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Abstract: Plant leaf surface moisture is a frequent meteorological phenomenon that has complicated
sources. As such, the determination of whether surface moisture is the input water or only the
redistribution of water in the soil–plant–atmosphere ecosystem is of great importance. In this study,
δ18O and δD characteristic values of dew, guttation, and soil waters in Buxus sinica var. parvifolia M.
Cheng were monitored during the frost-free period (June–September 2017) in Changchun, China,
to differentiate the hydraulic relationship among atmospheric vapor, rainwater, soil, dew, and
guttation waters and quantitatively distinguish the leaf surface moisture on the canopy and bottom
of plants. The water vapor sources of the leaf surface moisture on plants’ canopy and bottom were
quantitatively verified in accordance with isotope fractionation and mass conservation principles.
Results demonstrated that leaf surface moisture, atmospheric vapor, soil water, and dew were closely
related. Leaf surface moisture was mainly the condensation of dew. The sources of canopy and
bottom leaf surface moisture were basically the same. The proportions of canopy moisture from
plant guttation, atmospheric vapor, and soil water were 2.4%–2.5%, 79.8%–92.4%, and 5.1%–17.8%,
respectively. By comparison, the proportions of bottom leaf surface moisture were 0.6%–1.4%,
80.0%–93.0%, and 6.4%–18.6%, respectively. Leaf surface moisture is an important water input in
urban systems. Moreover, the characteristic values of stable hydrogen and oxygen isotopes of urban
dew are supplemented, and the transformation of atmospheric vapor, rainwater, and soil and dew
waters is revealed.
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1. Introduction

The condensation of water on leaves is a common occurrence on urban plants in the morning.
The sources of leaf surface moisture include dew and guttation [1]. Dew condensation is a normal
weather phenomenon that can replenish the available moisture of plants and soil [2]. The unique
landscape characteristics of an urban ecosystem result in the formation of a high amount of dew and a
high degree of condensation [3,4]. Two main water sources are involved in dew formation. First is
water vapor in the lower atmosphere (dewfall), which is the dominant source, and the other is water
vapor that originates from flooded soil (dewrise) [5]. Guttation is the secretion of water and dissolved
materials from the pores of plants, mainly at night. Dewfall is a kind of pure water input for plants,
whereas dewrise (distillation) is only a part of soil, plant, and atmosphere system water redistribution.

Moreover, guttation is detrimental to plant growth because some nutrients can be utilized by
fungi or insect pests. Therefore, the process of surface water circulation in urban ecosystems should be
investigated to analyze the source of urban leaf surface moisture.
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Hydrogen and oxygen isotope fractionation occurs in the water vapor cycle. Water bodies at
different stages of the dew cycle have characteristic 18O and D, which can be used as tracer elements to
reveal specific information about the water cycle [6,7]. At present, isotope observations have been
performed to analyze the ecological significance of dew. Liu et al. [8] and Wu et al. [9] analyzed the
characteristic values of δ18O and δD of dew water. They found that plant stomata are open at night
and can directly absorb dew through the leaves. From the δ18O in the leaf surface moisture, the foliar
absorption of intercepted water (dew or rain) could be more important than previously appreciated,
especially during drought [10]. Dew is an essential water source for plants in farmland, grassland,
and desert areas. Amber et al. used a two-source isotope mixing model and found that Salsola. inermis
Forssk, Artemisia sieberi Besser, and Haloxylon scoparium Pomel use 56%, 63%, and 46% of their water
source from dew, respectively [2]. Corbin et al. conducted a similar study on perennial herbaceous
plants in a grassland near the sea. They reported that 28%–66% of the water source of herbaceous plants
comes from fog or dew [11]. These studies have focused on quantitatively determining the contribution
of different water sources to plants. However, few studies have quantitatively distinguished the source
of dew. Zhu and Jiang utilized stable isotopes (18O and D) to determine the condensed dew from
atmospheric vapor in the upper 20 cm of the soil layer [12]. Meng and Wen analyzed the δD and
δ18O characteristic values of dew in Hebei and Gansu in China and discovered that dew water is
closely related to atmospheric vapor [13]. Liu et al. stated that the sources of fog-dew water in the
Xishuangbanna region include pond, river, water vapor from water in soil, and water vapor produced
during plant respiration [14]. However, these studies have remained in the qualitative analysis phase,
and studies have yet to fully quantitatively analyze the source of leaf surface moisture. Wen et al.
reported that isotopic labeling found in dew involves water vapor from the upper canopy (98%),
from the evaporation of water in soil, and the transpiration of leaves in the lower canopy (2%) [5].
Using the same method, Kim and Lee reported that 72%–94% of the leaf surface moisture in some dry
land crops (e.g., soybean, wheat, cotton, and corn) originates from dew, and only about 10% of the leaf
surface moisture comes from plant stems [15].

