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Abstract: The contradiction between increasing demand and current supply has affected the healthy
development of industry. Investigating the key influence factors of industrial water use change
has important practical significance for water resource management. In this study, the authors
propose the vector autoregression model to analyze the dynamic influences of industrial development,
technological progress, and environmental protection on industrial water use change, and take
Jiangsu Province, China as a case study. Results show that each of the factors had different effects
during 2001–2015, in which industrial development was the greatest contributor to the change of
industrial water use and showed a positive effect in the forecast period; technological progress played
a major role in reducing industrial water use, but the negative effect weakened periodically over time;
environmental protection also had a positive influence in the early forecast period, and then showed
a marginal effect with time. Results of this study could assist the relevant authorities to formulate
appropriate industrial development planning and water saving policies, and to reasonably control
the industrial water demand.
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1. Introduction

Water plays a crucial role in different production processes. According to its function and
purpose, industrial water use can be classified as production water use, cooling and thermal water
use, and miscellaneous water use [1,2]. Compared to agriculture and domestic water use, water for
industrial use is more complex, and it is more easily affected by changes in the external environment
such as industrial development, production level upgrading, environmental protection requirements,
and climate change [3–7].

With the rapid progress of industrialization and urbanization, water shortage has become the
bottleneck restricting sustainable industrial development in China, especially for the water-intensive
industry [8,9]. In addition, over the recent decades, multi-purpose water management has reflected
the different functions provided by rivers, which can be complementary or conflicting [10]. This calls
for more integrated water resource management. The implementation of various effective measures of
integrated water resource management, to alleviate the constraints of water shortages on economic and
social development, can be categorized as structural measures (water conservancy projects, such as
building dams and water transfers) and non-structural measures (water resource management, such as
formulating water saving regulation). Due to financial and environmental restrictions, a water shortage
crisis is more likely to be solved through water resource management strategy than by building water
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conservancy projects [11]. The Chinese government has set up “three red lines” to promote economic
and social development and adapt to water resource carrying capacity, which put forward clear
requirements and targets for the amount of water withdrawal, water usage efficiency, and quantity
of pollution discharge; preliminary results have been achieved [12]. In view of the process and
characteristics of water utilization, the purposes of water resource management for industry are
to decrease fresh water withdrawal and effluent discharge, and to improve the utilization rate of
water resources.

Steady growth of economic development continues to drive water demand for industry [8,13];
it is projected that water withdrawal and water consumption will both show an increasing trend in
the future, and that the industrial water demand of China in the 2050s will be twice that of the 2010s
under a sustainability scenario [6,14]. In addition, the decrease of water resources availability and
increased use of cooling water caused by climate change exacerbate the degree of water resource
constraints on industrial development [7,15,16]. Researchers have begun to pay more attention to
water network optimization based on substance flow analysis and pinch analysis under multiple
objectives and scales to achieve efficient utilization of water resources [17–19]. Additionally, integrated
water management strategies covering different segments have been proposed, which include water
monitoring, water system optimization, and wastewater reuse, to assess water conservation potential [2].
From the macro level, there are relatively few studies on the influence of external environmental
factors on the change of industrial water use. Moreover, the existing studies have emphasized the
analysis of the impacts of economic development and technical innovation on water use [20,21].
Usually, the influence factors of industrial water use are complex, including industrial development,
water-saving technologies, environmental protection, and climate change [22,23]. In particular,
industrial production is accompanied by wastewater and exhaust emissions. Under strict requirements
of ecological and environmental protection in China, the high standards regulating discharge of
industrial wastewater and emission of industrial waste gas have been set up and implemented, with
higher requirements being put on the manufacturing sector. Discharge of industrial wastewater and
exhaust gas up to the allowed standard have an impact on industrial water demand [24]. Thus,
environmental protection should be included among the main influence factors for further analysis
regarding their impact on the change of industrial water use.

