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Abstract: Climate projections provided by EURO-CORDEX predict changes in annual maximum
series of daily rainfall in the future in some areas of Spain because of climate change. Precipitation
and temperature projections supplied by climate models do not usually fit exactly the statistical
properties of the observed time series in the control period. Bias correction methods are used
to reduce such errors. This paper seeks to find the most adequate bias correction techniques for
temperature and precipitation projections that minimizes the errors between observations and climate
model simulations in the control period. Errors in flood quantiles are considered to identify the
best bias correction techniques, as flood quantiles are used for hydraulic infrastructure design
and safety assessment. In addition, this study aims to understand how the expected changes in
precipitation extremes and temperature will affect the catchment response in flood events in the
future. Hydrological modelling is required to characterize rainfall-runoff processes adequately in a
changing climate, in order to estimate flood changes expected in the future. Four catchments located
in the central-western part of Spain have been selected as case studies. The HBV hydrological model
has been calibrated in the four catchments by using the observed precipitation, temperature and
streamflow data available on a daily scale. Rainfall has been identified as the most significant input to
the model, in terms of its influence on flood response. The quantile mapping polynomial correction
has been found to be the best bias correction method for precipitation. A general reduction in flood
quantiles is expected in the future, smoothing the increases identified in precipitation quantiles by
the reduction of soil moisture content in catchments, due to the expected increase in temperature and
decrease in mean annual precipitations.
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1. Introduction

Climate change projections predict reductions in the availability of water resources, as well as
changes in the frequency and severity of extreme hydrological events [1]. Consequently, climate
change will affect floods, which are the natural hazard that generates the largest damages in Europe [2].
The impact of climate change on the hydrological cycle can be assessed by using both climatic and
hydrological models. Several studies and models have been developed. However, most of such studies
are focused on either monthly or annual scales [3]. Only a few studies have studied the impact of
climate change on floods [4].

Global climate models (GCMs) are large-scale models that simulate the behavior of atmospheric
circulation patterns with a gross resolution of approximately 100–250 km. Consequently, downscaling
techniques are required to obtained results at finer resolutions of around 25–50 km [5]. Regional climate
models (RCM) are the most usual downscaling technique.
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Outputs of climate models in the control period do not usually fit exactly the statistical properties
of observations at gauging stations in the same period. Bias errors between climate models and
observations can be caused by an imperfect conceptualization, discretization and spatial averaging
within grid cells. For example, bias errors usually occur on very wet days with small rainfall intensities
or extreme temperatures. Biases in the outputs of RCMs can lead to unrealistic hydrological simulations
of river streamflows [6,7]. Bias correction is the process of scaling climate model outputs to account for
their systematic errors, in order to improve their fitting to observations. Several bias correction methods
exist [8]. Linear scaling corrects projections based on monthly errors [9]. Further bias correction
focusing on days with precipitation can be obtained by the local intensity scaling approach [10].
The power transformation approach can correct biases in the mean and variance [11]. Quantile
mapping can correct the distribution function of a given variable usually utilizing a Gaussian or
gamma distribution function to improve its fitting to observations [12]. Most of such approaches focus
on correcting precipitation and time series supplied by climate projections to improve their fitting to
observations, regardless of the extreme value behavior. Quantile mapping tries to improve the fitting
of higher values of precipitation through a gamma distribution function. However, bias correction
techniques do not consider the fitting to frequency curves. Some studies consider the influence of
bias correction on flow frequency curves. However, the best methodology is selected based on the
improvement in the complete time series instead of focusing on the extreme values that are included in
the frequency curve [13].

In Spain, there are two sources of climate projections: AEMET (‘Agencia Estatatal de Metorología’,
in Spanish) [14,15] and EURO-CORDEX [16]. AEMET uses atmospheric data obtained from the
National Center for Atmospheric Research (NCAR) reanalysis. Precipitation and temperature data are
supplied with a high-resolution grid of 203 points. This grid was obtained from the data bank of the
National Institute of Meteorology [17].

EURO-CORDEX is the European branch of the international CORDEX initiative, which is a program
sponsored by the World Climate Research Program (WRCP), seeking to organize an internationally
coordinated framework to produce improved regional climate change projections for worldwide
regions. The CORDEX results will serve as input for climate change impact and adaptation studies
within the timeline of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate
Change (IPCC).

