, gabions, or natural structure formations, such as stones or rocks, that could
be used as a weir). The first case is named “clear-water” conditions because flowing water, downstream
the structure, is almost devoid of sediment; meanwhile, water flow containing the sediment load is
named “live-bed” conditions [5–9] (Figure 1).
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Figure 2. Maximal scour depth evolution in time, in “clear-water” and “live-bed” conditions, where: 

zmax—maximal scour depth, ΔT—time step. 

Erosive processes, downstream of the structure, have an immutable character. In the case of the 

unfavorable geological structure of the alluvial bed, they could include further river reaches. Local 
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during catastrophic floods [11–14]. 
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Figure 1. Sediment transport in “clear-water” (a) and “live-bed” (b) conditions, where Qw—water
discharge, Qr—sediment transport intensity.

In the case of “clear-water”, bed building material stays quiescent and does not participate in
sediment transport, i.e., approaching flow does not drag almost any bed material in the scour hole area.
The material loosed and removed from the hole is not substituted by the sediment load transported
from the upstream; therefore, shear stress in the local scour area is gradually diminished simultaneously
with hole deepening. When the movement of bed material stops and the local scour ends to take shape
when bed shear stress becomes lower than the critical value, then local scour dimensions, such as its
medium and maximal depth or length, could be recognized as stable [9,10].

According to Chabert and Engeldinger [9], stable scour hole shape could be recognized through
observation of maximal scour depth in time (Figure 2). Dynamic equilibrium in “clear-water” could be
ascertained when maximal scour depth is stable in subsequent time steps. In “live-bed” conditions,
when soil leaving the scour hole is substituted by approaching load from the upstream, determination
of the one exact value of maximal scour depth is impossible; however, it fluctuates around the depth,
which could be recognized as average [9].
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Figure 2. Maximal scour depth evolution in time, in “clear-water” and “live-bed” conditions, where:
zmax—maximal scour depth, ∆T—time step.

Erosive processes, downstream of the structure, have an immutable character. In the case of the
unfavorable geological structure of the alluvial bed, they could include further river reaches. Local
scour could be deepened, depending on hydrodynamic conditions fluctuations, while forming a scour
hole could begin to comprise a danger for water structure foundations stability, especially during
catastrophic floods [11–14].

Despite wide analysis and empirical formulas variability, water structure designers have
indefeasible difficulties with choosing those formulas, which give reliable computation results [15,16]. It
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is essential to describe forecasted scour dimensions at a planning stage, also its shape and exact location
of the hole. Local scour properties calculation allows proper lower structure stand development,
ensuring safety and stability [13]. Due to the high costs of bottom reinforcement, scouring forecasting
should be an integral part of the hydrotechnical planning and designing stage; however, universal
computational formula, useful in various hydraulic conditions, is still unknown [8,15–26].

Numerous approaches in sediment mobility studies highlighted the key meaning of channel
roughness, which results not only from the bed material granulation but also from the presence of
various forms of bed, caused by continuous sediment transport (for example, [10,23,27–30]). Those
forms are strictly connected with the intensity of particle transport, and they eventuate from bed shear
stress. Sediment particles on the bed may slide, roll, or jump downstream if the flow velocity exceeds
some critical value [31]. The motion of bedload is diffusive, which contributes to this highly advanced
and complex study field, already on a single grain level [32,33].

The aim of the study was to investigate the relationship between the geometry of local scour
caused by the differentiation of flow resistance at flume length or by introduction of a damming
obstacle (the model of cross-wise hydraulic structure) into the riverbed and the dynamics of sediment
movement, described by stresses on the bottom and their relation to critical stresses. The innovative
approach obtains simple formulas proposal, on the grounds of basic hydraulic parameters database,
with a simultaneous high density of bottom shape measurement grid due to used very precise
measurement device.