Various methods have been applied to quantify the promotion or inhibition effects of various
factors on water use. The representative models include the Structural Decomposition Analysis
(SDA) method, STIRPAT model, Laspeyres method, Input–output method, and Logarithmic Mean
Divisia Index (LMDI) method [25,26]. Applying the factor decomposition model, Sun and Wang [27]
measured the economic growth effect, industrial structure effect, water intensity effect, and mixing
effect of the driving force of water utilization change. Cazcarro et al. [28] explored the impacts of
technology, the input substitution process, and the changes in final demand on water consumption
for the years 1980–2007 using the input–output model. Yang et al. [29] adopted the dynamic SDA
method to investigate the influence of socioeconomic determinants on water footprint evolution.
Shang et al. [30] decomposed the driving forces of industrial water use by the LMDI and the refined
Laspeyres models. The above-mentioned quantitative analysis methods have static problems and
cannot reflect the dynamic relationship between influencing factors and water use. In fact, the change
of industrial water use is a dynamic process. The vector autoregression (VAR) model, as a simultaneous
equation model, can not only reveal the interdependencies among variables, but can also forecast
the dynamic relationship between variables. As it is easy to understand and operate, it has been
adopted for analysis in various fields, especially in the economic and environmental fields [31–35].
Nevertheless, there is still a lack of studies that adopt the VAR model to investigate the relationship
between influence factors and industrial water use.

This paper has three aspects of innovation and contribution that differ from previous studies.
Firstly, we introduce environmental protection, which has a close connection with industrial water
use, as an influence factor to analyze the impact on industrial water use. Previous studies seldom
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considered this factor. Secondly, compared to static analysis of previous studies, the VAR model was
employed to reveal the dynamic relationship between selected influence factors and industrial water
use. This could give more comprehensive information for policy makers. Thirdly, the majority of
existing studies emphasized the analysis of the influence of water use change on a regional scale.
We focus on the impact analysis of changes in sectoral water use within the region; Jiangsu Province is
selected as the study area, which is the largest industrial province of China and faces environmental
protection problems. This is an ideal representative to carry out the analysis of industrial water use
change. The location of Jiangsu Province is shown in Figure 1.
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2. Materials and Methods

2.1. Data

All data reflect the actual situation of Jiangsu Province from 2001 to 2015. The annual amount of
industrial water use (Wt) and water use per unit of industrial output (It) were acquired from Jiangsu
Water Resources Bulletin. Data of industrial output (Gt) were obtained from Jiangsu Statistical Yearbook.
In order to eliminate the effect of rising prices and inflation, industrial output was calculated at constant
prices (Year 2000 = 100). The annual discharge (emission) of industrial wastewater, sulfur dioxide,
and dust were extracted from China Environmental Statistics Yearbook and Jiangsu Statistical Yearbook.
The statistical summary of all variables in this research is shown in Table 1.

Table 1. The statistical summary of all variables in this research.

Variable Mean Maximum Minimum Standard Deviation

Wt 177.14 225.3 125.1 34.07

It 159.76 335.22 44.68 94.99

Gt 13,171.48 25,305.37 4291.10 6888.49

Et

Wastewater discharge intensity 21.22 45.36 8.86 11.95

SO2 emission intensity 0.0050 0.0115 0.0012 0.0036

Dust emission intensity 0.0029 0.0072 0.0008 0.0023
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2.2. VAR Model

The VAR model is widely used for time series analysis, which was first proposed by Sims [36].
The model constructed by the function described by each endogenous variable is the lag value of all
endogenous variables in the system. Additionally, the model, without any prior constraints, is based
on time series data to determine dynamic relationship of endogenous variables instead of theory. Thus,
the VAR model is applied to analyze the dynamic connection between industrial water use and its
influencing factors.

The model consists of multiple simultaneous equations, where the endogenous variable is located
on the left of the equation, and the right is its own hysteresis and the lag of other endogenous variables.
The general simplified form of the VAR (p) model with lag order p can be expressed as:

Yt = u + A1 ·Yt−1 + · · ·+ Ap ·Yt−p + εt (t = 1, 2, · · · , T), (1)

where Yt is a K× 1 endogenous variable vector, p is lag order, u is a vector of constant terms, A1, · · · , AP

are K ×K parameter matrices, and εt represents a K × 1 random error column vector.
The dynamic nexus between industrial water use (Wt) and industrial development (Gt),

technological progress (It), and environmental protection (Et) needs to be explored, and the four
variables mentioned above were selected to construct the VAR system. The industrial output was used
to reflect the industrial development variable. The water use per unit of industrial output was selected
to represent technological progress. The discharge or emission intensity of industrial wastewater
discharge, sulfur dioxide emissions, and dust emissions was used to comprehensively reflect the
environmental protection variable. However, three environmental protection variables may cause the
analysis of the relationship between environmental protection and industrial water use change to be
more complex. In order to solve this problem, the integrated index method was adopted for conversion
of multiple variables of environment protection into an environmental regulation strength (ERS)
indicator, and the ERS indicator was used to reflect environmental protection, which is expressed by Et.
The specific process of the comprehensive index method follows that of Fu and Li [37]. The definitions
of all variables are shown in Table 2.