Leaf surface moisture is an environmental factor of the urban ecosystem, and the sources of water
vapor condensing on the leaves of urban plants at different heights may vary greatly [5,16]. The unclear
leaf surface moisture source limits the research and discussion on the corresponding ecological effect.
Identifying the source of water on the leaves of plants at different heights is helpful for exploring
the water circulation process of the urban surface layer. Further clarifying the mechanism of dew
formation is also helpful. Therefore, the water source of urban leaf surface moisture should be studied,
and guttation and dew (atmospheric vapor and soil water) should be distinguished. This study
analyzed the characteristics of stable hydrogen and oxygen isotope values of rainwater, soil water,
dew, and leaf surface moisture of plants at different heights. This study also applied the isotope
mass conservation law (mass balance equation) to explore the relationship among different water
types. Furthermore, this study quantitatively calculated the contribution of various sources of the leaf
surface moisture.

2. Materials and Methods

2.1. Study Site

The experimental plot was located in Changchun, which lies in the northeast portion of China
(44◦15′ N; 126◦18′ E). Changchun is in a semi-humid monsoon climate zone with a mean annual
temperature of 4.8 ◦C and an annual amount of precipitation of 522–615 mm. The rainy season from
July to September causes warm and humid climatic conditions (Figure 1). Changchun has four distinct
seasons. In comparison with strong winds in spring and freezing conditions in winter, high humidity,
large temperature difference between day and night, and wind speed of below 2 m/s are experienced
in summer and autumn.
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Therefore, the climatic conditions are suitable for dew condensation. Annual dew days can be up
to 130 days or more, and the annual dewfall is about 23–35 mm [17]. Our observation was carried
out at the mature stage of plants (from early June to late September in 2017). The experimental plot
site was specifically located in Jilin Jianzhu University, which is in the southeast of Changchun City.
Buxus sinica var. parvifolia M. Cheng was selected as a representative plant type. Its maximum leaf area
index was 12.57 cm2/cm2, and its maximum canopy height was 1.5 m.

Figure 1. Temperature and precipitation from June to September 2017.

2.2. Sample Collection

During the experiment, rainwater samples were collected on every rain event. Leaf surface
moisture samples from the canopy/bottom of the plant were collected when the leaf surface moisture
was heavy. Atmospheric vapor, canopy/bottom guttation and dew, and surface soil water, along
with the leaf surface moisture samples, were obtained. A total of 30 rain samples and 10 samples
each of plant canopy/bottom dew, canopy/bottom guttation, soil water, and atmospheric vapor were
collected during the experimental period. According to the principle of Rayleigh isotope fractionation,
fractionation is related to environmental temperature and humidity [5]. Isotope fractionation occurs
naturally with each cycle of evaporation and condensation. All the samples were obtained from the
same place to ensure that the samples of guttation, soil water, atmospheric vapor, leaf surface moisture,
and dew were collected under the same conditions. The dew, guttation, atmospheric vapor, and leaf
surface moisture samples from the bottom and the canopy were collected at heights of 0.15 and 1.2 m
above the ground, respectively:

• Leaf surface moisture: Leaf surface moisture was directly collected from plant leaves in situ in the
morning using a needle to avoid contamination during the collection process. The samples were
sealed in 50 mL plastic bottles.

• Dew: Dew condensation depends on meteorological factors [18,19]. Dew is the highest in July and
August in Changchun, so collecting dew samples in these months was convenient. Dew samples
were collected using a special collector (beaker made of Teflon) 30 min before sunrise from the
beginning of July to the beginning of September.

• Atmospheric vapor: In the dew condensation period, an air condensation compressor (rotating
speed = 100–120/s) was used to collect the condensed liquid water of the atmospheric vapor.
About 10–15 mL of water was sampled at each time.