AEMET precipitation projections do not characterize adequately extreme events at the Spanish
national scale [18]. However, EURO-CORDEX precipitation projections adequately characterize the
statistical properties of annual maximum precipitation series in Spain [19]. Consequently, climate
projections supplied by the EURO-CORDEX initiative are used in this study. Such climate projections
point out that precipitation quantiles will increase in some parts of Spain [20].

Impacts of climate change on floods should be assessed to update flood risk management
plans, considering how they are expected to vary in the future. In addition, peak flow quantiles
are useful for infrastructure design and safety assessment. This paper is focused on assessing how
peak flow quantiles are expected to change in the future. Most of bias correction techniques do not
consider their impact on flood frequency curves that are obtained from corrected precipitation and
temperature projections [21]. Consequently, a methodology to identify the best bias correction method
in precipitation and temperature projections to improve the fitting of flood frequency curves in the
control period to observations is proposed. In addition, expected flood frequency curves in the future
under climate change conditions are provided [22].

Bias corrected temperature and precipitation projections are used as input data of the continuous
hydrological Hydrologiska Byråns Vattenbalansavdelning model (HBV), which is calibrated with the
methodology proposed previously. Four catchments in northwestern Spain are selected as case studies.

This paper is organized as follows. First, the case studies and data sources are presented. Second,
the tools and methodology used in the study are described. Third, the results of bias correction in
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temperature and precipitation time series are discussed. Fourth, results about flood frequency curves
expected in the future are presented. Finally, conclusions are provided.

2. Data and Methodology

The methodology consists of the following steps: (i) Calibration of the HBV model to adequately
characterize rainfall-runoff processes in a changing climate; (ii) selection of the best bias correction
method for precipitation and temperature projections, and (iii) assessment of the expected changes in
flood quantiles in the future driven by climate change.

2.1. Study Area and Data

Four catchments in the Douro river basin in the northwestern part of Spain have been selected as
case studies (Figure 1 and Table 1). A dam is located at the outlet of each catchment. Consequently,
inflow discharges in reservoirs were estimated from observations of mean daily reservoir water levels
and dam releases, which were supplied by the Centre for Hydrographic studies of CEDEX.
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Table 1. Catchment characteristics.

Catchment Descriptors Barrios de Luna Camporredondo Porma Riaño

Area (km2) 491.86 230 249.64 593
River Length (km) 36.23 28.43 23.12 36.16

Maximum altitude (m) 2409.58 2532.23 2160.91 2492.52
Minimum altitude (m) 1084.11 1285 1091.99 1081.5

Observations of daily rainfall at 42 rain-gauging stations and temperature at 22 thermometric
stations were supplied by the AEMET. Gaps in time series were filled by using observations at nearby
gauging stations, by using the inverse distance weighting (IDW) method with squared distances.

Climate change projections provided by 12 regional climate models of the EURO-CORDEX
programme have been used (Table 2). Such projections are composed of daily rainfall and temperature
time series in a grid with cells of 0.11◦. The same control period (1971–2004, hydrological years) and
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future period under climate change (2011–2094, hydrological years) have been considered for all the
climate models. Two representative concentration pathways (RCP) were considered: RCP 4.5 and 8.5.

Table 2. EURO-CORDEX climate models used in the study.

Acronym CGM RCM

ICH-CCL ICHEC-EC-EARTH CCLM4-8-17
MPI-CCL MPI-ESM-LR CCLM4-8-17

MOH-RAC MOHC-HadGEM2-ES RACMO22E
CNR-CCL CNRM-CMS CCLM4-8-17
ICH-RAC ICHEC-EC-EARTH RACMO22E

MOH-CCL MOHC-HadGEM2-ES CCLM4-8-17
IPS-WRF IPSL-CMSA-MR WRF331F
IPS-RCA IPSL-CM5A-MR RCA4

MOH-RCA MOHC-HadGEM2-ES RCA4
ICH-RCA ICHEC-EC-EARTH RCA4
CNR-RCA CNRM-CM5 RCA4
MPI-RCA MPI-ESM-LR RCA4

2.2. Generalized Extreme Value (GEV) Distribution

Flood quantiles are calculated by fitting a Generalized Extreme Value (GEV) distribution to the
annual maximum series (Equation (1)). The GEV distribution with the L-Moment method has been
selected following the national recommendations in the region where the catchments are located [23,24].
In addition, the GEV distribution is applied widely in earth system sciences and hydrology to study
extremes of several natural phenomena, including rainfall, floods, wind speeds and wave heights [25].

