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Abstract: Regionalized lumped rainfall-runoff (RR) models have been widely employed as a means of
predicting the streamflow of an ungauged watershed because of their simple yet effective simulation
strategies. Parameter regionalization techniques relate the parameter values of a model calibrated to
the observations of gauged watersheds to the geohydrological characteristics of the watersheds. Thus,
the accuracy of regionalized models is dependent on the calibration processes, as well as the structure
of the model used and the quality of the measurements. In this study, we have discussed the potentials
and limitations of hydrological model parameter regionalization to provide practical guidance for
hydrological modeling of ungauged watersheds. This study used a Tank model as an example
model and calibrated its parameters to streamflow observed at the outlets of 39 gauged watersheds.
Multiple regression analysis identified the statistical relationships between calibrated parameter
values and nine watershed characteristics. The newly developed regional models provided acceptable
accuracy in predicting streamflow, demonstrating the potential of the parameter regionalization
method. However, uncertainty associated with parameter calibration processes was found to be large
enough to affect the accuracy of regionalization. This study demonstrated the importance of objective
function selection of the RR model regionalization.

Keywords: parameter regionalization; regional model; Tank model; ungauged watershed;
hydrological modeling; lumped rainfall-runoff simulation

1. Introduction

Estimating the continuous long-term runoff of ungauged watersheds is a task frequently required
in hydrological analyses and design [1–5]. The RR models have been used as a tool to predict
streamflow in gauged and ungauged watersheds; the simple structure of a lumped RR model makes it
popular, especially for investigations that focus on the overall responses (rather than detailed internal
transport processes) of a watershed [6–9]. The parameters of a lumped RR model represent the
spatially aggregated hydrological characteristics of a watershed, and parameter values tend to vary
nonlinearly with the spatial scales of RR modeling. Furthermore, for the same reasons, the parameter
values cannot be directly measured in the field; instead, the parameters of an RR model have to
be calibrated to observations so that its prediction can achieve reliability. Studies have shown that
the parameter values of a lumped RR model are associated with the geohydrological characteristics
of watersheds [8,10–12]. The statistical relationships between the parameter values and watershed
characteristics that are derived from gauged watersheds have been employed to predict the streamflow
of ungauged watersheds, which is called parameter or model regionalization [2,5,13,14].
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The regression approach is one of the most widely used regionalization methods [4,5,15–17].
In this approach, the parameters of an RR model are calibrated using observations from gauged
watersheds that can then be used to quantify the characteristics of the watersheds. The regression
approach statistically links the calibrated parameter values to quantified watershed characteristics. The
relationship is then applied to ungauged watersheds that have geohydrological features statistically
similar to those of the gauged ones [4,5,13,18,19]. The quality of parameter regionalization is dependent
on many factors, including model structure, the quality of observations used for regionalization,
hydrological variables of interest, calibration techniques, and regression methods. However, large
uncertainty and the consequential limited reliability prevent model regionalization from being widely
employed in hydrological analyses and design [16,20–22].

There are many sources that introduce uncertainty in the regionalization process whose effects
have been extensively discussed in literature [20–24]. However, the extent of uncertainty remains
unclear even though many methods have been proposed to estimate the uncertainty in hydrological
modeling [2,21,22,25,26]. Calibration can be a major underlying uncertainty source because calibrated
parameter values are directly related to the selected watershed characteristics in a regionalization
approach [8,19,20,27,28]. Researchers have argued that parameter values cannot be specifically
determined [27,29,30], and significantly different parameter sets may be obtained, depending on the
objective functions used in the calibration processes [8,31–35]. However, the conventional practice of
model regionalization does not explicitly consider such aspects.

Tank models are a type of lumped hydrological models, and they have been applied to study a
wide range of watersheds owing to their computational and conceptual simplicity [8,13,36,37]. Tank
models tend to have more parameters as compared to other parsimonious models because they are
designed to represent non-linear responses of a watershed using multiple linear equations [8]. Thus,
parameter calibration can be challenging, especially when streamflow observations are limited [36,37].
The models have been widely used in East Asia, including Korea, Japan, and Taiwan, and studies
have demonstrated their accuracy and performance in applications for humid and mountainous
watersheds [8,9,17,38,39].

Various regional Tank models have been developed for water resources planning and management
for ungauged watersheds [4,13,14,17,18,40,41]. However, there is substantial room for improvement of
the regional models as methods and techniques for calibration and hydrological analyses are improving
along with advanced computing resources. In the previous regionalization practices, for instance,
model parameters were calibrated with only a single objective function, such as root mean square
error (RMSE), mean squared error (MSE), and Nash and Sutcliffe efficiency (NSE) [42], which are
over-sensitive to high values (and large outliers) but relatively unresponsive to low flow [8,43,44]. It is
known that Kling–Gupta efficiency (KGE or KGE′) [45,46] can simultaneously take into account the
multiple aspects of model evaluation, including correlation, bias, variance, and variability [47]; thus,
they can serve as effective alternative objective functions for parameter regionalization.