Present paper comprised of local scours geometric dimension research in three variants of
laboratory flume development in various hydraulic properties, both in “clear-water” and “live-bed”
conditions of sediment movement. The influence of bed shear stress downstream model on the scour
hole dimensions of water structure was investigated as one of the key factors that impacts on sediment
transport intensity.

2. Materials and Methods

2.1. Experimental Setup

The research comprised of laboratory works, database analysis, and computational part of the
investigation. Laboratory works were conducted in a physical model of the flume with a totally or
partially scourable bed, with rectangular 0.58-m width cross-sections. The else main dimensions of the
flume were: 11.00 m of total length Lc and 0.60 m of lateral border glass panels width H (Figure 3 and
Figure 4).Water 2019, 11, x FOR PEER REVIEW 4 of 15 
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Figure 3. Experimental channel scheme—side view. Where: 1—chute chamber; 2—the regulatory gate;
3—glass side wall; 4—collection chamber; 5—sandy bed; 6—supports for sidewalls; 7—solid bottom;
8—upper reservoir; 9—electromagnetic flowmeter; 10—a pipeline conducting water; 11— the pump;
12—the regulatory valve; 13—the feeding pipeline; 14—the support with joint; 15—the support plate
of the channel; 16—the support with adjustable frame elevation; 17—the hydraulic cylinder; 18—the
lower reservoir.
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A total of 39 laboratory measurement series were performed on three flume development variants,
each lasting 4.0–14.5 h to ensure relatively stable scour shape. Local scours were formed as a result of
hydraulic gradient alteration over a bed length due to various materials of the bottom, when solid
bed precedes the sandy scourable part (Variant I of the flume development, 13 measurement series;
Figures 5a and 6), or as a result of dynamic equilibrium disturbance by removable modules introduced
into flume, comprising of small-scale models of lengthwise water structures: stone weirs (Variant II
and III—stone weirs, 13 measurement series both) (Figure 4b,c, Figures 7 and 8).Water 2019, 11, x FOR PEER REVIEW 5 of 15 
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Figure 6. Variant I of the flume development. 

Figure 5. Flume development schematics. Variants: (a) I, (b) II, (c) III, where: A—solid bottom,
B—alluvial bed, C—collection chamber, D—regulatory gate, E—pin gauge, F—moving pin gauge
equipped with disc probe, G—stone weir, H—stone weir with solid reinforcement, I—slide gate,
J—rocky bottom; L—the length of the sandy bed below the structure; Lc—total length of the flume,
Ln—the length of the solid bottom upstream of the structure, lu1—the length of the reinforcement
upstream of the obstruction, lu2—the length of the reinforcement downstream of the obstruction.
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The first model (I) (Figures 5a and 6) had the following bottom construction: about 4-m long
solid bottom transforms in the intake part into the sandy bed with medium particles’ diameter d50 =

0.00091 m, long for L = 2.18 m. The experimental conditions in this study might be compared to a
case of the transport continuity being disrupted by the accumulation of the bedload material in the
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retention reservoir located in the upstream [34,35]. Due to flow resistance increment along the whole
flume, resulting from varied roughness of solid and sandy bottom, the hydraulic gradient increased,
causing the increment of shear stress at the bottom. After exceeding the critical shear stress, the motion
of sediment grains started, followed by the gradual scouring of the bed.

In the second (II) and third models (III) (Figure 5b,c, Figures 7 and 8), the water structure was
introduced in the flume with a totally or partially sandy bed. The weir was made of stone with four
slots (summary area of slots AsII = 0.018 m2 for Variant II of development and AsIII = 0.035 m2 for
Variant III).

A pin water gauge was used in the intake part in order to measure the water surface elevation
(F), regulated with a gate (D). In order to measure the ordinate of water surface level along the flume,
a moving pin water gauge was used (E) and was placed on the trolley pushed on a guide along
the channel. The level of the sandy bottom was measured with a laser scanner device and with a
moving disc as a helping device. All experimental series were conducted long enough to achieve a
relatively stable scour shape to ensure dynamic equilibrium. The bottom shape was investigated at all
flume length.