The cumulative distribution function F(x) of the GEV distribution is expressed with the
following equation:

F(x) = exp[−
{

1− k
(x− u)
α

}
1/k], (1)

where u is the location parameter, α is the scale parameter, and k is the shape parameter.
The GEV distribution function allows us to obtain the peak flow and precipitation quantiles for

high return periods needed for the study.

2.3. HBV Model and Calibration

The hydrological response in the four catchments has been simulated with the continuous HBV
rainfall-runoff model. Specifically, the HVB-light-GUI 4.0.0.7 version has been used.

The HBV model is a semi-distributed model, dividing a given catchment into elevation and
vegetation zones, as well as into sub-catchments. The model supplies simulations of catchment
discharge on a daily time step. The model consists of three routines: Snow, soil and groundwater.
Each routine provides a flow time series depending on a set of parameters. The snow accumulation and
snowmelt are computed by a degree-day method in the snow routine. In the soil routine, groundwater
recharge and actual evapotranspiration are simulated as functions of actual water storage. In the
groundwater routine, runoff is computed as a function of water storage. Finally, in the routing routine,
a triangular weighting function is used to simulate the routing of the runoff until the catchment
outlet [26]. Parameters values related to the soil routine have been estimated initially using land-use
maps supplied by the CORINE land cover.

The model parameters have been calibrated using Monte Carlo simulations and GAP optimization.
Both tools are integrated into the HBV software.

Model parameters have been calibrated using the coefficient of efficiency (Reff) goodness-of-fit
function that is integrated into the HBV software. ‘Reff’ compares the prediction supplied by the HBV
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model with the simplest possible prediction, which is a constant value equal to the mean value of
observations over the entire period (Equation (2)):

Re f f = 1−
∑
(Qsim(t) −QObs(t))

2∑
(QObs(t) −Qobs)

2 , (2)

where Qsim(t) is the simulated discharge at time step t, Qobs(t) is the observed discharge at time step t
and Qobs is the mean value of the observed discharges.

A sensitivity analysis with 1,000,000 Monte Carlo simulations was conducted to identify the most
important parameters in the four catchments. Maximum storage capacity in the soil (FC), maximum
flow from upper to lower box (PERC), upper storage character coefficient 0 (K0) and upper storage
recession coefficient 1 (K1) were found to be the characteri that had the most influence on the results.
FC, PERC, K0 and K1 are associated with soil infiltration processes that are characterized with three
boxes [27]. As expected, the snow routine is not important in the case studies.

Flood quantiles have been estimated by fitting a GEV distribution to the annual maximum series
of streamflow observed and simulated by the HBV model. Flood quantiles obtained by simulation
have been compared with flood quantiles obtained from observed data, for a set of return periods
(Figure 2). An iteration process has been used, prioritizing the similarity in the simulation of high
return period quantiles, as the results of the study will be applied to dam design.
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2.4. Bias Correction

Statistics of precipitation and temperature projections supplied by climate models in the control
period do not usually fit exactly those of observations in the same period. Such errors may affect
simulated flow results in the future period. Bias correction methods try to improve the fitting of
climate model simulations to observations in the control period, in order to enhance the reliability
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of climate model results in the future period. First, temperature and precipitation series have been
corrected separately with a set of methodologies. Second, temperature and precipitation bias correction
techniques are combined to identify the best methodology.

2.4.1. Temperature Correction

Temperature projections have been corrected by using simple seasonal bias correction [6]. Mean
monthly temperatures are obtained in each climate model in the control period for its comparison with
observations in the same period. The difference between climate model simulations and observations
is added to the projections in the future period for the two emission scenarios (Equation (3)):

Ti, j,corr = Ti, j + ∆Ti, j, (3)

where Ti, j is the mean temperature in month j for the climate model©, ∆T is the difference between the
mean temperature of the climate model i and the observations in month j, and Ti, j,corr is the corrected
temperature in month j for the climate model i.

2.4.2. Precipitation Correction

There are several methodologies for correcting bias in precipitation projections [9]. Some methods
are simple, consisting of obtaining a rainfall threshold to correct rainfall from 0.1 mm to dry days.
Other methods are more complex and require a separate precipitation model. Finally, some methods
correct the precipitation based on empirical techniques [28–30].