This study explored ways to improve the accuracy of regionalizing an RR model; we also
investigated the effect of objective function selection on regionalization results. A Tank model with
three layers was used as a lumped hydrological model to be regionalized in this study, and the model
was applied to simulate the streamflow hydrographs of 49 watersheds located in Korea. Two objective
functions, RMSE and KGE′sqrt, were employed in parameter calibration to investigate the impacts
of objective function selection. Regionalization results obtained by using previous methods were
compared with the results of the newly proposed method to demonstrate the efficacy of the latter.
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2. Materials and Methods

2.1. RR Model and Parameter Regionalization

2.1.1. Tank Model

There are many different possible configurations of a Tank model depending on the number of
storage (tanks or layers) and the locations of outlets. The 3-Tank model is one of the most common
forms of a Tank model; it represents the hydrological processes of a watershed with the help of three
tanks (or storages) that are vertically connected with outlets located at the bottom and side of each
tank (Figure 1) [8,9,36]. The height of the side-outlets and the size of each tank are calibrated to
observed streamflow so that the model can predict the overall watershed responses to rainfall events.
In the model, water running out of the side outlets of the first tank (or the top layer), second tank,
and third tank (or the bottom layer) represents surface runoff, intermediate runoff, and baseflow,
respectively [8,9,13]. Water passing through the bottom outlets means infiltration (from the first
tank to the second) or percolation (from the second tank to the third). The amount of runoff or
infiltrated/percolated water through the outlets is assumed to be linearly proportional to the storage of
a Tank as follows (Equations (1) and (2)):

Qt = q11 + q12 + q2 + q3 =
n∑

i=1

m∑
j=1

ai j ×
(
STi,t − hi j

)
, (1)

Ii,t = bi × STi,t, (2)

where i is the tank order, j is the side-outlet order, n is the number of tanks, m is the number of side
outlets for each tank, qi j is the runoff (mm) from the jth side outlet in the ith tank, ai j is the side-outlet
coefficient (dimensionless) for the jth side-outlet in the ith tank, STi,t is the storage of the ith tank
(mm), hi j is the height of the side outlet for the jth side outlet in the ith tank (mm), Ii,t is the amount of
water infiltrated in the ith tank (mm), and bi is the bottom-outlet coefficient (dimensionless) for the
ith tank. The STi,t+1 in the tanks, the storage for the next time step t + 1, can be expressed as follows
(Equations (3) and (4)):

STi,t+1 = STi,t + Pt+1 − ETi,t+1 − Ii,t − qi,t for i = 1, (3)

STi,t+1 = STi,t + Ii−1,t − ETi,t+1 − Ii,t − qi,t for i = 2, 3, (4)

where Pt is the precipitation at time t (mm), and ETi,t is the actual evapotranspiration of the ith
tank at time t (mm). The ETi,t is constrained by the volume of storage in each tank (Equations (5)
and (6)). It is calculated by subtracting the evapotranspiration in the upper tanks from the total actual
evapotranspiration (ETa,t):

ETi,t = STi,t for ETi,t ≥ STi,t, (5)

ETi,t = ETa,t −

i−1∑
j=1

ET j,t for ETi,t < STi,t. (6)

The ETa was estimated using the guidelines of the Food and Agriculture Organization of the
United Nations (FAO) as follows ([48]; Equation (7)):

ETa,t = Kc,t ×Ks,t × ET0,t, (7)

where Kc,t is the single crop coefficient (dimensionless), Ks,t is the soil water stress coefficient (Ks,t)
(dimensionless), and ET0 is the potential evapotranspiration (mm), which was estimated using the
FAO Penman–Monteith (PM) approach with gauged solar radiation, air temperature, wind speed,
and relative humidity [48]. The Kc,t is determined with the area-weighted averages of crop coefficient
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values for different land uses [36,48]. The Ks was calculated from the simulated total watershed storage
(STt) and a modified power function as represented in Equation (8) [36,40]:

Ks = 1− exp

−SECP×
n∑

i=1

STi,t

, (8)

where SECP is a soil evaporation compensation parameter, which is positively correlated to Ks.
The SECP parameter has been reported to vary from 0.001 to 0.1, depending on watershed soil
texture [8,40,49]. We adopted the feasible ranges of the Tank model parameters that were set
considering the hydrological characteristics of Korean watersheds [8,36] (Table 1).Water 2019, 11, x FOR PEER REVIEW 4 of 21 

 

 
Figure 1. Schematics of the 3-Tank model structures [8,9,36]. 