The water flow discharge was examined with the use of electromagnetic flowmeter. Experiments
were performed in the scope of water flow discharge Qw = 0.020–0.045 m3 s−1 and water depth
downstream of the structure h = 0.05–0.10 m.

No sediment feeding system was adopted. “Clear-water” and “live-bed” conditions were attained
by imparting or withholding sediment transport from the initial part of the flume by ensuring hydraulic
conditions that could invoke or not the particle movement from upstream towards a lower stand of
the structure.

2.2. LiDAR Scanning

LiDAR (light detection and ranging), also known as laser scanning, is an active tele-detection
method, which uses the electromagnetic waves sent by the emitter. The result is point cloud with
coordinates (x, y, z). The applied device contains laser rangefinder, data transferring software, and
automatic moving platform [36] (Figures 9 and 10). The LiDAR device is set above the flume and could
move in two axes with presumed step (1 mm in present experiment), triggered by stepper motors.
LiDAR beam provides the information about the numeric data cloud, depicting bottom shape. The
device is settled above the flume using brackets, made of biodegradable polymer printed using the 3D
printer, and is designed in a manner that ensures fast development and portability. Using Raspberry Pi
microcomputer allows simultaneous computations and data collection by the beam.Water 2019, 11, x FOR PEER REVIEW 7 of 15 
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Figure 10. Laser scanner device equipped with the level—initial prototype A1.

The device was fully automated, which was executed using a single board computer, dedicated
software, and the set of stepper motors, resulting in measurement repeatability, constant accuracy
on-demand, and fast execution of results. Obtained coordinates mesh was characterized by high
resolution; therefore, the bottom shape was described very precisely, both in numerical form and also
as a graphical tracing. Numerical clouds could be easily transformed into local scour basic geometrical
scour dimensions, such as length or depth, which could be estimated (Figure 11).
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Figure 11. Stabilized bed shape, downstream of the water structure, where: zm—medium scour depth;
Ls—local scour length.

In the aim of building up functional relationships between the effects of bottom measurements,
downstream of the water structure, i.e., scour geometry parameters, represented by medium scour
depth and scour length, and initial hydraulic conditions, downstream of the water structure, the
following parameters were investigated: bed shear stress θ, critical shear stress (Shields parameter)
θcr, and their ratio (Figure 12).
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Figure 12. Upstream and downstream conditions investigated during each experimental series, where:
zm—medium scour depth; Ls—local scour length.

Bed shear stress θ was calculated on the grounds of Hans Einstein’s hypothesis. Einstein’s [37]
hypothesis assumes whole cross-section area division into fields, where flow resistance is explicitly
diversified and related to various roughness of building material of bed and bank (or glass panel, in
the flume). Therefore, Einstein proved that mean bed shear stress τb is dependent on hydraulic radius
Rhb of the part of cross-section, in which stream velocity is connected with bottom flow resistance and
could be calculated as:

τb = ρwgRhbI, (1)

where: τb—bed shear stress (Pa), ρw—water density (kg m−3), g—acceleration of gravity (m·s−2),
Rhb—hydraulic radius of the part of cross-section, in which stream velocity is connected with bottom
flow resistance (m); I—hydraulic gradient, (-).

Dimensionless form of bed shear stress θ is represented by the following equation:

θ =
τb

(ρr − ρw)gd50
(2)

where: ρr—density of bedload (kg m−3), d50—median grain diameter (m).
Critical shear stress θcr is described as a function of dimensionless parameters, such as Reynolds

number Re∗ [38] or grain parameter D∗ [39,40].
Reynolds number Re∗ could be calculated for dynamic velocity v∗ =

√
τb/ρw, absolute substitute

roughness of sediment particles kd = d90, and kinematic viscosity parameter υ scheduled according to
medium water temperature [41–46]:

Re∗ =
v∗kd
υ

(3)

In accordance with Zanke [35]:

θcr = 0.13Re∗−1 when Re∗ ≤ 3.32 (4)
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θcr = 0.432Re∗−2 + 0.04
(
1− 3.32Re∗−1

)
when Re∗ > 3.32 (5)

In another approach, critical shear stress dependence on dimensionless grain parameter θcr =

f (D∗) could be circumscribed as an exponential function [39,40]:

θcr = aD∗b (6)

where a, b—exponential function coefficients, dependent on D∗, as it follows (Table 1):

Table 1. Critical bed shear stress values, depending on the grain size parameter.