This study is focused on dam safety. Consequently, extreme events are the variable of
interest. The following bias correction techniques for precipitation projections are proposed. First,
quantile mapping (QM) linear correction (Equation (4)). Second, QM second-order polynomial
correction (Equation (5)) [30,31]. Both methods require to estimate a set of parameters that are
adjusted by comparing the observed data with each climate model simulations in the control period.
With such parameter values, precipitation projections are corrected in the future periods for the two
emission scenarios.

Pi, j,corr = a·Pi, j + b, (4)

Pi, j,corr = c·(Pi, j)
2 + d·Pi, j + e, (5)

where Pi,j is the raw precipitation supplied by the climate model i in day j, Pi,j,corr is the precipitation
corrected for the climate model i in day j, and a, b, c, d and e are quantile mapping parameters.

3. Results and Discussion

The best bias correction method has been identified for: (i) Temperature projections, in terms of
monthly averages; (ii) extreme precipitation in climate projections, in terms of frequency curves for
annual maximum series; and (iii) extreme simulated discharges.

3.1. Bias Correction in Temperature Series

In the four catchments, monthly mean temperatures supplied by climate models are significantly
lower than observations (Figure 3), with similar differences in all the months in the range 3–5 ◦C.
While the Porma catchment shows the largest errors, the Barrios de Luna catchment shows the
smallest errors.
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3.2. Bias Correction in Precipitation Series

Climate models usually supply differing precipitation magnitudes in the control period compared
to observations (Figures 4–7). In the Barrios de Luna catchment, climate models supply larger extreme
precipitations than observations. However, in the other three catchments, climate models supply
lower precipitations.
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As mentioned previously, in the Barrios, the Luna catchment, the observed precipitation data
are smaller than climate model projections (Figure 3). Both bias correction techniques reduce errors.
However, the QM polynomial correction technique is the best method for this case.

In Camporredondo, Porma and Riaño catchments, frequency curves fitted to observations are
slightly larger than the median of the climate model projections (Figures 4–6). The best results are
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obtained for the QM linear bias correction technique, as the QM polynomial correction leads to
precipitation quantiles larger than observations, especially for high return periods.

Summarizing, bias correction by using both the lineal and polynomial techniques reduce errors
compared to raw precipitation data in the four catchments, in terms of precipitation frequency curves.
The QM linear correction technique is the best bias correction method in three catchments. The QM
polynomial correction technique is the best bias correction method in the Barrios de Luna catchment.

3.3. Bias Correction in Terms of Flood Frequency Curves in the Control Period

Simulations of the continuous HBV model have been conducted with a set of combinations of raw
and bias corrected temperature and precipitation time series in the control period as input data, in
order to compare the bias correction techniques. The best combination of bias correction techniques is
identified in terms of the smallest errors in the flood frequency curve estimated with observations.
The higher return periods have been considered, due to its importance in dam design.

In the Barrios de Luna catchment, the best fit to the observed data is obtained with raw precipitation
and temperature projections with no bias correction (Figure 8). Bias correction in temperature time
series leads to similar results, but with larger errors for high return periods, which are used in dam
safety. QM precipitation corrections improve the fitting for low return periods, but increase errors
significantly for high return periods. Finally, similar results are obtained for combinations of bias
correction techniques in both precipitation and temperature series.
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the HBV model with observed data and HBV simulations with climate projections in Barrios de Luna
catchment, using a set of combinations of bias correction techniques. Red lines represent the median
of the 12 climate models considered. (a) Raw data with no bias correction; (b) raw temperature and
precipitation with quantile mapping (QM) linear correction; (c) raw temperature and precipitation with
QM polynomial correction; (d) raw precipitation and temperature bias corrected; (e) temperature bias
corrected and precipitation with QM linear correction; (f) temperature bias corrected and precipitation
with QM polynomial correction.
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In the Camporredondo catchment, a significant improvement was found by using bias correction
techniques in precipitation and temperature data (Figure 9). The polynomial correction in precipitation
and temperature series led to the smallest errors.
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Figure 9. Comparison between flood frequency curves fitted to annual maximum series simulated by
the HBV model with observed data and HBV simulations with climate projections in Camporredondo
catchment, using a set of combinations of bias correction techniques. Red lines represent the median
of the 12 climate models considered. (a) Raw data with no bias correction; (b) raw temperature and
precipitation with QM linear correction; (c) raw temperature and precipitation with QM polynomial
correction; (d) raw precipitation and temperature bias corrected; (e) temperature bias corrected and
precipitation with QM linear correction; (f) temperature bias corrected and precipitation with QM
polynomial correction.

