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Abstract: Hydraulic conductivity (K) and the specific storage coefficient (S) are among the most
important hydrogeological parameters of an aquifer. Traditionally, the hydrogeological parameters
of a field aquifer system are mainly determined through a range of experiments that are both
time-consuming and of poor operability. To accurately characterize aquifer heterogeneity, a synthetic
sandbox is constructed using VSAFT2 (Variably Saturated Flow and Transport utilizing the Modified
Method of Characteristics, in 2D) as a reference aquifer system by incorporating multilevel a priori
geologic information into the sandbox configuration. The spatial distribution of the field of hydraulic
conductivity (i.e., K) is inversely obtained by hydraulic tomography (HT). Then HT is compared with
traditional kriging-estimated method in the fine characterization of aquifer heterogeneity, and the
optimal K field is eventually selected to predict the solute transport. The influence of the number of
pumping cycles on the accuracy of heterogeneity characterization is also discussed. The results show
that the accuracy of the inversely obtained K field is improved with the increased number of pumping
cycles. When incorporating multilevel a priori geological information, HT can characterize aquifer
heterogeneity more finely than traditional kriging, and there is also a very good fitting of solute
transport between the optimally estimated K field and the reference K field. Our study highlights the
importance of the fine characterization of aquifer heterogeneity for the prediction of solute transport.

Keywords: hydraulic tomography; sandbox experiment; multilevel a priori information;
solute transport

1. Introduction

Groundwater contamination and remediation have become very important issues. The
heterogeneous nature of geologic bodies results in the heterogeneous hydrological properties of
geologic media accordingly [1]. The complex spatial structure of aquifer media leads to the uncertainty
of groundwater flow, thereby aggravating the uncertainty of groundwater contaminant transport [2].
Previous studies have shown that the accuracy of the spatial distribution of hydrogeological parameters
directly affects the hydrogeological evaluation and prediction when solute transport is considered [3–5].
Therefore, it is particularly important to characterize the aquifer heterogeneity with high accuracy.
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Traditional methods for determining the hydrogeological parameters of field aquifers mainly
include the pumping test, injection test, slug test, and water level recovery test [6]. However, the
core samples and pumping test data obtained from field sampling are a bit limited to a certain extent.
In recent decades, the efficient use of field and experimental data to invert the spatial distribution of
hydraulic conductivity (K) has been widely studied by hydrogeologists [7,8]. At the end of the 20th
century, Yeh et al. [9] developed a hydraulic tomography (HT) method that was different from the
traditional methods. By incorporating the computerized axial tomography (CAT) and the geophysical
tomography concepts, HT uses the inversion model VSAFT2 [10] to obtain the spatial distribution of K
field, thereby characterizing aquifer heterogeneity with high accuracy.

To date, numerous satisfactory results have been achieved in the characterization of aquifer
heterogeneity using HT, mainly in the spatial estimation of K field and the specific storage coefficient
(S). For example, Illman et al. [11] and Liu et al. [12] collected the hydraulic head response data
for the steady state portion of a pumping test using a laboratory sandbox experiment and then
estimated the parameter K using numerical simulation. Illman et al. [13] and Cardiff et al. [14]
conducted pumping tests at a field test site and estimated the K value using the same method. These
studies have demonstrated the advantages of HT through laboratory sandbox experiments, field
tests, and numerical simulation. In addition, previous studies also have compared the equivalent
homogenization method (an effective parameter/macrodispersion approach) [15] and kriging method
(a heterogeneous approach using ordinary kriging based on core samples) [16] with HT in terms
of the ability to characterize the heterogeneity of experimental sandboxes, and found that HT was
most accurate one in predicting K and hydraulic head, but it was only comparable with kriging with
slight improvement [15]. By incorporating multilevel a priori geological information into the sandbox
configurations of previous studies, this study aims to explore the role of HT in the improvement of the
accuracy of the K field prediction, as well as the influence of aquifer heterogeneity, with higher accuracy
for the solute transport. Particularly, different from the previous studies, we focus on the smaller scales
of each layer of heterogeneity. The results of this study would provide a better understanding of the
fine characterization of aquifer heterogeneity for the prediction of solute transport.