Van Rijn Chien and Wu

Range θcr=f(D*) Range θcr=f(D*)

1 < D∗ ≤ 4 0.24D∗−1 D∗ < 1.5 0.126D∗−0.44

4 < D∗ ≤ 10 0.14D∗−0.64 1.5 ≤ D∗ < 10 0.131D∗−0.55

10 < D∗ ≤ 20 0.04D∗−0.1 10 ≤ D∗ < 20 0.10675D∗−0.27

20 < D∗ ≤ 150 0.013D∗0.29 20 ≤ D∗ < 40 0.0173D∗0.19

D∗ > 150 0.055 40 ≤ D∗ < 150 0.0115D∗0.30

D∗ ≥ 150 0.052

Dimensionless grain parameter could be calculated as [41]:

D∗ = d50

[
(s− 1)g
υ2

]1/3

(−) (7)

where s—specific density of solid particles (-).

3. Results

Local scour shape forming process conditions (“clear-water” of “live-bed”) were described in
three procedures:

(1) Visually—on the grounds of observation of sediment motion
(2) Basing on bottom shape measurements upstream the structure
(3) Basing on bottom shape measurements downstream the structure, i.e., on delineating maximum

scour depth evolution in time (Figure 13) and comparing it to the calibration curve (Figure 2).
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Also, scour length evolution was observed and investigated (Figure 14).



Water 2019, 11, 2346 10 of 15

Water 2019, 11, x FOR PEER REVIEW 10 of 15 

 

 

Figure 14. Local scour length evolution in time. 

A total of 39 laboratory measurements comprised of the database to derive correlation 

relationships between the scour geometry properties and initial water depth ratio and computational 

parameters, such as bed shear stress and critical stress ratio (Appendix A: Table A1–A3, Figures 15, 

16). 

 

Figure 15. Bed shear stress 𝜃 to critical shear stress 𝜃𝑐𝑟 ratio, and medium scour depth zm to initial 

water depth h0 correlation. 

 

Figure 16. Bed shear stress 𝜃 to critical shear stress 𝜃𝑐𝑟 ratio, and scour length Ls to initial water 

depth h0 correlation. 

On the ground of gained database, the following sets of formulas were derived: 

 Formulas including bed shear stress θ to critical shear stress 𝜃𝑐𝑟  ratio and medium 

scour depth zm to initial water depth h0: 

o For “clear-water” conditions: 

(
𝑧𝑚

ℎ0
) = 0.001𝑒2.4(𝜃 𝜃𝑐𝑟⁄ ) r = 0.76 (8) 

0.00

0.25

0.50

0.75

1.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

(z
m

  /
 h

0)
 [

-]

(θ / θcr) [-]"clear-water" "live-bed"

0.00

10.00

20.00

30.00

40.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

(L
s 

 / 
h 0

) 
[-

]

(θ / θcr) [-]
"clear-water" "live-bed"

Figure 14. Local scour length evolution in time.

A total of 39 laboratory measurements comprised of the database to derive correlation relationships
between the scour geometry properties and initial water depth ratio and computational parameters,
such as bed shear stress and critical stress ratio (Appendix A: Tables A1–A3, Figures 15 and 16).
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Figure 15. Bed shear stress θ to critical shear stress θcr ratio, and medium scour depth zm to initial
water depth h0 correlation.
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Figure 16. Bed shear stress θ to critical shear stress θcr ratio, and scour length Ls to initial water depth
h0 correlation.