The Porma catchment shows larger errors, as the observed data are significantly larger than
simulations provided by the HBV model (Figure 10). However, the smallest errors are obtained for
temperature bias corrected and precipitation with QM polynomial correction, mainly for high return
periods, where the smallest errors are found.

In the Riaño catchment, the temperature correction leads to small changes in flood frequency
curves. In this case, the smallest errors are obtained for precipitation data with QM polynomial
correction (Figure 11). The technique that leads to the best fit for high return periods is the QM
polynomial correction in precipitation data with the raw temperature time series.

In general, the smallest errors are obtained with the polynomial bias correction technique. More
specifically, the methodologies with the smallest absolute error for higher return periods are: Raw
temperature and raw precipitation supplied by climate models in Barrios de Luna; QM lineal correction
for precipitation and mean monthly temperature correction in Camporredondo; QM polynomial
correction for precipitation and mean monthly temperature correction in Porma; and QM polynomial
correction for precipitation and raw temperature in Riaño.

Finally, the errors of the selected methods in each catchment are summarized in Table 3. In general,
smaller errors are obtained for higher return periods, that are usually used for dam design.
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Figure 10. Comparison between flood frequency curves fitted to annual maximum series simulated
by the HBV model with observed data and HBV simulations with climate projections in Porma
catchment, using a set of combinations of bias correction techniques. Red lines represent the median
of the 12 climate models considered. (a) Raw data with no bias correction; (b) raw temperature and
precipitation with QM linear correction; (c) raw temperature and precipitation with QM polynomial
correction; (d) raw precipitation and temperature bias corrected; (e) temperature bias corrected and
precipitation with QM linear correction; (f) temperature bias corrected and precipitation with QM
polynomial correction.

3.4. Expected Changes in Flood Frequency Curves in the Future Period

Precipitation and temperature projections in the future period (2011–2095) have been corrected
with the best bias correction technique identified in each catchment in the previous step. Such corrected
precipitation and temperature time series are used as input data in the HVB model. Annual maximum
series of streamflow series simulated by the HBV model is extracted, and flood frequency curves are
estimated by using a GEV distribution function. Delta changes in peak flow quantiles expected in
the future are obtained by comparing the flood frequency curves in the future and control periods
(Figure 12).

In the Barrios de Luna catchment, significant differing results are found between RCP 4.5 and
RCP 8.5. In RCP 4.5, flood quantiles are expected to be larger in the two first periods in the future
(2011–2040 and 2041–2070), mainly for high return periods, though a decrease in all return periods is
expected in the last period (2071–2100). For RCP 8.5, large increases in flood quantiles are expected for
the period 2071–2100, though a slight increase and decrease are expected for the periods 2011–2040
and 2041–2070, respectively.

In the Camporredondo catchment, a generalized decrease in flood quantiles is expected in the
future periods for both emission scenarios. In the RCP 4.5 scenario, the largest decrease is expected
in the period 2071–2100, mainly for high return periods. In addition, minor changes are expected
in the period 2041–2070. In the RCP 8.5, the largest decrease in flood quantiles is expected in the
period 2041–2070.
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Figure 11. Comparison between flood frequency curves fitted to annual maximum series simulated by
the HBV model with observed data and HBV simulations with climate projections in Riaño catchment,
using a set of combinations of bias correction techniques. Red lines represent the median of the 12 climate
models considered. (a) Raw data with no bias correction; (b) raw temperature and precipitation with
QM linear correction; (c) raw temperature and precipitation with QM polynomial correction; (d) raw
precipitation and temperature bias corrected; (e) temperature bias corrected and precipitation with QM
linear correction; (f) temperature bias corrected and precipitation with QM polynomial correction.

Table 3. Absolute and relative errors of HBV simulations of peak flow quantiles in the control period
for the best bias correction method identified in each catchment.