The 𝐸𝑇௔ was estimated using the guidelines of the Food and Agriculture Organization of the 
United Nations (FAO) as follows ([48]; Equation (7): 𝐸𝑇௔,௧ = 𝐾௖,௧ × 𝐾௦,௧ × 𝐸𝑇଴,௧, (7) 

where 𝐾௖,௧ is the single crop coefficient (dimensionless), 𝐾௦,௧ is the soil water stress coefficient (𝐾௦,௧) 
(dimensionless), and 𝐸𝑇଴ is the potential evapotranspiration (mm), which was estimated using the 
FAO Penman–Monteith (PM) approach with gauged solar radiation, air temperature, wind speed, 
and relative humidity [48]. The 𝐾௖,௧  is determined with the area-weighted averages of crop 
coefficient values for different land uses [36,48]. The 𝐾௦  was calculated from the simulated total 
watershed storage (𝑆𝑇௧) and a modified power function as represented in Equation (8) [36,40]: 𝐾௦ = 1 − exp (−𝑆𝐸𝐶𝑃 × ∑ 𝑆𝑇௜,௧௡௜ୀଵ ), (8) 

where 𝑆𝐸𝐶𝑃 is a soil evaporation compensation parameter, which is positively correlated to 𝐾௦. The 𝑆𝐸𝐶𝑃 parameter has been reported to vary from 0.001 to 0.1, depending on watershed soil texture 
[8,40,49]. We adopted the feasible ranges of the Tank model parameters that were set considering the 
hydrological characteristics of Korean watersheds [8,36] (Table 1). 

Table 1. Value ranges of 3-Tank model parameters [8,36]. 

Parameter Description Min. Max. 𝑎ଵଵ Side-outlet coefficient for the first side outlet in the first tank (dimensionless) 0.08 0.5 𝑎ଵଶ Side-outlet coefficient for the second side outlet in the first tank 
(dimensionless) 0.08 0.5 ℎଵଵ Height of side outlet for the first side outlet in the first tank (mm) 5 60 ℎଵଶ Height of side outlet for the second side outlet in the first tank (mm) 20 110 𝑏ଵ Bottom-outlet coefficient for the first tank (dimensionless) 0.1 0.5 𝑎ଶ Side-outlet coefficient in the second tank (dimensionless) 0.03 0.5 ℎଶ Height of side outlet in the second tank (mm) 0 100 𝑏ଶ Bottom-outlet coefficient for the second tank (dimensionless) 0.01 0.35 𝑎ଷ Side-outlet coefficient in the third tank (dimensionless) 0.003 0.03 𝑆𝐸𝐶𝑃 Soil evaporation compensation parameter 0.001 0.1 

Constraint: ℎଵଵ <  ℎଵଶ. 

Figure 1. Schematics of the 3-Tank model structures [8,9,36].

Table 1. Value ranges of 3-Tank model parameters [8,36].

Parameter Description Min. Max.

a11
Side-outlet coefficient for the first side outlet in the first tank

(dimensionless) 0.08 0.5

a12
Side-outlet coefficient for the second side outlet in the first tank

(dimensionless) 0.08 0.5

h11 Height of side outlet for the first side outlet in the first tank (mm) 5 60
h12 Height of side outlet for the second side outlet in the first tank (mm) 20 110
b1 Bottom-outlet coefficient for the first tank (dimensionless) 0.1 0.5
a2 Side-outlet coefficient in the second tank (dimensionless) 0.03 0.5
h2 Height of side outlet in the second tank (mm) 0 100
b2 Bottom-outlet coefficient for the second tank (dimensionless) 0.01 0.35
a3 Side-outlet coefficient in the third tank (dimensionless) 0.003 0.03

SECP Soil evaporation compensation parameter 0.001 0.1

Constraint: h11 < h12.

2.1.2. Regionalization of the Tank Models

The Tank models have been widely employed as a tool to predict the streamflow of ungauged
watersheds in Korea, Japan, and Germany [4,13,14,17,18,40,41] (Table 2). The model parameters are
estimated from the relationship between parameter values and watershed characteristics, which are
developed using observations made in gauged watersheds. The Tank model was originally developed
with four layers (4-Tank) [37], and the parameter values of the 4-Tank models were generally derived
from selected watershed features in Japan and Germany [4,17].
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Table 2. An overview of previous studies related to the regionalization of Tank models.

Reference Country No. Tanks No. Watersheds Drainage Area
(km2) Period (Years) Optimization Method Objective Function Dependent Variables

Yokoo et al. [17] Japan 4 12 100–805 3 Powell method MRE
Area (km2), representative gradient (%), percentage of three

geology types (%), percentage of three soil types (%),
percentage of eight land-use types (%)

Amiri et al. [4] Germany 4 30 53–737 15 Marquardt algorithm MSE

Percentage of three soil types (%), mean patch size of the
water body patches (ha), mean shape index of mix forest
patches (-), mean perimeter to area ratio of two land-use

patches (m/ha), patch density of five land-use patches
(No./ha)

Kim and Park [13] Korea 3 12 0.5–140.5 1–2 Manual RMSE Area (km2), Forest (%), Upland (%), Paddy (%)

Huh et al. [40] Korea 3 15 3–2060 3–10 Rosenbrock RMSE Area (km2), Length (km), Form (-), Forest (%), Upland (%),
Paddy (%)

Kim et al. [41] Korea 3 26 5.9–7126 7–10 Manual NA Area (km2), W_Slope (%), Length (km), Form (-), Forest (%),
Upland (%), Paddy (%)

An et al. [18] Korea 3 30 56–6662 5–36 Genetic Algorithm RMSE Area (km2), Length (km), W_Slope (%), Forest (%), Upland
(%), Paddy (%)