Table 2. Definition of all variables in this research.

Variable Definition Units of Measure

Wt The annual amount of industrial water use 108 m3

It Water use per unit of industrial output m3
·10−4 yuan

Gt Industrial output 108 yuan

Et
Integrated indicator of industrial wastewater discharge,

industrial sulfur dioxide emission, and dust emission intensities tons·10−4 yuan

Tables 1 and 2 show that the dimensions of the four variables are different and there are orders of
magnitude differences. Logarithmic treatment is an effective method which could avoid the sharp
fluctuation of data and eliminate the possible heteroscedasticity, and not change the characteristics of
the time series data [38]. It has been commonly used in VAR model variable time series stationarity
testing in previous studies [31,39]. Therefore, natural logarithm treatment was performed on the
original data sets, and the data sets are expressed as ln Wt, ln Gt, ln It, and ln Et, where Wt, Gt, It, and Et

refer the industrial water use, industrial development, technological progress and environmental
protection, respectively.
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As mentioned above, the VAR system consists of the following four variables: Industrial water
use (Wt), industrial development (Gt), technological progress (It), and environmental protection (Et).
According to Equation (1), the specific form of VAR (p) is as follows:

ln Wt = u10 +
p∑

i=1
α11,i ln Wt−i +

p∑
i=1

α12,i ln Gt−i +
p∑

i=1
α13,i ln It−i +

p∑
i=1

α14,i ln Et−i + εWt(t = 1, 2, · · · , T)

ln Gt = u20 +
p∑

i=1
α21,i ln Wt−i +

p∑
i=1

α22,i ln Gt−i +
p∑

i=1
α23,i ln It−i +

p∑
i=1

α24,i ln Et−i + εGt(t = 1, 2, · · · , T)

ln It = u30 +
p∑

i=1
α31,i ln Wt−i +

p∑
i=1

α32,i ln Gt−i +
p∑

i=1
α33,i ln It−i +

p∑
i=1

α34,i ln Et−i + εIt(t = 1, 2, · · · , T)

ln Et = u40 +
p∑

i=1
α41,i ln Wt−i +

p∑
i=1

α42,i ln Gt−i +
p∑

i=1
α43,i ln It−i +

p∑
i=1

α44,i ln Et−i + εEt(t = 1, 2, · · · , T).

(2)

It should be noted that Equation (2) is the embodiment of the specific form of the original model,
and no modifications have been made to the original model.

Testing the stationarity of the time series of each variable is the premise of applying the VAR
model, which could avoid the phenomenon of pseudo-regression caused by the instability of variables.
Thus, a stationarity test should be performed on the time series before build the model. Many methods
have been developed for the stationarity test, and unit root test is the most commonly used method [40].
Three common unit root test methods were applied: The Augmented Dickey–Fuller test (ADF)
test, the Kwiatkowski Phillips Schmidt Shin (KPSS) test, and the Phillips Perron (PP) test [41–43].
The ADF test is a widely considered and chosen method. However, in small samples, it has its
own insurmountable defects, and the validity of the test results is affected [44]. The PP test was
selected to supplement the ADF test. The principle of the KPSS test is different from the above two
methods, having the null hypothesis that the time series is stationary rather than having a unit root
as hypothesized by the ADF test and PP test. It can make up for the defects of ADF and PP test
methods [42,45]. These three methods are complementary to each other in verifying the unit root test
process, which makes the test result more comprehensive and persuasive.

In practical application, a key issue is the optimal lag order selection. Generally, the selection
principle of lag order tends to choose a larger value to take full advantage of variable information of
the constructed model. However, the greater the lag order, the more parameters need to be estimated,
and degrees of freedom of the model are reduced correspondingly [46]. Therefore, balancing lag order
selection and degrees of freedom of the model needs to be taken into consideration.