2. Materials and Methods

2.1. Numerical Sandbox Construction

In reference to Zhao [17], the sandbox is divided into 18 layers, and the working areas of the
corresponding layers are drawn using VSAFT2 (Figure 1), which is two-dimensional in the vertical
cross-section. There is a total of 48 wells, and their positions are determined according to Liu [12].
VSAFT2 is used to mesh the constructed sandbox area into finite elements, and the entire model
consists of 73 rows and 163 columns of 1-cm square unit elements. The thickness of the sandbox
is set as 10.2 cm, and the more detailed information about the sandbox is introduced in Zhao [17],
including sand types and initial K of 18 layers. When in a forward simulation of VSAFT2, the first step
is that the homogeneous initial K is assigned for the entire working area (here, we focus on the smaller
scales, which means the initial K in a specific layer is homogeneous, but varies for different layers, as
shown in Figure 1). Then random seeds, variance, and correlation scale are all set to the same under
various conditions. Among them, the uncertainty of variance is slightly higher and, in addition, the
uncertainty set by different experimenters can vary noticeably. Next, a reference K field with 18-layered
randomness is produced in the middle process. Finally, the synthetic reference H (head) field in 8
pumping tests is obtained by the VSAFT2, and it should be noted that, for every pumping test, we
could obtain a group of head data at 46 observation ports (excluding the injection and pumping wells),
and finally there are 8 groups of observations of head data that are used in the kriging and hydraulic
tomography. In contrast, in an inverse simulation, the spatial distribution of K field is derived from a
given H field, and here we discuss the best one (note that initial S is 3.94 x 10−5 cm−1 for each layer, but
we do not focus on S field in this study). The variance in this study is set to 0.01 cm2/s2 because the



Water 2019, 11, 2295 3 of 12

hydraulic conductivity of the layers in the sandbox itself is approximately 0.1 cm/s [17]. Considering
the a priori geological information, the correlation scale at a small level is used as the correlation scale
for the entire area. That is, the correlation lengths in the horizontal and vertical direction are set at
20 cm and 8 cm, respectively. As the inner heterogeneity of hydraulic conductivity of each layer is
studied, there exists prior information for 18 layers compared with the unique K in each layer. In other
words, we could know finer characterization for the sandbox at the first instance so that we call it
“multilevel prior information”.
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Figure 1. The finite element mesh of the working area of an 18-layered sandbox by VSAFT2 (Variably
Saturated Flow and Transport utilizing the Modified Method of Characteristics, in 2D).

2.2. Pumping Tests

In the forward model, a zero-flow boundary condition is set at the periphery. Because the model
is at a vertical section to exclude other factors, such as the effects of model errors and gravity [18,19],
all initial heads are assumed as the total head (i.e., 100 cm). A total of 8 pumping test conditions
are designed, and each group contains 46 observation heads, which are regarded as the reference
heads. The locations of pumping/injection wells in each group of pumping tests are selected according
to Illman [16]. Well spacing optimization is outside of the scope of this study [20–22]. The rate is
0.48 cm3/s for both pumping and injection for all 8 pumping tests, and it is set to be negative for
pumping and positive for injection.

It is worth noting that head response data are obtained from the pumping test. However, because
signals of head are easily transmitted through aquifers, it is not sufficient to only examine the degree
of hydraulic head fitting; solute transport must also be predicted. During the simulation of tracer
solute transport in the present study, a solute at a concentration of 1513 mg/mL was first injected
for 10 s, followed by continuous injection of water until 6000 s, and finally the solute transport was
quantitatively analyzed.

2.3. Methods

In this study, not only does the entire sandbox area have a large-scale heterogeneity, but each layer
also has a smaller-scale heterogeneity of its own. As a priori geological information is assigned to the
18 layers, we first discuss the equivalent homogenization method. The corresponding homogeneity
model is different from the previous theoretical homogeneity model in that each layer is treated as
homogeneous (i.e., the K of each layer is a constant) [16] in the test, and the initial value of K is
determined according to the hydraulic conductivity of different sand layers in Appendix A of Zhao [17]
to examine the effect of the number of pumping cycles on the accuracy [23].