MRE, MSE, and RMSE refer to mean relative error, mean square error, and root mean square error, respectively. NA refers to information not available. W_Slope (%), Length (km), and
Form (-) refer to the watershed slope, flow length, and form factor, respectively. Upland is an area where crops are cultivated under non-ponded conditions, and paddy is an area that can
maintain a ponded water depth to grow rice. Forest (%), Upland (%), and Paddy (%) refer to the percentages of the forest, upland, and paddy area, respectively.
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Yokoo et al. [17] regionalized the 12 parameters of the 4-Tank model using flow measurements
made in 12 watersheds that had drainage areas with a range from 100 to 805 km2 in Japan; the
watershed characteristics were derived from topography, soil type, geology, and land-use. In their
study, a multiple linear regression model successfully identified the statistical relationship between
the model parameters and the watershed characteristics. Amiri et al. [4] examined whether changes
in landscape metrics, including shape index, perimeter-area ratio, patch size, and patch density of
land-use, could affect the calibrated values of the 4-Tank model parameters from 30 catchments (53–737
km2) located in Germany. They found that multiple regression models could successfully explain
the relationship between calibrated parameter values and a highly varying landscape, and landscape
metrics should be included in the regionalization of conceptual rainfall-runoff models.

In Korea, a three-layer Tank model, modified with two side outlets on the top layer, has been
widely employed, especially to study small- or medium-sized watersheds where flow travel time
is short, and the recession limb of a streamflow hydrograph is steep [9,36]. Various regionalization
approaches have been carried out in Korea to estimate ungauged streamflow [13,18,40,41]. Kim and
Park [13] developed regression equations to estimate reservoir inflow in ungauged watersheds using
only the information of drainage area and land-use composition. Similarly, Huh et al. [40], Kim et
al. [41], and An et al. [18] considered the topographical characteristics, such as stream length, slope,
and form factor when developing the regression relationship.

2.2. Model Calibration and Evaluation

2.2.1. Objective Functions

Two objective functions were employed in the parameter calibration to see how the selection
of objective functions could affect the regionalization of the Tank model: RMSE and modified KGE
(KGE′sqrt) [45,46]. The RMSE (mm), which is relatively responsive to high flow or peak flow, has been
widely used for calibrating hydrological models (Equation (9)):

RMSE =

√∑n
i=1(Oi − Si)

2

n
, (9)

where O and S represent the observed and simulated discharge (mm), respectively, n is the number
of time steps at a time step i. The KGE was proposed as an alternative performance statistics [45].
The modified version, KGE′, was introduced to ensure that the bias and variability ratios are not
cross-correlated to take into account the multiple aspects of model evaluation, including correlation,
bias, and variability simultaneously [46]:

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (α− 1)2, (10)

KGE′ = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2, (11)

r =
cov(O, S)
σOσS

, (12)

β =
µS

µO
, (13)

α =
σS
σO

, (14)

γ =
µOσS

σOµS
, (15)

where r is the Pearson correlation coefficient between simulated and observed streamflow
(dimensionless), β is the bias ratio (dimensionless), α is the standard deviation ratio (dimensionless), γ
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is the variability ratio (dimensionless), cov is the covariance between observation and simulation, µ is
the mean runoff (mm or cms), and σ is the standard deviation (mm or cms). As the modified KGE′
tends to be sensitive to large values, a square root transformation (or the Box-Cox power transformation
with a lambda value of 0.5) (KGE′sqrt) was applied to the original flow before computing KGE′ to
reduce the degree of expected bias toward high flow [8,47].

2.2.2. The Automatic Parameter Calibration Algorithm

Automatic calibration with selected objective functions was performed by the shuffled complex
evolution algorithm (SCE), which is a sampling-based heuristic search strategy [50,51]. Previous
studies have proved its applicability to the calibration of hydrological models [8,45,46,52], and the
details of SCE are well described in literature [50,53]. The SCE sampling of this study employed 15
complexes and 21 points (or populations) per complex. The sampling continued until the differences
between the objective function values sampled in the last 10 points were less than 0.1%.

2.2.3. Model Evaluation Statistics

The calibrated Tank models were evaluated using four performance statistics commonly used
in hydrological modeling: (1) NSE [42], (2) a log-transformed NSE (NSEln) [34], (3) percent bias
(PBIAS) [51], and (4) flow duration curve (FDC) index (NSEFDC) [8,54]. The NSE is known as a
sensitive index to high flow, and it was used to evaluate high flow accuracy [54,55]. The NSEln has
an increased influence of low values as compared to the original NSE because of the logarithm, and
thus it was employed to access low flow simulation [8,34,54]. The NSEFDC is a type of Nash–Sutcliffe
efficiency designed to measure the similarity between FDCs [8,54,56], indicating the flow variability
index. The values of NSE, NSEln, and NSEFDC are close to 1 when there is a complete agreement
between simulated and observed streamflow, but they can become large negative values (−∞) when
the discrepancy between them is wide. The measures the overall tendency or bias that the simulated
data have compared to the observed [57]. More detailed equations of NSE, NSEln, NSEFDC, and
PBIAS can be seen in [8].