3. Results

3.1. Variable Description

According to the annual data of the variables, we depict the trends of industrial water use,
industrial output, water use per unit of industrial output, and environmental regulation strength.
As shown in Figure 2, industrial water use increased rapidly from 2001 to 2007, then showed a declining
trend, especially after 2012. This is mainly due to the establishment of water-saving society and
implementation of the strictest water resources management system. Industrial output showed a
significant upward trend with an average annual growth rate of 13.0%. Water use per unit of industrial
output reflected a gradual decreasing trend, which suggests that industrial water use efficiency has been
gradually improved. Environmental regulation strength generally presented a fluctuating downward
trend, which indicates that environmental protection has achieved remarkable results, and that the
wastewater and waste gas emissions have been effectively controlled.
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3.2. The Unit Root Test Analysis

ADF, KPSS, and PP methods were selected to verify the stationarity of time series of variables.
The results of unit root test of each variable are shown in Table 3.

Table 3. Unit root test results.

Variable ADF PP KPSS

LnWt (c, 0, 1) 0.3886 (0, 0, 2) −0.2799 (c, t, 2) 0.1608 **

DLnWt (0, 0, 0) −2.0363 ** (0, 0, 2) −2.0363 ** (c, t, 2) 0.0814

LnGt (c, 0, 0) −5.9871 *** (c, 0, 0) −5.9871 *** (c, t, 2) 0.1683 **

DLnGt (c, t, 0) −5.4543 *** (c, t, 2) −6.9820 *** (c, t, 2) 0.1315 *

LnIt (c, t, 0) −1.2753 (c, t, 2) −1.1784 (c, t, 2) 0.1559 **

DLnIt (c, t, 1) −3.9786 ** (c, t, 12) −3.7376 * (c, t, 2) 0.0847

LnEt (c, t, 0) −2.8113 (c, t, 3) −2.7236 (c, 0, 2) 0.5080 **

DLnEt (c, t, 0) −4.8098 *** (c, 0, 2) −4.9289 *** (c, 0, 2) 0.1192

(c, t, p), c = constant, t = trend, p = lag length. * Denote significance at 10%. ** Denote significance at 5%. *** Denote
significance at 1%.

The ADF test and PP test suggest that time series of ln Wt, ln It, and ln Et are integrated of order
one (I(1)), whereas the first-order differences of the time series are integrated of order zero (I(0)),
which confirms the hypothesis that the time series of ln Wt, ln It, and ln Et have a unit root. The KPSS
test shows different results compared to the ADF and PP tests, because the null hypothesis is the
opposite of the other two methods, so it also shows that the time series of ln Wt, ln It and ln Et have a
unit root. For the variable ln Wt, the ADF and PP tests suggest stationarity; the KPSS test shows that it
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is not stationary. The industrial output, which expressed in terms of ln Wt, is a macroeconomic index.
Generally speaking, macroeconomic data will be stable after first-order difference. Therefore, through
comprehensive analysis of the test results and based on previous research [47], we deem the time series
of the four variables are all I (1).

As mentioned above, the four variables are all integrated of order one, meaning that the model
might be unstable and the impulse response function might be not convergent if the VAR model is
established directly, therefore, the VAR model was established by first order difference of each variable,
and it is also agreed that the difference of variables is still expressed by the names of ln Wt, ln Gt, ln It,
and ln Et without affecting the understanding of the following contents.

3.3. The Optimal Lag Order Analysis

It is particularly important to choose the lag order while building a VAR model. The selected
optimal lag order could maximize the fitness of the forecast process with statistical time series and
minimize the measure of forecast precision. The most common procedure for VAR order selection
is application of model selection criteria. In this paper, the sequential modified LR test statistic (LR),
Final prediction error (FPE), Akaike information criterion (AIC), Schwarz information criterion (SC),
and Hannan–Quinn information criterion (HQ) criteria are exploited to jointly determine the optimal
order. As shown in Table 4, the results are all in agreement that p = 1 is the optimal lag order.

Table 4. Lag length criteria.

Lag LogL LR FRE AIC SC HQ

0 139.2350 NA 1.08 × 10−14 −20.80538 −20.63155 −20.84111
1 170.8913 38.96,165 * 1.15 × 10−15 * −23.21405 * −22.34489 * −23.39270 *

* indicates lag order selected by the criterion.