• Guttation: The collection of guttation was difficult, and the evaporation of surface water under
different temperatures and humidities caused variations in the degree of isotope fractionation.
Therefore, the experiment was conducted in situ. The leaves were washed with distilled water at
sunset before guttation formed in order to avoid the disturbance of dust on the leaves. The plant
leaves were then immediately covered with a plastic bag (l × w = 0.5 m × 0.3 m). The bottoms
of the bags were sealed to prevent the entry of vapor from the atmosphere into the plastic bag.
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The amount of guttation was small. Some parts condensed in the bag, whereas other parts still
clung to the rice leaves during collection. The stems of B. sinica were lightly shaken until the
guttation on the leaves dropped into the bag to collect the guttation that still clung to the leaves at
sunrise. The water in the bag was considered guttation. Each sample was 5–10 mL.

• Soil water: The surface soil samples (0–20 cm) were collected and sealed. An automatic vacuum
condensation extraction system (LI-2100) was used to heat and distill water in the soil in an
ultra-low-pressure environment and extract water in a low-temperature environment (Figure 2).
The principles of ultra-low-pressure vacuum distillation and freezing were applied. Water was
collected through condensation at a low temperature without fractional distillation, and 10–15 mL
was extracted at a time.

• Rain: Precipitation samples were collected in plastic bottles. The samples were collected
immediately after each rain event and then sealed in 100 mL polyethylene bottles to
prevent evaporation.

2.3. Sample Measurement

Analyses were carried out in a laboratory at the Institute of Northeast Geography and
Agroecosystem, Chinese Academy of Sciences. δ18O and δD in each sample were immediately
measured using a liquid water isotope analyzer (LGR, LWIA-24d; USA) (Figure 2). The precisions of
δ18O and δD between the samples and the Vienna Standard Mean Ocean Water were below ± 0.2%�

and ± 0.6%�, respectively. The wind direction data were provided by the automatic weather station
(MK-III-LR, USA) and recorded at 1 h intervals.

Figure 2. Schematic of sample collection and analysis.

2.4. Data Analysis

The source of leaf surface moisture was quantitatively determined using the samples’ δD or δ18O.
The sources mainly included dew and guttation. Dew mainly comprised atmospheric vapor and soil
evaporation water. The two-end-member mixing model was expressed as follows:

δsample = XδA + (1−X)δB, (1)

where X is the mix ratio of types A and B water, δsample is δD or δ18O of the mixture, and δA and δB are
δD or δ18O of types A and B water, respectively. The formula suggests that the mix ratio of the two
types of water could be confirmed after samples of both types were collected and analyzed. Using
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the isotope data from the surface moisture and the water sources, we performed two passes of the
two-source linear model to determine the proportional use of different water sources. The first time
was to distinguish dew source, and second time was to determine the leaf surface moisture.

2.5. Air Mass Back Trajectory Cluster

The 2-day backward trajectories arriving at Changchun were calculated using a National Oceanic
and Atmospheric Administration HYSPLIT model with a 2.5◦ × 2.5◦ latitude–longitude grid. In this
study, considering the condition of the surface layer in the urban ecosystem, the arrival level was set at
500 m above the ground because 500 m is the lowest altitude of precipitation clouds. It could cover all
the previous airflow (0–5000 m) in 48 h if we set 500 m as the ending level. The back trajectories were
widely considered to determine potential moisture sources [20–22], and the HYSPLIT model was run
when rain occurred at the sampling site.

3. Results and Discussion

3.1. Characteristics of δ18O and δD in Each Type of Water

δ18O in the precipitation ranged from −11.1%� to −1.4%� (mean = −5.0%�), whereas δD varied
from −66.4%� to −8.2%� (mean = −39.7%�). The local meteoric water line (LMWL) is presented in
Figure 3. The slope of LMWL (δD = 7.93, δ18O = −0.04) was close to the global meteoric water line
(δD = 8, δ18O = +10), indicating that the equilibrium evaporation process occurred from early June to
late September [23] in Changchun City, and sufficient water vapor was present in the atmosphere.

The isotopic values of guttation were below the LMWL and lower than those of other water
bodies. Guttation is the direct secretion of liquid from plant leaves. Hydrogen and oxygen isotope
fractionation does not occur when water becomes absorbed by plant roots and moves from roots to
leaves [24,25]. The water absorbed by roots is mainly from soil water in the deeper layer [2,9] and has
not undergone a strong evaporation process. This type of water has low δ18O and δD. If guttation did
not go through isotopic fractionation or only experienced slight fractionation, the value of hydrogen
and oxygen isotopes in guttation was lower than that in other water bodies.

Figure 3. Stable isotopes of water by type and the local meteoric water line (LMWL) in Changchun.