The hydrogeological parameters of aquifers (e.g., K) are random variables changing with the
spatial position, which can be analyzed by the geological statistical methods. The core of geostatistics
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is “Kriging”, which is also called Kriging spatial interposition. Kriging is a stochastic linear estimation
method based on the observed values of variables at different positions or some known parameters,
as well as the a priori information on variable spatial statistical structures [24,25]. It obtains the
optimal unbiased estimation of geological variables and quantitatively analyzes the uncertainty of the
corresponding estimates. The value at an unknown point can be estimated by the weighted sum of
known observation values. However, the Kriging is not suitable for the limited core samples, as well
as the smaller scales.

HT estimation is a method of using the successive linear estimate (SLE) to estimate the spatial
distribution of hydrogeological parameters [26]. It is an extension to the spatial random linear
estimation (kriging or cokriging) [9]. In essence, HT collects nonredundant information through a
limited number of wells, and some previously uncollected information could be added during each
pumping test [27–29]. Assimilation of such data series with HT can provide a more accurate description
of the aquifer. When estimating the hydraulic conductivity K based on observed head response data
yielded from pumping tests, the SLE considers the nonlinear relationship between hydrogeological
parameters (such as K) and system responses (such as H) [30,31]. Its core algorithm is as follows [32]:
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nh∑
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for observed and calculated heads, respectively; and ω(r)
mj is the weight of the difference between the

observed and estimated values at point x j for the estimated f at point xm in the rth iteration.
In the solute transport analysis method, the displacement of solute particles is determined using

the concept of spatial moments. The zeroth moment M0 represents the total mass, and the ratio
of the first to the zeroth moment, µx, represents the mean position the solute reaches at this time.
Solute transport can be quantitatively evaluated according to the conservation of mass concentration
and the deviation of displacement at the central point. In this study, the total mass concentrations
(mg/mL) of the reference field and the estimated field are estimated by using the zeroth moment, i.e.,
by multiplying the concentration at each point by time and then calculating the integral. Note that the
effective porosity was set to 0.36 for all cases. The computed value of the longitudinal dispersivity is
52.08 cm. The transverse dispersivity values are zero.

3. Results and Discussion

3.1. Equivalent Homogeneous Conceptual Model

The equivalent homogenization method only considers the fitting of the head and can be used
to evaluate the effect of the number of pumping cycles on the accuracy. Figure 2a–h show the fitting
between the observed and estimated head values of 46 wells as the number of pumping cycles increases
from one to eight. These figures indicate that the scatter points are more concentrated on the 45◦ line
as the number of pumping cycles increases and that the correlation coefficient R2 gradually increases.
However, R2 has reached 0.99 upon the completion of the 6th pumping test, after which there is no
notable increase in the accuracy. Therefore, when we determine the best accuracy, we do not need
more pumping tests, which can save more energy and is less time-consuming.
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3.2. Heterogeneity Characterization by Kriging

Linear estimation was performed by kriging using the reference K values (hard data) corresponding
to the 48 ports. We assume that the core sample data can be directly extracted by VSAFT2. Two scenarios
were conducted, one without and the other with multilevel a priori geological information. The results
are shown in Figure 3. Figure 3a shows the distribution of the reference K field, and Figure 3b,c represent
the distribution of the K field estimated by the two scenarios. A comparison of the two scenarios
reveals that the inverted K field provides clearer hierarchical information and better characterization of
heterogeneity, indicating that incorporation of multilevel, small-scale a priori geological information
can improve the accuracy of the estimated K field. It should be noted that because kriging is an
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estimation method based on interpolation and extrapolation, the resulting estimated K field has a
distribution with a relatively smooth hierarchical outline [33,34].