3.4. Model Stability Test

The stability of the model directly affects the validity of the variance decomposition and impulse
response analysis results. Therefore, the stability test must be formulated to verify whether the model
is stable or not. The necessary and sufficient condition for the stability of the VAR model is that all the
eigenvalues of the model characteristic equation are outside the unit circle, that is to say, the inverse
eigenvalues of the model characteristic equation are within the unit circle [38]. The results are reflected
in Figure 3, and it serves to show that all the inverse eigenvalues of the model’s characteristic equation
are within the unit circle, which indicates that the built VAR model is stable.
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3.5. Variance Decomposition Analysis

Variance decomposition analysis is normally a method that explores the relative effects of
variables [48]. It is used to analyze the contribution degree measured by forecast variance of a specific
shock to the endogenous variables of model and gives the relative importance information of each
structural shock that affects the variable in the VAR model. Hence, it is able to clearly tell us the
proportion of forecast variance produced by all variables with specific shocks on a specified variable at
a specified time horizon [31,39].

Table 5 describes the percentage of forecast error variance of the ln Wt shocked by all variables for
the ten-year period. For the industrial water use change, in addition to its own influence, industrial
output shock accounts for the largest proportion of the change of industrial water use. It has an
increasing effect on industrial water use change with time, from around 15.3% in the first period,
increasing to 24.1% in the end, and shows a fluctuating upward trend, which indicates that industrial
water use and industrial development have a strong positive correlation. The environmental protection
shock ranks second to industrial development. The contribution of environmental protection has
increased from 14.2% in the first period to 14.8% in the second period, then downward to the
minimum 13.2%, and maintains an upward trend until the end period. The influence of technological
progress on industrial water use is basically consistent with the trend of environmental protection,
but the contribution degree is slightly lower than that of environmental protection. In summary,
industrial development, technological progress, and environmental protection have increasing effects
on industrial water use at a specified time period, however, the influence trend does not increase
linearly, but fluctuates.

Table 5. Variance decomposition results.

Period S.E. lnWt lnGt lnIt lnEt

1 0.080185 100.0000 0.000000 0.000000 0.000000

2 0.127087 58.90791 15.30284 11.59534 14.19392

3 0.136670 53.47121 19.58484 12.10484 14.83911

4 0.145645 58.69928 17.36662 10.77795 13.15616

5 0.158871 52.67770 19.75646 12.79561 14.77023

6 0.161609 51.40966 20.14291 12.57893 15.86850

7 0.165227 53.14265 19.36203 12.07962 15.41570

8 0.170317 50.70844 20.58523 13.01690 15.68943

9 0.171401 50.21471 20.45792 12.85544 16.47193

10 0.173073 50.83091 20.10459 12.61742 16.44708

3.6. Impulse Response Analysis

The impulse response functions (IRFs) were applied to analyze the dynamic response of the
system. Particularly, they describe the dynamic response of applying a standard deviation on the
random error term on all endogenous variables [48]. This method not only reflects the dynamic
relationship between different variables, but also identifies the impact of all endogenous variables with
a shock in the model at a specified time horizon and quantify the influence degree of the shock.

The IRFs were generated as shown in Figure 4. One standard deviation shock to industrial
development (ln Gt) promotes industrial water use directly for 2 years, reaches the maximum positive
response at the second period, and then exhibits periodic fluctuation change with time. It reflects
nearly a positive response within the whole specified time period, which implies that industrial
development will continue to promote industrial water use over the forecast period, but the positive
effect will decrease over time. As China’s largest industrial province, the industrial output of Jiangsu
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Province has increased considerably, at the average annual growth rate of 13.4% from 2001 to 2015 [49].
The corresponding industrial water use showed an increasing trend from 2001 to 2013. Although
industrial development promotes the demand for industrial water, the promotion will not be always
sustainable. With the promotion and strength of water resource management, industrial water-saving
technology has been popularized and applied, and the growth trend of industrial water use has been
effectively curbed. Industrial water use dropped significantly after 2013, which was a response to the
implementation of the most stringent water resource management system. With orderly progress of
industrialization and urbanization, the scale and output of Jiangsu Province industries in the future
will be expected to maintain steady and sustained growth, and the demand for industrial water will
increase further. Although integrated water resource management, which includes water-saving
technology application, water resource management system implementation, and so on, could restrain
the industrial water demand, technological progress has limited impact on reducing water use with
time, and industrial development will still play the dominant role in promoting the industrial water
demand [50]. Thus, adapting to the carrying capacity of water resources is a prerequisite for future
industrial development [51].
Water 2019, 11, x FOR PEER REVIEW 10 of 15 