Guttation was below the LMWL, but other water bodies (except soil water) were basically above
the LMWL. This finding indicated that dew, atmospheric water, and leaf surface moisture evaporated.
During evaporation, light water molecules (H2

16O) are more active than heavy water molecules (H2
18O

or HD18O). The former also escapes the liquid phase, and moisture is concentrated by evaporation.
Consequently, water vapor contains more H and 16O, and high δ18O and δD are found in residual
water [26,27]. Surface soil water was mainly from rain and did not undergo too much evaporation.
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As a result, soil water was below the LMWL and close to GMWL. δ18O and δD of dew were among
guttation, soil water, and atmospheric vapor, and the values were close to the atmospheric vapor.
Therefore, dew was a mixture of guttation, soil water, and atmospheric vapor. Dew mainly originated
from atmospheric vapor.

3.2. Relationship between δ18O and δD in Each Type of Water

δ18O and δD in the precipitation initially increased and then decreased, presenting an N-shaped
curve from June to late September (Figure 4). δ18O and δD in atmospheric vapor, soil water, dew,
and leaf surface moisture had the same trend of changes as those in precipitation. A significantly
positive correlation was observed between leaf surface moisture, dew, and atmospheric vapor in
both heights. For example, in terms of canopy height, δ18O and δD in leaf surface moisture and dew
had r values of 0.98 and 0.99, respectively. δ18O and δD in leaf surface moisture and atmospheric
vapor had r values of 0.96 and 0.98, respectively. This result was similar to the soybean canopy in the
USA [16]. These findings demonstrated that the four types of water had a close hydraulic relationship.
Precipitation is an important input to soil water, and vapor from soil and raindrop evaporation is an
essential part of atmospheric vapor. Water vapor in the atmosphere at night is the main source of
dew condensation.

In China, the stable isotope temperature effect in the northern part is more considerable than
that in the southern part [28]. Isotopes in northeast China are positively correlated with local
temperature [29,30]. Figure 4 shows that the precipitation isotopes were enriched in July, when a
high temperature was recorded (Figure 1). However, the positive correlations between δ18O and δD
of precipitation and temperature were not very significant for all data because the stable isotopes in
precipitation are controlled not only by temperature but also by regional climate background, such as
monsoon [31]. Affected by the monsoon climate, δ18O and δD in precipitation displayed a decreasing
trend in August. The precipitation air mass in the study area mainly came from the inner continental
region (Russia and Mongolia) in June and July, whereas the precipitation air mass in August mainly
originated from the Pacific Ocean. Water vapor, including water vapor mixture from the Pacific Ocean
and the Eurasian continent, in September was complex. δ18O in precipitation reflects the source of
water vapor [32]. Dry air and cold air from land bring additional precipitation with high δ18O, whereas
ocean air carries precipitation with low δ18O [33]. This phenomenon indicates that the temperature was
the dominant factor affecting the variation in δ18O and δD if the precipitation vapor source was similar.
Moreover, different precipitation sources rather than temperature caused fluctuation in stable isotopes.

Figure 4. Seasonal variability of δD and δ18O in different waters by type from different heights (2017):
(a) Seasonal variability of δ18O in canopy leaf water, atmospheric vapor, soil water and canopy dew;
(b) Seasonal variability of δD in canopy leaf water, atmospheric vapor, soil water, and canopy dew.

3.3. Deuterium Excess in Precipitation and Its Tracing Significance

In precipitation, the effect of evaporation on the hydrogen–oxygen isotopic relationship in
rain varies, which Dansgaard defines as deuterium excess (d = δD − 8δ18O) [34]. The d of the
atmospheric precipitation in different regions can intuitively reflect the imbalanced degree of the
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evaporation and condensation of atmospheric precipitation in a given region. This variable is an
important comprehensive environmental factor index of atmospheric precipitation [35–37]. In general,
the average d is 10%�, and it is correlated with the physical conditions of the oceanic source areas of
precipitation. d is high if precipitation moisture comes from dry areas with a relatively low humidity.
On the contrary, d is low if precipitation moisture comes from humid areas with abundant water
vapor [32]. In our study, d was below the global average of 10%�. In general, sub-cloud evaporation
decreases the d value [35]. The lower d (<10%�) suggested that raindrops strongly evaporated.
The analysis of the isotopic values of rain from June to September revealed that the d of precipitation
significantly changed between July and August. The air mass from the continental region contributed
high d (up to 7.9%�) to precipitation in July, whereas the air masses from maritime regions yielded low
d (up to −3.2%�) in precipitation in August (Figure 5).