In addition, it can be observed from the scatter plots that the correlation coefficient R2 is 0.25
and the slope is 0.32 in Figure 3e and R2 is 0.21 and the slope is 0.29 in Figure 3d. The scatter points
in Figure 3e are more concentrated and the blue line is closer to the 45◦ line, suggesting that kriging
method which considers smaller scales has a better overall fitting. In summary, the incorporation of
multilevel a priori geological information enables more accurate characterization of heterogeneity,
indirectly proving the importance of hierarchical information.
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3.3. Heterogeneity Characterization by HT

The estimated value of K for the entire work area is inverted with the VSAFT2 model by inputting
the 8 groups of observed head data under forward modeling into the HT model. Figure 4a,b show the
spatial distributions of the reference K field and the HT-estimated K field, respectively. It can be seen that
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the interlayer information is more significant and the hierarchical outline is more clearly characterized;
the spatial distribution trends of K values agree very well, with one-to-one correspondence in the high-K
and low-K regions. Moreover, the slope of the scatter plot in Figure 4c reaches 0.74, which is very close
to the 45◦ line, and the correlation coefficient R2 reaches 0.58 (compared with the maximum correlation
coefficient of 0.25 by kriging method), indicating that the HT-estimated K field is quantitatively closer
to the reference field. Therefore, HT remarkably improves the simulation of the K field and hydraulic
head compared with the kriging estimation.
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3.4. Tracer Test

3.4.1. Comparison of Concentration Contours in the Reference Field and the Estimated Field

Figure 5 shows the positions of solute transport simulated at output time points of 10 s, 70 s,
270 s, 1000 s, 2000 s, and 6000 s under the reference K field in a group of pumping/injection tests
(by pumping at well #7 and injecting solute–water mixture at well #42). Figure 6 shows the positions of
simulated solute transport under the optimal estimated K field. In the figure, the concentrations have
been normalized so that a darker color represents a higher concentration. A comparison of Figures 5
and 6 reveals that the positions corresponding to each time point are approximately the same and the
transport direction and the diffusion range of the tracer coincide well, indicating that the HT-derived
optimal estimated K field can sufficiently predict the transport direction and concentration of solute.
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3.4.2. Mass Conservation of Solute Concentration

Table 1 presents the total mass of the reference and estimated fields at different time points.
The correlation coefficient between the total mass concentrations of the reference field and the estimated
field is greater than 0.96, indicating that the total mass concentration was properly estimated. It should
be noted that before the solute was pumped out of well #7, the theoretically calculated total mass
concentration of the solute should have been equal to the total mass concentration of the injected solute
(1513 mg/mL) multiplied by the injection time (10 s). However, the estimated concentrations shown
in Table 1 are not equal to the theoretical concentrations, and such differences might be attributed to
computer simulation errors.

Table 1. Total mass concentration at each time point.

Time Point (s) Concentration of Reference Field
(mg/mL) Multiplied by Time (s)

Concentration of Estimated Field
(mg/mL) Multiplied by Time (s)

10 12,617.05 12,348.89
70 13,389.39 13,184.79

100 13,530.88 13,437.63
270 13,965.98 14,346.23
500 14,235.86 14,513.34
700 14,176.88 14,257.88
1000 14,047.74 14,160.73
2000 14,030.94 14,016.92
3000 13,845.20 13,828.36
5000 12,698.78 12,609.27
6000 11,431.97 11,283.76
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3.4.3. Route of Solute Mean Position

The center positions of the tracer at different time points are estimated using the ratio of the
first moment to zeroth moment, µx The direction of solution transport is recognized by determining
the displacement of the mean position, and the position coordinates of the tracer at different time
points are extracted and plotted on a plane, as shown in Figure 7. The curve and direction of
solute displacement under the estimated field basically coincide with those under the reference field,
respectively, indicating that the simulated K field can properly characterize the heterogeneity of the
sandbox used in our experiment.
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Figure 7. Transport route of the tracer center. The units of axis are cm.