On the ground of gained database, the following sets of formulas were derived:

• Formulas including bed shear stress θ to critical shear stress θcr ratio and medium scour depth zm

to initial water depth h0:

# For “clear-water” conditions:(
zm

h0

)
= 0.001e2.4(θ/θcr) r = 0.76 (8)
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# For “live-bed” conditions: (
zm

h0

)
= 0.019e0.25(θ/θcr) r = 0.91 (9)

• Formulas including bed shear stress θ to critical shear stress θcr ratio and scour length Ls to initial
water depth h0:

# For “clear-water” conditions:(
Ls

h0

)
= 0.544e1.45(θ/θcr) r = 0.76 (10)

# For “live-bed” conditions: (
Ls

h0

)
= 5.97e0.1(θ/θcr) r = 0.74 (11)

4. Discussion

A significant database of 39 experimental series, lasting averagely 8 h, was a foundation for
delineating functional correlations between bed shear stress and critical shear stress ratio and geometry
properties of local scours formed in alluvial bed in “clear-water” and “live-bed” conditions in various
flume development cases. Structure models were selected with the aim to pile up water level upstream
the structure and to obtain scouring of alluvial bed downstream.

It was noticed that higher values of shear stresses were observed in the cases with pilling up
structure input into flume (weirs in Variant II and III), which is strictly connected with the diminishing
flow area in the structure’s region and water velocity increment at the initial cross-section of researched
area. The database of simple hydraulic parameters was described using ascending exponential
formulas, and the results of the present research were pointing that “clear-water” and “live-bed”
conditions should be considered separately.

Almost in any measurement number, it was noticed that maximal scour hole depth was stabilized
relatively faster than scour hole length, shown in Figures 7 and 8, taking two measurement series cases
as examples. The experiment confirmed the same observation as of Gaudio and Marion [22] that the
length of the scour’s enlargement seems to be slower than depth evolution, and has a continuous
character—stable scour depth does not mean simultaneous length stabilization. Gaudio and Marion
pointed out two presumable reasons for this phenomenon: first, connected with pulsations observed
during pump working, and another, connected with flow resistance, resulting from glass walls of
the flume. What was significant, in the case of the present experiment, that the pump operation was
ensured to work stable, so flow pulsations were eliminated; however, the common characteristic of test
stands was glass panels constituting walls, affecting velocity structure.

Although formulas describe well model conditions, they have their limitations—the experiments
dealt with not too high bed slope, uniform sediment, and no armoring. In addition, it does not concern
single grain movement analyses. However, taking into consideration the type of verified structure,
which is often used for pilling up the water for agricultural purposes, and basic hydraulic properties,
on which formulas are built, it is possible to verify them in large scale, even for natural conditions,
once data concerning the shape of the bottom before the erosion are available.

It has to be highlighted that a rich database, developed on three test stands, constructed in order
to imitate the most frequently applied in practice crosswise water structures. Also, LiDAR technology
application is meaningful, giving dense measurement mesh, allowing to map the bottom surface
very accurately.
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It is hardly disputed that in the light of the 3D approach to velocity description, the 2D model
seems to be less accurate. Moreover, diffusion and the processes of sediment movement at different
spatial and time scales have received increasing attention within the last decades. Bialik et al. [31,32]
discussed the advantages of the 3D model of the saltation process of solid spherical particles on the
bed of open channel flow, including the analysis of particle mobility factor, which depends on critical
bed shear stress. The present paper comprised of streamwise, transverse, and vertical components of
particle velocity investigation and, in this aspect, it represented the comprehensive particle trajectory
description. It has been stated that the grain motion is diffusive, and the motion of bedload particles
consists of three range of scales: local (single jump), intermediate (corresponding to longer times—many
jumps), and global. Single-particle movement analyses and highlighting the diffusion in turbulent
flows could be a base for more general studies, as, for example, the one set out in the present paper;
however, the single grain particle’s velocity spatial distribution conditions demand other measuring
devices that were applied in the present approach.