The HYSPLIT model further verified the reliability of the water vapor sources characterized
by hydrogen and oxygen isotopes in precipitation. As shown in the distribution of the backward
trajectory in Figure 5, water vapor in June and July with a high d mainly came from water vapor in
the northwest. When the Pacific Ocean’s southeast monsoon arrived in August, the wind direction
prioritized East wind in August, and d decreased. In September, the southeast monsoon receded, and d
gradually increased.

Table 1 shows that the stable isotopes in Changchun were lower than those in the other sites.
On the one hand, Changchun is at a high latitude and has a low temperature. According to the effects of
stable isotope temperature and latitude [35], the rain stable isotope enriches δ18O and δD in low-latitude
and warm areas (e.g., Xishuangbanna, China). On the other hand, rain isotopes are depleted in inland
areas but are enriched in coastal areas (e.g., Montpellier, France). Moreover, water in arid regions (e.g.,
Negev Desert, Israel) intensely evaporates, leading to precipitation isotope enrichment.

Differences in dew are controlled by background hydrological conditions [5]. As shown in Figure 2,
changes in δ18O and δD in dew, atmospheric vapor, and precipitation were almost the same because
precipitation is an important source of atmospheric vapor. Although atmospheric vapor is not the direct
source of dew, atmospheric vapor condenses and becomes dew during the night. In the process of
evaporation from precipitation or the condensation of atmospheric vapor, isotope kinetic fractionation
occurs [35]. However, the change in isotope value caused by kinetic fractionation is weaker than the
contribution of advective vapor [38]. In conclusion, local precipitation should be a major source of
dew, and hydrogen and oxygen isotopes in dew could reflect the different sources of precipitation.
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Figure 5. Trajectory map of air mass in typical rain events and d from June 2017 to September 2017.

Table 1. Characteristic values of dew in different sites (%�).

Site Changchun, China Xishuangbanna,
China Luan Cheng, China Montpellier, France Minneapolis–St

Paul, USA Negev Desert, Israel

Coordinates 44◦15′ N, 126◦18′ E 21◦56’ N, 101◦15’ E 37◦50’ N, 114◦40’ E 43◦36’ N, 3◦53’ E 34◦46’ N, 30◦51’ E

Reference This Study [39] [5] [24] [16] [2]

Plant Type Buxus sinica var.
parvifolia M. Cheng Arbor Wheat Maize Alfalfa Soybean Salsola. inermis

Forssk
Artemisia sieberi

Besser
Haloxylon

scoparium Pomel

Mean
δ18O Mean δD δ18O δD Mean

δ18O Mean δD Mean
δ18O Mean δD

δ18O at
4:00 in

Summer

δD at
4:00 in

Summer
Mean δ18O δ18O δD δ18O δD δ18O δD

−7.4 ± 1.5 −63.5 ± 12.5 −6.2 ~ 1.9 −30 ~ 27 −1.2 ± 2.4 −13.4 ± 16.7 −4.9 ± 1.5 −44.1 ± 10.4 −6.4 −17.8 −3.6 ± 0.6 −6 ~ −1 −22 ~ 10 −5.5 ~ 2.5 −20 ~ 11 −5.9 ~ 1.5 −21 ~ 12
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3.4. Sources of Canopy and Bottom Dew

The sources of canopy and bottom leaf surface moisture of B. sinica were basically the same (Table 2).
The average proportions of canopy surface moisture from guttation, atmospheric vapor, and soil
water were 2.4%–2.5%, 79.8%–92.4%, and 5.1%–17.8%, respectively, whereas the proportions of bottom
surface moisture from guttation, atmospheric vapor, and soil water were 0.6%–1.4%, 80.0%–93.0%,
and 6.4%–18.6%, respectively. Atmospheric vapor is the main source of vapor for canopy and bottom
dew. Therefore, surface moisture is an important water input in urban systems.

This finding is different from the results of Xu et al. [40] and Luo et al. [41]. On the basis of the
analysis on the source of paddy surface moisture, Xu et al. [40] found that guttation and atmospheric
vapor respectively contribute 30% and 70% of vapor source to paddy surface moisture in Sanjiang Plain,
China. Luo et al. [41] studied the effect of surface moisture and water temperature on rice leaf moisture
penetration in the Philippines. They concluded that paddy guttation was almost equal to atmospheric
vapor. Under the condition of sufficient soil moisture, high air humidity, and low wind speed and
temperature, guttation spills out of leaves. This phenomenon always happens in gramineous plants
such as rice, wheat, sorghum, maize, and willow trees. To maintain water balance, gramineous plants
release surplus moisture through the formation of guttation. The guttation phenomenon of paddy is
more obvious than that of B. sinica, and it is one of the reasons for the differences in vapor sources.
Weather conditions in different areas cause differences in crop growth situations. Water in paddy
can be continuously eliminated from the plant. When temperature is high, water in rice is released.
If the outside temperature and humidity are high, roots absorb more water. However, high humidity
prevents water evapotranspiration. Consequently, water leaks directly from the stomata. Therefore,
the efficiency of root water absorption varies because of different temperatures, relative humidities,
and plant varieties in various regions. As a result, the proportion of plant guttation in dew water varies.
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Table 2. Leaf surface moisture sources of B. sinica in Changchun in 2017.