Table 2 shows the approximately estimated displacements of the tracer center after different
periods of time and the transport velocity in each period of time. It is indicated that the transport
velocity of the solute gradually decreases with the passage of time, which may be due to the decrease
in the concentration gradient, the heterogeneity of the aquifer, and the radial flow in the vicinity of the
wells. According to the displacement data, it can be roughly estimated that the tracer was initially
pumped out at a time point between 1000 s and 2000 s. The displacement data are accumulated
starting at 10 s, and it is found that the total displacement at 1000 s and 2000 s is approximately 84.95
cm and 110.29 cm. In addition, as shown in Figures 5 and 6, the coordinate of the outer boundary
is (x,y) = (110 cm, 25 cm) at 10s, (40 cm, 50 cm) at 1000s, and (12 cm, 70 cm) at 2000s. However, the
distance between the well #7 and the outer boundary of solute plume (at 10s) is almost exactly 100 cm.
That is, the time when the solute moves to the mouth of well #7 should be between 1000 s and 2000 s.

Table 2. Displacement and velocity of tracer center at different time points.

Time (s) Displacement of
Reference Field (cm)

Velocity of Reference
Field (cm/s)

Displacement of
Estimated Field (cm)

Velocity of Reference
Field (cm/s)

10 0.23 0.0227 0.48 0.0478
70 2.35 0.0310 3.38 0.0385

100 3.14 0.0263 4.25 0.0289
270 6.36 0.0175 7.75 0.0191
500 9.27 0.0118 10.58 0.0113
700 11.28 0.0101 12.53 0.0097

1000 14.03 0.0089 15.37 0.0094
2000 23.48 0.0094 25.34 0.0099
3000 34.48 0.0110 36.86 0.0115
5000 51.35 0.0070 53.18 0.0064
6000 56.03 0.0047 57.00 0.0038

Figure 8a,b show the concentration range of the estimated field at 1000 s and 2000 s, respectively.
As seen, the solute (tracer) has noticeably not arrived at well #7 at 1000 s, but the lightest blue area
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has already passed over well #7 at 2000 s, consistent with the conclusion of the displacement data
analysis. Considering the previous analysis, it is effectively proved that HT is able to not only fit head
signals very well but also accurately predict solute transport, and it also offers a good alternative for
the treatment of pollutants.
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Figure 8. Concentration distribution of the estimated field at specific time point: (a) at 1000 s; (b) at
2000 s. The black line represents the water table contour; the light blue area represents the concentration
range during solute transport; the outer boundary line is the forefront of solute transport; the round
spot in the upper left corner represents the pumping well #7, and the round spot in the lower right
corner represents the injection well #42. The units of axis are cm.

4. Conclusions

Based on a synthetic sandbox incorporated with multilevel a priori geological information, we
compared the roles of kriging and HT in the fine characterization of aquifer heterogeneity. The solute
transport under the optimal K field is examined, and the effects of the number of pumping cycles on
the accuracy of aquifer heterogeneity are investigated in this study. The following conclusions can
be drawn:

1. As the number of pumping cycles increases, the accuracy of the inversely obtained K field is
improved, although this improvement is no longer significant after the 6th pumping test. For
specific regional hydrogeological studies, we can use a sufficient number of pumping cycles
during a field experiment and determine the number of pumping cycles beyond which the effect
of this number is no longer significant, thus providing a reference for determining the number of
pumping cycles needed for different hydrogeological points of the same region.

2. Incorporation of multilevel a priori geological information improves the accuracy in the estimated
K field. When small-level heterogeneity is considered, the accuracy in the characterization of
the K field heterogeneity of the aquifer inversely obtained by HT is generally higher than that
by kriging.

3. The HT-derived optimal estimated K field is able to not only fit head signals very well but
also more accurately predict solute transport, suggesting that fine characterization of aquifer
heterogeneity is of great importance to the prediction of solute transport.

The sandbox used in this study is directly synthesized on a computer using VSAFT2, lacking
experimental data for practical validation and containing systematic errors in the numerical model.
And it should be noted that the study is 2D, which is not realistic, especially in the typical, local scenario
of HT. In addition, in this study, only the analysis of spatial moments is performed in the prediction
of solute transport. Future work can combine the breakthrough curves of other observation wells to
investigate the accuracy in the prediction of solute transport using time moments. In addition, we will
attempt to combine the time moment approach with the sandbox test data to verify the importance of
fine characterization of aquifer heterogeneity in actual applications.
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