 

-.10

-.05

.00

.05

.10

.15

2 4 6 8 10

Response of DLNWT to DLNWT

-.10

-.05

.00

.05

.10

.15

2 4 6 8 10

Response of DLNWT to DLNGT

-.10

-.05

.00

.05

.10

.15

2 4 6 8 10

Response of DLNWT to DLNIT

-.10

-.05

.00

.05

.10

.15

2 4 6 8 10

Response of DLNWT to DLNET

-.04

-.02

.00

.02

.04

2 4 6 8 10

Response of DLNGT to DLNWT

-.04

-.02

.00

.02

.04

2 4 6 8 10

Response of DLNGT to DLNGT

-.04

-.02

.00

.02

.04

2 4 6 8 10

Response of DLNGT to DLNIT

-.04

-.02

.00

.02

.04

2 4 6 8 10

Response of DLNGT to DLNET

-.10

-.05

.00

.05

.10

.15

2 4 6 8 10

Response of DLNIT to DLNWT

-.10

-.05

.00

.05

.10

.15

2 4 6 8 10

Response of DLNIT to DLNGT

-.10

-.05

.00

.05

.10

.15

2 4 6 8 10

Response of DLNIT to DLNIT

-.10

-.05

.00

.05

.10

.15

2 4 6 8 10

Response of DLNIT to DLNET

-.6
-.4
-.2
.0
.2
.4
.6

2 4 6 8 10

Response of DLNET to DLNWT

-.6
-.4
-.2
.0
.2
.4
.6

2 4 6 8 10

Response of DLNET to DLNGT

-.6
-.4
-.2
.0
.2
.4
.6

2 4 6 8 10

Response of DLNET to DLNIT

-.6
-.4
-.2
.0
.2
.4
.6

2 4 6 8 10

Response of DLNET to DLNET

p y

 

Figure 4. Responses of industrial water use to different influence factors. The blue solid lines indicate 
the mean responses to a one standard deviation shock, while the dotted lines represent ±2 standard 
deviations of the responses. The x-axis is the forecast horizon (in years), and the y-axis is the forecasted 
response of the dependent variable to a unit shock in the corresponding error term. 

4. Discussion 

According to the results mentioned above, there are some different findings. 
Industrial development is the greatest contributor to industrial water use changes, except for the 

impact of industrial water use itself, and shows a positive effect on industrial water use. Compared 
with previous studies, this result suggests that the promoting effect of industrial development on 
industrial water use is not always stable and continuous but weakens with time. One of the reasons 
for this phenomenon is that, restricted by water resource conditions, the available water resources 
could not fully meet the requirements of industrial development. In order to meet the requirement 
of industrial development be compatible with the regional water resource carrying capacity, the state 
strengthens the management of water resources by formulating macro-control policies, and further 
promotes rationalization of industrial distribution and structural adjustment. That is, the 
development scale and trend of the industry will be reasonably controlled through macro-control 
measures, and this will alleviate the demand and influence on industrial water use. Another reason 
is that the development of industry is accompanied by technological progress; the result in Figure 4 
validates this view. Technological progress can improve the efficiency of industrial water use, which 
results in inhibiting the rapid growth of water consumption caused by industrial development. In a 
word, macro- and micro-control can effectively alleviate the demand for industrial water in industrial 
development, but the stable development of industry will still increase the demand for water 
resources. 

Technological progress, which includes the improvement of manufacturing processes and 
utilization of water saving technologies, has a negative effect on industrial water use and restrains 
the industrial water demand. This consistent with the findings of Flörke et al. and Liu et al. [22,52]. 
In contrast to other studies, this result also shows that the restraining effect of technological progress 
on industrial water consumption is not stable and sustainable, but decreases periodically with time, 

Figure 4. Responses of industrial water use to different influence factors. The blue solid lines indicate
the mean responses to a one standard deviation shock, while the dotted lines represent ±2 standard
deviations of the responses. The x-axis is the forecast horizon (in years), and the y-axis is the forecasted
response of the dependent variable to a unit shock in the corresponding error term.