2.3. Relating Watershed Characteristics to Model Parameter Values

Multiple linear regression was carried out to find out the regression relationship between
the calibrated Tank model parameter values (dependent variables) and watershed characteristics
(independent variables):

yi = β0 + β1x1 + β2x2 + . . .+ βn−1xn−1 + εi, (16)

where yi is the calibrated parameter of the Tank model, x1, x2, . . ., xn−1 are the watershed characteristics,
including surface geology and land use types, β0, β1, . . . , βn−1 are coefficients, and εi is a model
constant [58]. The logarithmic transformation for independent variables was considered to explore
the best regression model. Three strategies of variable selection methods, forward, backward, and
stepwise selections, were employed to determine the optimum number of independent variables; the
strategy that provided the highest adjusted R2 was finally selected. No more than five independent
variables were used in each regression.

3. Study Watersheds and Their Characteristics

Forty-nine watersheds draining 3.8 to 2990.7 km2 throughout South Korea were selected on the
basis of the variability of their locations, land uses, and topography in this study [8,59] (Figure 2). The
study watersheds represent a wide range of hydrological conditions, such as drainage areas (Area),
watershed and channel slopes (W_Slope and S_Slope), drainage densities (Density) [60], flow lengths
(Length), form factors (Form), and the percentages of forest (Forest), rice paddy fields (Paddy), and
uplands (Upland) (Figure 2). These watersheds were randomly divided into two groups. The first
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group included 39 watersheds to be used in the development of the regional equations. The second
group consisted of 10 watersheds to be used to verify the developed regression equations.

The precipitation records of weather stations associated with the study watersheds were obtained
from the Korea Meteorological Administration (KMA), and the areal average precipitation was
determined using the Thiessen polygon method [61]. Other daily weather variables, including
temperature, relative humidity, mean wind velocity, and solar radiation, were obtained from the KMA
and used to calculate the potential evapotranspiration (PET) by the FAO-PM method [48]. Topographic
characteristics, including drainage area, watershed mean slope, channel slope, drainage density, flow
length, and form factor, were calculated using 30-m digital elevation models (DEMs) provided by the
National Geographic Information Institute (NGII). The percentages of forest, upland, and paddy areas
were calculated from a land-use map obtained from the Ministry of Environment (MOE).Water 2019, 11, x FOR PEER REVIEW 9 of 21 
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Observed daily streamflow data of the study watersheds were compiled from the Korea Ministry
of Land, Infrastructure, and Transport (MOLTM) and Seoul National University [59,62]. The length
of available flow records varies from one watershed to another, and all study watersheds included
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at least five years of data. A split sample test scheme was employed to calibrate and validate the
models; at least three and two years of streamflow records were used for calibration and validation,
respectively. In addition, the calibration periods were set to include wet, average, and dry years [63,64].
The first two years of weather records were used to stabilize the hydrological variables of the model so
that calibration results would be minimally affected by arbitrary and rough assumptions made for
the initial conditions. In this study, the parameters of 3-Tank models were calibrated to streamflow
observations made at the outlets of the 39 study watersheds with two different objective functions,
RMSE and KGE′sqrt (Table 1 and Figure 2).

4. Results and Discussion

4.1. Parameter Calibration

We defined the optRMSE and optKGE′sqrt as the cases of using RMSE and KGE′sqrt as an objective
function, respectively. The performance statistics were compared in terms of high and low flow, FDC,
and runoff volume. The statistical significance of differences between the model performance statistics
was investigated using a paired t-test at a significance level of 0.05.

Overall, the parameter calibration provided satisfactory performance in most study watersheds,
especially in the case of the optKGE′sqrt (Table 3). The optRMSE yielded slightly higher NSE values (or
more accurate peak flow prediction) than optKGE′sqrt in the calibration of the 3-Tank model parameters
(p < 0.001) (Figure 3). However, the differences between the NSE values were not statistically significant
in the validation (p > 0.05). The use of KGE′sqrt provided significantly better accuracy in predicting
low flow (NSEln) and flow variability (NSEFDC) as compared to that of optRMSE (p < 0.001). In terms
of PBIAS (or the overall water balance), the two objective functions provided no significant difference
for both evaluation periods (p > 0.05). Such results imply that optKGE′sqrt can provide more balanced
evaluation aspects than optRMSE in model parameter calibration, as KGE is more responsive to low
values than RMSE [8,45,47]. In this study, we included study watersheds where the corresponding
models provided “satisfactory” performance (0.50 < NSE and PBIAS < ±15) so that we could exclude
the influence of models that do not apply to the watersheds on parameter regionalization.

Table 3. Performance comparison of the 3-Tank model calibrated with the two objective functions
(optRMSE and optKGE′sqrt) for the 39 study watersheds.