5. Conclusions

In the scope of mutual influence of medium scour depth and initial water depth ratio and shields
parameter to critical shear stress, high correlation coefficients were attained, indicating very good in
“live-bed” and good in ”clear water” functional correlations.

Also, the mutual influence of the scour’s total length and initial water depth ratio and shields
parameter to critical shear stress demonstrated high correlation coefficient; however, it must be
highlighted that scour hole length measured with the sound probe was denoted with relatively low
accuracy (cross-sections in even 20 cm’ distances). However, the course of the evolution of hole length
over time does not indicate certain completion of shape formation.

In conclusion, delineated functional relationships between geometrical scour hole parameters and
shear stress served well to describe local scour formation on described test stands and could be applied
both in “clear-water” and “live-bed” conditions. Although correlations were proved and irrefragable in
researched cases, the general form of functions could be presented not only as an exponential equation.
The initial approach of computations demonstrated that high correlation coefficients were computed
for linear formulas likewise, despite the best data match provided by the exponential equation form.
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Appendix A

Table A1. Summary table of calculation results—variant I of flume development; no water structure;
“clear-water” conditions.

No.
Qw h0 zm/h0 Ls/h0 θ Re* D* θcr(D*)(1) θcr(D*)(2) θcr(Re*)

θ
θcr

(m3 s−1) (m) (-) (-) (-) (-) (-) (-) (-) (-) (-)

1 0.020 0.10 0.016 2.0 0.038 21.8 21.79 0.0311 0.0318 0.0348 1.17
2 0.025 0.10 0.150 22.0 0.051 25.1 21.68 0.0310 0.0317 0.0354 1.56
3 0.025 0.12 0.013 2.2 0.036 20.9 21.55 0.0310 0.0317 0.0346 1.12
4 0.030 0.10 0.293 23.5 0.080 31.4 21.68 0.0310 0.0317 0.0362 2.42
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Table A1. Cont.

No.
Qw h0 zm/h0 Ls/h0 θ Re* D* θcr(D*)(1) θcr(D*)(2) θcr(Re*)

θ
θcr

(m3 s−1) (m) (-) (-) (-) (-) (-) (-) (-) (-) (-)

5 0.030 0.15 0.011 1.3 0.035 20.9 21.75 0.0311 0.0318 0.0346 1.09
6 0.035 0.12 0.310 18.3 0.080 31.2 21.62 0.0310 0.0317 0.0362 2.42
7 0.035 0.15 0.021 6.7 0.044 23.0 21.49 0.0310 0.0316 0.0350 1.36
8 0.040 0.10 0.783 23.5 0.074 29.8 21.51 0.0310 0.0317 0.0360 2.24
9 0.040 0.12 0.369 19.1 0.072 30.4 21.92 0.0311 0.0318 0.0361 2.20

10 0.040 0.15 0.100 3.7 0.071 29.8 21.85 0.0311 0.0318 0.0360 2.14
11 0.040 0.20 0.008 2.2 0.034 20.5 21.79 0.0311 0.0318 0.0346 1.04
12 0.043 0.12 0.448 18.3 0.094 34.1 21.72 0.0310 0.0317 0.0365 2.85
13 0.045 0.15 0.237 15.4 0.071 29.1 21.51 0.0310 0.0317 0.0360 2.15

Where: Qw—water discharge; h0—initial water depth; Tc—total time of experimental series; zm—medium scour
depth; Ls—local scour length; θ—dimensionless form of bed shear stress; v∗—dynamic velocity; Re∗—Reynolds
number calculated for dynamic velocity; D∗—grain parameter; θcr(D∗)(1)—critical shear stress calculated using
Van Rijn formula (Table 1); θcr(D∗)(2)—critical shear stress calculated using Wu and Wang formula (Table 1);

θcr(Re∗)—critical shear stress calculated using Zanke (1982) formula; θcr—medium critical shear stress.