The industrial water use indicates a significant negative response to technological progress (ln It),
which means that technological progress could inhibit industrial water use. As shown in Figure 4,
the negative effect of technological progress on industrial water use reached its maximum in the second
period and decreased periodically with time. Correspondingly, water use per unit of industrial output
in Jiangsu Province dropped obviously from 333.64 m3/t in 2001 to 49.97 m3/t in 2015. Meanwhile,
the recycling ratio of industrial water utilization in Jiangsu Province increased from 57% in 2005 to
about 70% in 2015 [49] as the improvement of industrial water utilization level and efficiency reduced
the demand for fresh water. Nevertheless, water use per unit of industrial output decreased slowly
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and showed a steady trend from 2013 to 2015. That indicates that technological progress could not
maintain a state of rapid innovation, as it has a certain periodicity, and that the water-saving effect of
technological progress will be weakened with the passage of time and the increase of industrial scale,
correspondingly [7]. Coupled with Jiangsu’s continued industrial growth, the restraining effect of
technological progress on industrial water demand is limited, which explains the failure of technological
progress to sustain a significant negative effect over the whole forecast period, and presents a periodic
decay trend. Besides, the response of technological progress to one standard deviation shock in
industrial water use is positive over the forecast period, which implies the increasing of industrial
water use will promote technological progress.

The industrial water use shows a positive response to environmental protection (ln Et) at the
early time period, reaches its maximum in the second period, and then fluctuates near zero from the
third period to the end period. This indicates that the strengthening of environmental protection will
promote the increase of industrial water demand clearly in the short term, and that medium- and
long-term effects are not significant. Environmental protection for industrial water use mainly involves
the discharge of industrial wastewater and waste gas. The discharge or emission intensity of industrial
wastewater discharge, sulfur dioxide emissions, and dust emissions in Jiangsu Province showed a
significant downward trend, from 63.5 t/104 yuan, 0.026 t/104 yuan, and 0.016 t/104 yuan in 2001,
to 7.4 t/104 yuan, 0.003 t/104 yuan, and 0.002 t/104 yuan in 2015, respectively. The reduction of industrial
wastewater discharge intensity could improve the water resources utilization rate and decrease fresh
water consumption, however, the reduction of industrial waste gas emission intensity needs more
water consumption to reach environmental protection policy requirements. Thus, increasing the
intensity of environmental protection will promote the growth of industrial water demand in the
short-term. When coupled with improvement of wastewater reuse rate and application of water-saving
technologies for industrial waste gas treatment, the impact of environmental protection on industrial
water use is no longer significant in the long term. In addition, the environmental protection path is
positive in response to a shock in industrial water use in the current period, and drifts around zero
after the second period, which suggests that the increasing of industrial water use will strengthen the
current environmental protection, and show a marginal effect over the forecast period.

4. Discussion

According to the results mentioned above, there are some different findings.
Industrial development is the greatest contributor to industrial water use changes, except for the

impact of industrial water use itself, and shows a positive effect on industrial water use. Compared with
previous studies, this result suggests that the promoting effect of industrial development on industrial
water use is not always stable and continuous but weakens with time. One of the reasons for this
phenomenon is that, restricted by water resource conditions, the available water resources could not
fully meet the requirements of industrial development. In order to meet the requirement of industrial
development be compatible with the regional water resource carrying capacity, the state strengthens
the management of water resources by formulating macro-control policies, and further promotes
rationalization of industrial distribution and structural adjustment. That is, the development scale
and trend of the industry will be reasonably controlled through macro-control measures, and this will
alleviate the demand and influence on industrial water use. Another reason is that the development
of industry is accompanied by technological progress; the result in Figure 4 validates this view.
Technological progress can improve the efficiency of industrial water use, which results in inhibiting
the rapid growth of water consumption caused by industrial development. In a word, macro- and
micro-control can effectively alleviate the demand for industrial water in industrial development, but
the stable development of industry will still increase the demand for water resources.

Technological progress, which includes the improvement of manufacturing processes and
utilization of water saving technologies, has a negative effect on industrial water use and restrains
the industrial water demand. This consistent with the findings of Flörke et al. and Liu et al. [22,52].
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In contrast to other studies, this result also shows that the restraining effect of technological progress
on industrial water consumption is not stable and sustainable, but decreases periodically with time,
which can be explained in two aspects. One is that the improvement of production technology has a
certain periodicity, as investment in research and development takes time to translate, and this period
is relatively long. On the other hand, the popularization and application of advanced water-saving
technologies are susceptible to economic benefits; industrial enterprises are less active in the application
of water-saving technologies from the perspective of economic efficiency. Currently, the application of
water-saving technology mainly depends on policy requirements, as the popularity of water-saving
technology restricts the effect of water-saving. Therefore, more efforts should be made in research and
development to accelerate the promotion and application of water-saving technologies, and to realize
the dynamic control of industrial water demand by technological progress.