Period Model

Performance

Unsatisfactory
Satisfactory

Fine a Good b Very Good c Total

Calibration optRMSE 5% 36% 33% 26% 95%
optKGE′sqrt 10% 28% 31% 31% 90%

Validation optRMSE 28% 31% 28% 13% 72%
optKGE′sqrt 15% 46% 26% 13% 85%

a Fine: 0.50 < NSE ≤ 0.70, and ±10 ≤ PBIAS < ±15. b Good: 0.70 < NSE ≤ 0.80, and ±5 ≤ PBIAS < ±10. c Very good:
NSE > 0.80, and PBIAS < ±5.
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Figure 3. Comparison of performance statistics (NSE, NSEln, NSEFDC, and PBIAS) provided by the
3-Tank models calibrated at the outlets of 39 study watersheds with two objective functions (optRMSE
and optKGE′sqrt). The height of a box plot represents the interquartile range (IQR) (or the distance
between the 75th and 25th percentiles), and the ends of whiskers signify the maximum and minimum
values. Circles beyond the whisker ends are outliers.

The Kolmogorov–Smirnov (KS) test was conducted to see if there are statistically significant
differences in the parameter value distributions of the 3-Tank models calibrated with RMSE and
KGEsqrt (at the significance level of 0.05). The comparison showed that the use of different objective
functions provided the distributions of b1, a2, and h2 that were significantly different from each other
(p < 0.05) (Figure 4). Furthermore, b1 controlled the amount of water that infiltrated through the
bottom outlet of the top tank into the second layer, and a2 and h2 regulated the amount of intermediate
runoff; thus the three parameters were critical to the shapes of recession and baseflow parts of
the streamflow hydrographs. Such findings indicate that the selection of an objective function in
model calibration can substantially influence the hydrological analyses, including regionalization, by
providing different mathematical representations for a watershed under consideration and by creating
parameter uncertainty. In the following sections, we have demonstrated how the objective function
selection can influence the regionalization of model parameters and their uncertainty.
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4.2. Regionalization

4.2.1. Regionalization of the 3-Tank Model

The correlation structure between calibrated parameter values and selected hydrologic features of
the watersheds was investigated to identify key watershed characteristics (Figure 5). At least six of
the parameters were correlated (|r| ≥ 0.4, p < 0.05) to one or more of the watershed features. The five
parameters that were associated with the first layer (or the top tank) of the 3-Tank model, including
a11, a12, h11, h12, and b1, turned out to be correlated to topographic factors, such as W_Slope, Length,
S_Slope, and Form. Such a correlation structure was expected, as the first layer of a Tank model is
usually introduced to simulate hydrological processes happening on the ground surface, such as direct
runoff generation and routing [8,9,13].

In the case of using the objective function of RMSE, close correlation structures (0.7 > |r| > 0.5,
p < 0.01) were found in between Form and the heights of two side outlets of the first layer, h11 and
h12 (Figure 5). When KGE′sqrt was employed as the objective function, however, h11 showed a close
relationship with W_Slope (r = 0.58, p < 0.001), and h12. was associated with Form (r = −0.42,
p < 0.05) and Upland (r = −0.43, p < 0.05). The outlet heights, h11 and h12, of the first layer control
the quick runoff response and high (and peak) flow of a watershed, respectively, and they control the
surface storage capacity at the beginning of an event (h11) and the total surface storage capacity (h12)
of the upper layer [8,17,37,65]. Thus, the findings imply that direct runoff of the study watersheds is
relatively heavily controlled by Form, W_Slope, and Upland than the other watershed features, which
is corroborated by our understanding and previous studies [8,66–68].
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Figure 5. Correlation between calibrated parameter values and selected watershed characteristics.
(a) optRMSE and (b) optKGE′sqrt. (*, **, and *** indicate p < 0.05, 0.01, and 0.001, respectively).

The parameters of the second tank (a2, h2, and b2) and third tank (a3) determine the shapes of
recession and baseflow-only parts of a streamflow hydrograph [8]. The calibrated values of a2 are
relatively strongly correlated to Paddy, regardless of the types of objective functions. In the case of
calibrating with KGE′sqrt, h2 was found to be correlated to W_Slope (r = −0.51, p < 0.01) or Forest
(r = −0.50, p < 0.01), and b2 was also correlated to Upland (r = −0.51, p < 0.01). The calibrated values
of a3 were associated with Density (r = −0.38, p < 0.05) when KGE′sqrt was used as the objective
function; however, the parameter did now show any statistically significant relationship with the
watershed characteristics in the case of the RMSE objective function.
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4.2.2. Performance of the Regionalized 3-Tank Models

The two regional models (regRMSE and regKGE′sqrt) were developed by relating the calibrated
values of parameters to the watershed characteristics (Tables4 and 5). Regression equations were
assigned to parameters that were at least “moderately” (|r| ≥ 0.35) correlated to any of the watershed
features. When the correlation structure between the parameter values and watershed features was
weak (|r| < 0.35), the median of the parameter values that had been calibrated to individual study
watersheds was used to represent the overall average value of the parameter [15]. When KGE′sqrt was
used as the objective function in the calibration, stronger correlation structures were found between the
parameter values and watershed characteristics as compared to the optRMSE (Figure 5, Tables4 and 5).

Table 4. The 3-Tank model parameters regionalized based on the results of calibration implemented
with optRMSE.