Table A2. Summary table of calculation results—variant II of flume development; stone weir;
“live-bed” conditions.

No.
Qw h0 zm/h0 Ls/h0 θ Re* D* θcr(D*)(1) θcr(D*)(2) θcr(Re*)

θ
θcr

(m3 s−1) (m) (-) (-) (-) (-) (-) (-) (-) (-) (-)

1 0.020 0.10 0.016 7.8 0.061 27.6 21.75 0.0311 0.0318 0.0358 1.87
2 0.025 0.10 0.076 16.0 0.141 41.5 21.62 0.0310 0.0317 0.0371 4.25
3 0.025 0.12 0.021 10.0 0.087 32.3 21.49 0.0310 0.0316 0.0363 2.64
4 0.030 0.10 0.133 18.0 0.141 42.0 21.79 0.0311 0.0318 0.0371 4.24
5 0.030 0.15 0.083 11.3 0.088 33.0 21.72 0.0310 0.0317 0.0364 2.67
6 0.035 0.12 0.409 15.0 0.290 59.0 21.51 0.0310 0.0317 0.0379 8.65
7 0.035 0.15 0.027 9.3 0.106 35.9 21.62 0.0310 0.0317 0.0366 3.20
8 0.040 0.10 0.440 31.0 0.344 64.2 21.49 0.0310 0.0316 0.0380 10.3
9 0.040 0.12 0.537 22.5 0.435 73.7 21.79 0.0311 0.0318 0.0383 12.9

10 0.040 0.15 0.073 13.3 0.150 43.0 21.68 0.0310 0.0317 0.0371 4.50
11 0.040 0.20 0.021 5.0 0.146 42.8 21.79 0.0311 0.0318 0.0371 4.40
12 0.043 0.12 0.528 25.0 0.362 67.3 21.79 0.0311 0.0318 0.0381 10.8
13 0.045 0.15 0.042 12.7 0.176 46.6 21.68 0.0310 0.0317 0.0373 5.29

Table A3. Summary table of calculation results—variant III of flume development; stone weir with
reinforcement; “live-bed” conditions.

No
Qw h0 zm/h0 Ls/h0 θ Re* D* θcr(D*)(1) θcr(D*)(2) θcr(Re*)

θ
θcr

(m3 s−1) (m) (-) (-) (-) (-) (-) (-) (-) (-) (-)

1 0.020 0.10 0.199 13.5 0.320 62.0 21.51 0.0310 0.0317 0.0380 9.53
2 0.025 0.10 0.397 26.0 0.406 71.2 21.79 0.0311 0.0318 0.0382 12.0
3 0.025 0.12 0.172 9.3 0.283 58.3 21.51 0.0310 0.0317 0.0378 8.44
4 0.030 0.10 0.479 23.1 0.363 67.1 21.75 0.0311 0.0318 0.0381 10.8
5 0.030 0.15 0.033 3.5 0.115 37.9 21.79 0.0311 0.0318 0.0368 3.45
6 0.035 0.12 0.381 20.3 0.442 74.3 21.79 0.0311 0.0318 0.0383 13.1
7 0.035 0.15 0.128 11.2 0.229 53.3 21.72 0.0310 0.0317 0.0377 6.85
8 0.040 0.10 0.562 20.3 0.498 77.9 21.62 0.0310 0.0317 0.0384 14.8
9 0.040 0.12 0.430 19.1 0.384 69.6 21.85 0.0311 0.0318 0.0382 11.4

10 0.040 0.15 0.187 12.4 0.238 53.9 21.62 0.0310 0.0317 0.0377 7.12
11 0.040 0.20 0.007 1.4 0.034 20.5 21.79 0.0311 0.0318 0.0346 1.04
12 0.043 0.12 0.497 19.8 0.616 87.5 21.75 0.0311 0.0318 0.0385 18.2
13 0.045 0.15 0.096 12.0 0.115 37.2 21.55 0.0310 0.0317 0.0367 3.46
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