Environmental protection has an effect on increasing industrial water use in the short term,
and shows a margin effect on industrial water use in the long term. Moreover, the influence of
environmental protection on industrial water use will also increase gradually with the increase of time.
With the strengthening of ecological environment protection, Jiangsu Province has put forward higher
requirements for industrial waste gas and wastewater discharge. In order to meet the demand of
environmental protection requests, countermeasures, such as gas desulfurization and dust elimination,
were implemented and promoted effectively. Meanwhile, gas desulfurization and dust elimination
consume certain amounts of fresh water [24]. The strict requirements of environmental protection
could significantly increase water demand in the short term. With the improvement of wastewater
reuse technology and graded utilization of reclaimed water however, the use of unconventional water
sources replaces fresh water in the process of gas desulfurization and dust elimination, which will
alleviate the demand for industrial fresh water [2,53], and the effects of environmental protection on
industrial water demand will be no longer obvious in the long term. In the future, environmental
awareness may be further enhanced and the requirements for industrial environmental protection may
also be deepened and more comprehensive, therefore, it is urgent to adopt technical and non-technical
measures to reasonably control the demand environmental protection for water resources.

In a word, the VAR model could quantitatively reflect the degree of how industrial development,
technological progress and environmental protection impact industrial water use, which is conducive
for the authorities to propose targeted integrated water resource management measures to solve the
problems faced by industrial water use caused by external environmental change. Meanwhile, it reveals
the dynamic relationship among industrial water use and industrial development, technological
progress, and environmental protection, which facilitates policy makers to appropriately adjust
integrated water resource management measures and promote dynamic water resource management.

5. Conclusions

Exploring the dynamic relationship between influencing factors and water resources utilization
is a significant prerequisite for strengthening water resource management. This paper selected
Jiangsu Province of China as the typical study area to examine the dynamic relationship between
industrial water use and its key influence factors by using the VAR model. Through empirical analysis,
we quantitatively analyzed the contribution degrees of different influence factors on the change of
industrial water use by variance decomposition analysis and applied impulse response analysis method
to reveal the dynamic relationship between influence factors and industrial water use change.

The results demonstrate, in addition to the influence of industrial water use itself, industrial
output shock accounts for the largest proportion and has a positive effect in the whole forecast period.
Technological progress produces a negative effect in the whole forecast period, but the inhibition effect
decreases with time. Compared with industrial development and technological progress, the impact of
environmental protection on industrial water use shows a significant positive response in the early
forecast period. Moreover, the influence degrees of the three factors on industrial water use increase
over time; more attention should be paid to the dynamic changes of these three factors in the forecast
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of industrial water demand in the future. These above-mentioned results are not only helpful to
improve the analysis of influencing factors of water use but are also worthy of special attention from
authorities in order to formulate industrial development programs and water resources protection
planning for ensuring regional water security. Besides, they also suggest that application of VAR model
can intuitively and clearly report the relationship of influencing factors and water resources utilization.

This research also has some limitations which need to be further improved. One is the size of the
data sample. Due to the lack of statistics, only 15-year data samples are exposed for each variable.
However, the time series passed the stationarity and model stability test, which indicates that the
process of model construction is reasonable, and the output is credible. Of course, if the number of
samples of the variable is large enough, the relationship between variables could be reflected more
comprehensively. The other aspect is the selection of variables. We aim to clarify the impact of economic
and social development on industrial water use in this paper, which is why we neglect to analyze the
influence of climate change on industrial water use. In fact, climate change has direct and indirect
effects on industrial water use [54,55]. On the one hand, cooling water is a major part of industry water
use. Climate change causes temperature change, and temperature change directly affects cooling water
consumption. On the other hand, industry is an important part of carbon emissions. Adaptation and
mitigation measures of climate change will affect the development scale of industrial industry and
indirectly affect industrial water use. The impact of climate change on industrial water use is complex
and uncertain, and further in-depth research in this regard, based on the results of this work, needs to be
conducted. Future work would employ reasonable methods to improve this data sample size, and the
response mechanism of water use change to climate change should merit an in-depth examination.
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