Par. Equations R2 Adj.R2

a11 0.123
a12 0.364
h11 54.841− 109.254× Form(−) 0.25 0.22

h12
−26.734− 290.122×Form(−)+ 15.157×S_slope(%)+

2.346× Paddy(%) + 30.219× ln(Length(km))
0.66 0.60

b1
−0.0352− 0.210× ln

(
Area

(
km2

))
+ 0.403×

ln(Length(km))
0.23 0.17

a2 0.5305− 0.0097× Paddy(%) 0.20 0.17
h2 46.2
b2 0.061
a3 0.007

SECP −0.0143 + 0.0283 × Density (km−1) −0.1235 ×
Form(−) + 0.0061 × ln(Area(km2))

0.40 0.33

Table 5. The 3-Tank model parameters regionalized based on the results of calibration implemented
with optKGE′sqrt.

Par. Equations R2 Adj.R2

a11 0.168

a12
1.9032− 0.0074×W_slope(%) − 1.9193× Form(−) − 0.0114×Upland(%)

+0.3082× ln(Area
(
km2

)
) − 0.7034× ln(Length(km))

0.45 0.35

h11 1.828 + 0.957×W_slope(%) 0.33 0.31
h12 119.514− 91.270× Form(−) − 2.235×Upland(%) 0.32 0.27
b1 0.100
a2 0.9087− 0.0180× Paddy(%) − 0.0805× ln(Length(km)) 0.57 0.54
h2 123.027− 8.223×Density

(
km−1

)
− 0.962× Forest(%) − 9.786× ln(S_slope(%)) 0.37 0.30

b2 −0.0486 + 0.0028×W_slope(%) + 0.0649×Density
(
km−1

)
− 0.0108× upland(%) 0.48 0.42

a3

0.05104 + 0.00077×W_slope(%) − 0.00270×Density
(
km−1

)
+ 0.06569

×Form(−) − 0.00814× ln(Area
(
km2

)
) − 0.02560

× ln(S_slope(%))

0.42 0.31

SECP 0.0470

The accuracy of the regionalized 3-Tank models was evaluated by comparing the model
performance statistics provided by the calibrated and regionalized models for the 39 study watersheds
employed in the regionalization (Figure 6). A one-way analysis of variance (ANOVA) was carried out
to determine the statistical significance of differences between the performance statistics of the four
groups (optRMSE, optKGE′sqrt, regRMSE, and regKGE′sqrt). Subsequently, a post-hoc Tukey honest
significant difference (HSD) test was performed to facilitate a pairwise comparison of the performance
statistics provided by the models [8,69].
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Figure 6. Comparison of performance statistics (NSE, NSEln, NSEFDC, and PBIAS) provided by the
calibrated (optRMSE and optKGE′sqrt) and regionalized models (regRMSE and regKGE′sqrt) for the 39
study watersheds used for regionalization.

Overall, the two regionalized models (regRMSE and regKGE′sqrt) provided similar accuracy to that
of the calibrated models (optRMSE and optKGE′sqrt). There was no statistically significant difference
between the NSE values achieved by the four models (p > 0.05), which implied that regionalization can
predict high (or peak) flow at the level of accuracy similar to those of the calibrated models. In terms of
NSEln and NSEFDC, however, regKGE′sqrt yielded better performance than the regRMSE, presumably
because optKGE′sqrt yielded better accuracy than regRMSE (p < 0.01). However, optKGE′sqrt and
regKGE′sqrt provided similar accuracy (p > 0.05). The regRMSE slightly underestimated the overall
runoff volume (e.g., positive PBIAS) as compared to regKGE′sqrt; this may be attributed to KGE′sqrt

providing more balanced views on model performance than the RMSE [8,45,47].
The performance of the regionalized models (regRMSE and regKGE′sqrt) was further investigated

by applying them to the other 10 study watersheds that were not used in the regionalization processes
(Figure 7). The sample size was small (n = 10); therefore, the non-parametric Wilcoxon signed-rank
test was conducted to test the significance of any differences between the performance statistics
provided by the two regionalized models at a significance level of 5%. The regKGE′sqrt model
yielded NSEln, NSEFDC, and PBIAS significantly better than those of regRMSE while they provided
statistically similar NSE values. Such results highlight the potential of regKGE′sqrt as a strategy for RR
model regionalization.



Water 2019, 11, 2257 15 of 21

Water 2019, 11, x FOR PEER REVIEW 15 of 21 

 

𝑟𝑒𝑔𝑅𝑀𝑆𝐸 while they provided statistically similar 𝑁𝑆𝐸 values. Such results highlight the potential 
of 𝑟𝑒𝑔𝐾𝐺𝐸′௦௤௥௧ as a strategy for RR model regionalization. 

 
Figure 7. Comparison of performance statistics (𝑁𝑆𝐸, 𝑁𝑆𝐸𝑙𝑛, 𝑁𝑆𝐸𝐹𝐷𝐶, and 𝑃𝐵𝐼𝐴𝑆) provided by the 
two regression models (𝑟𝑒𝑔𝑅𝑀𝑆𝐸 and 𝑟𝑒𝑔𝐾𝐺𝐸′௦௤௥௧) for the 10 validation watersheds. 