Date
Canopy Leaf Surface Moisture (%) Bottom Leaf Surface Moisture (%)

Guttation Atmosphere Soil Guttation Atmosphere Soil

June 13th 3.2 ~ 4.6 75.3 ~ 89.8 7 ~ 20.1 0 ~ 1.2 84.0 ~ 94.8 5.2 ~ 14.8
June 26th 0.5 ~ 2.3 68.9 ~ 95 4.5 ~ 28.8 0 ~ 2.3 87.9 ~ 94.4 5.6 ~ 9.8
July 4th 2.1 ~ 5.3 78.3 ~ 91.4 6.5 ~ 16.4 0 ~ 0.4 78.9 ~ 91.7 8.3 ~ 20.7
July 11st 2.1 ~ 4.7 84.6 ~ 93 2.3 ~ 13.3 1.8 ~ 2.3 68.3 ~ 87.6 10.6 ~ 29.4

August 8th 0 ~ 1.9 89.8 ~ 94.2 5.8 ~ 8.3 0 ~ 1.4 82 ~ 94 6 ~ 16.6
August 14nd 1.7 ~ 3.4 82.2 ~ 96.5 1.8 ~ 14.4 0 ~ 0.3 81.2 ~ 92.2 7.8 ~ 18.5
August 30th 2.3 ~ 6.7 67.9 ~ 87.4 5.9 ~ 29.8 1.4 ~ 2.8 78.3 ~ 92.5 4.7 ~ 20.3
August 31st 0.7 ~ 2.1 89.2 ~ 91.2 6.7 ~ 10.1 1 ~ 2.8 74.3 ~ 93.2 5.8 ~ 22.9

September 2nd 1.1 ~ 2.9 79.2 ~ 90.1 7 ~ 19.7 0.5 ~ 0.7 85.9 ~ 94.6 4.9 ~ 13.4
September 12nd 0.4 ~ 0.6 82.4 ~ 95.9 3.5 ~ 17.2 0 ~ 1.4 79.3 ~ 95.2 4.8 ~ 19.3

Average 2.4 ± 1.6(18O) ~ 2.5 ± 2.1(D) 79.8 ± 7.5(18O) ~ 92.4 ± 3.0(D) 5.1 ± 2.0(D) ~ 17.8 ± 7.1(18O) 0.6 ± 1.0(D) ~ 1.4 ± 0.8(18O) 80.0 ± 5.7(18O) ~ 93.0 ± 2.3(D) 6.4 ± 1.9(D) ~ 18.6 ± 5.4(18O)

a ~ b means the end values calculated by D and 18O.
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4. Conclusions

This study monitored the dew condensation in an urban ecological system to quantitatively
analyze the sources of plant dew vapor in urban ecosystems and reveal the near-surface water vapor
cycle. The following conclusions were obtained:

(a) The trend of stable hydrogen and oxygen isotopes of rainwater, soil water, atmospheric vapor,
and dew from the beginning of June to the end of September was basically consistent. Significant
correlations were obtained between leaf surface moisture and atmospheric vapor or dew, thereby
confirming that a hydraulic relationship existed among the four types of water.

(b) δ18O and δD of leaf surface moisture among soil water, atmospheric vapor, and plant guttation
demonstrated that leaf surface moisture was composed of these three types of water. Rain was not
directly part of the dew, but vapor condensation became an important part of the dew after water
evaporated. Therefore, various air masses and moisture sources affected the isotope compositions
of dew.

(c) Atmospheric vapor contributed 81.8%–94.8% and 81.1%–93.6% vapor source to dew at the canopy
and the bottom, respectively. The outside water vapor was the main source of urban plants’ dew.
Urban ecosystem dew condensation at night served as input water, which could be absorbed or
replenished by plants during evaporation.

In the future, we will further strengthen our study on water vapor release in leaf surface moisture.
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