Barrios de Luna

Tr (Years) 2 5 10 25 50 100 200 500 1000
Absolute error (m3/s) 44.72 38.04 28.65 11.08 −6.21 −27.15 −51.96 −91.19 −126.16

Relative error (%) 55.36 32.03 19.43 5.88 −2.79 −10.45 −17.27 −25.22 −30.55

Camporredondo

Tr (years) 2 5 10 25 50 100 200 500 1000
Absolute error (m3/s) −11.19 −18.35 −23.79 −30.92 −35.89 −39.89 −42.12 −40.41 −33.48

Relative error (%) −20.28 −20.98 −20.99 −20.33 −19.29 −17.73 −15.63 −11.93 −8.36

Porma

Tr (years) 2 5 10 25 50 100 200 500 1000
Absolute error (m3/s) −29.58 −43.56 −49.06 −51.09 −48.51 −41.95 −30.85 −7.93 16.85

Relative error (%) −41.71 −42.17 −39.72 −34.56 −29.41 −23.14 −15.67 −3.67 −7.31

Riaño

Tr (years) 2 5 10 25 50 100 200 500 1000
Absolute error (m3/s) 45.45 31.64 20.30 3.76 −9.78 −23.88 −38.07 −55.80 −67.19

Relative error (%) 42.60 16.76 8.03 1.08 −2.29 −4.62 −6.16 −7.22 −7.41
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Figure 12. Expected flood frequency curves in the future periods (2011–2040, 2041–2070 and 2071–2100)
with the best bias correction techniques identified in the previous section. The dotted lines show the
Q33 and Q67 percentiles for each period. The first column shows the results for RCP 4.5 and the second
column for RCP 8.5. The first raw shows results for the Barrios de Luna catchment, the second for
Camporredondo, the third for Porma and the fourth for Riaño.
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In the Porma catchment, similar results are found for all periods and emission scenarios. Flood
quantiles will decrease for high return periods, though they will be slightly higher for return periods
smaller than 25 years.

Finally, in the Riaño catchment, the results are similar to the Barrios de Luna catchment. In the
RCP 4.5, flood quantiles will be larger in the period 2041–2070, smaller in the period 2071–2100 and
similar to the control period in 2011–2040. In the RCP 8.5, flood quantiles will be larger in the period
2071–2100, smaller in the period 2011–2040 and similar to the control period in 2041–2070.

Summarising, simulations with the HBV model by using precipitation and temperature projections
corrected with the best bias correction techniques identified previously show that, in general, flood
frequency curves will decrease in the future, though increases can be seen in some cases.

4. Conclusions

The results of this study confirm the need for bias correction in temperature and precipitation
projections to improve their fitting to observations. Mean monthly temperatures supplied by climate
models in the control period are significantly lower than observed data. For precipitation projections,
annual maximum series are slightly smaller than observations in three of the four catchments considered.
In terms of precipitation frequency curves, bias correction reduces errors compared to raw data in the
four catchments. The quantile mapping linear correction technique is the best bias correction method
in three of the four catchments. It confirms the results of previous studies that found that the quantile
mapping technique is the best approach to correct extreme values of precipitation.

A set of combinations of bias correction methods for precipitation and temperature were analyzed,
by comparing the outputs of the HBV model with the observations in the control period. Flood
frequency curves fitted to simulations and observations were compared. The best bias correction
method for precipitation projections, in terms of precipitation frequency curves, differs from the best
method in terms of flood frequency curves. It was found that bias correction of precipitation time series
is more important than temperature correction, as precipitation has a larger influence on streamflow
outputs of the HBV model. This finding agrees with previous studies that highlighted the importance
of correcting biases in precipitation projection with advanced techniques, while correcting only mean
values in temperature projections. In terms of flood frequency curves, the best bias correction technique
for precipitation is the quantile mapping polynomial correction. Both raw temperature projections and
bias corrected temperature time series lead to similar results in terms of flood frequency curves.

Simulations with the HBV model in the future period, using temperature and precipitation
projections corrected with the best combination of bias correction techniques identified in each
catchment, show a general reduction in flood quantiles, smoothing the increases identified in
precipitation quantiles. For example, in the control period, when precipitation quantiles are larger
than observations, flood quantiles are similar to observations. In general, the period 2071–2095
presents the smallest reductions and, in some cases, the largest increases. This finding agrees with
previous studies that stated that floods could decrease in many parts of southern Europe under climate
change conditions.
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Abbreviations

AEMET Agencia Española de Meteorología
CORDEX Coordinated Regional Climate Downscaling Experiment
GAP Genetic Algorithm and Powell
GCM General Climate Model
GEV Generalized extreme value
HBV Hydrologiska Byråns Vattenbalansavdelning
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