The performance of the two models was compared with that of other regionalized models using 
the 10 validation watersheds (Table 6). As seen in the comparison, the two models regionalized in 
this study outperformed the others in terms of 𝑁𝑆𝐸 and 𝑃𝐵𝐼𝐴𝑆. The 3-Tank models regionalized by 
Kim et al. [41] provided a performance that was comparable to that of this study. However, An et al. 
[18] reported relatively poor performance as compared to others. We applied one-way ANOVA and 
HSD tests to see if there were significant differences between the performance statistics provided by 
the 3-Tank models regionalized for the 10 validation watersheds (Figure 8). 

Table 6. Comparison of the performance of the two regional models (𝑟𝑒𝑔𝑅𝑀𝑆𝐸 and 𝑟𝑒𝑔𝐾𝐺𝐸′௦௤௥௧) 
and others prepared for the 10 validation watersheds. 

Model 
Performance 

Unsatisfactory 
Satisfactory 

Fine a Good b Very Good c Total 𝑟𝑒𝑔𝑅𝑀𝑆𝐸 20% 50% 10% 20% 80% 𝑟𝑒𝑔𝐾𝐺𝐸′௦௤௥௧ 10% 60% 20% 10% 90% 
Kim and Park [13] 50% 30% 20% 0% 50% 

Huh et al. [40] 40% 40% 20% 0% 60% 
Kim et al. [41] 20% 70% 10% 0% 80% 
An et al. [18] 70% 0% 30% 0% 30% 

a Fine: 0.50 < 𝑁𝑆𝐸 ≤ 0.70, and ±10 ≤ 𝑃𝐵𝐼𝐴𝑆 < ±15. b Good: 0.70 < 𝑁𝑆𝐸 ≤ 0.80, and ±5 ≤ 𝑃𝐵𝐼𝐴𝑆 < 
±10. c Very good: 𝑁𝑆𝐸 > 0.80, and 𝑃𝐵𝐼𝐴𝑆 < ±5. 

Figure 7. Comparison of performance statistics (NSE, NSEln, NSEFDC, and PBIAS) provided by the
two regression models (regRMSE and regKGE′sqrt) for the 10 validation watersheds.

The performance of the two models was compared with that of other regionalized models using
the 10 validation watersheds (Table 6). As seen in the comparison, the two models regionalized in this
study outperformed the others in terms of NSE and PBIAS. The 3-Tank models regionalized by Kim
et al. [41] provided a performance that was comparable to that of this study. However, An et al. [18]
reported relatively poor performance as compared to others. We applied one-way ANOVA and HSD
tests to see if there were significant differences between the performance statistics provided by the
3-Tank models regionalized for the 10 validation watersheds (Figure 8).

Table 6. Comparison of the performance of the two regional models (regRMSE and regKGE′sqrt) and
others prepared for the 10 validation watersheds.

Model

Performance

Unsatisfactory
Satisfactory

Fine a Good b Very Good c Total

regRMSE 20% 50% 10% 20% 80%
regKGE′sqrt 10% 60% 20% 10% 90%

Kim and Park [13] 50% 30% 20% 0% 50%
Huh et al. [40] 40% 40% 20% 0% 60%
Kim et al. [41] 20% 70% 10% 0% 80%
An et al. [18] 70% 0% 30% 0% 30%

a Fine: 0.50 < NSE ≤ 0.70, and ±10 ≤ PBIAS < ±15. b Good: 0.70 < NSE ≤ 0.80, and ±5 ≤ PBIAS < ±10. c Very good:
NSE > 0.80, and PBIAS < ±5.

The five regionalized models employed different regression equations that explained the
relationships between parameter values and watershed characteristics, but there was no statistically
significant difference between the NSE values provided by them (p > 0.05). In terms of NSEln and
NSEFDC, however, regKGE′sqrt provided significantly better performance as compared to ones that
had been developed in Kim and Park [13] and Kim et al. [41]. The 3-Tank model regionalized by An et
al. [18], yielded NSEln and NSEFDC values similar to those by regKGE′sqrt (p > 0.05), but the model
significantly underestimated runoff volume (positive PBIAS) compared to the other models (p < 0.05).
The regionalized model of Huh et al. [40] provided a level of efficiency similar to that of regKGE′sqrt,
but regKGE′sqrt outperformed the model in terms of the model evaluation criteria that are commonly
employed in hydrological modeling practices [57] (Table 6).
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and other regional models for 10 verification watersheds.

The relatively worse performances of the models reported by Kim and Park [13] and Kim et
al. [41], reproducing low flow, might be related to the models being developed on manually calibrated
parameters; thus, the local optima could be used for regionalization (Table 2). In addition, the studies
did not calibrate models by considering low flow efficiencies in the development process. Huh et
al. [40] and An et al. [18] employed automatic optimizations (Table 2), and their models provided better
low flow performances. However, the models produced relatively worse performances as compared
to regKGE′sqrt as these studies used RMSE as an objective function (Table 2), which may yield less
balanced results than the case when KGE′sqrt is used.

In this study, we compared the prediction performance of two regionalized 3-Tank models that
were calibrated with two different objective functions, optRMSE and optKGE′sqrt. From the comparison,
we found that the models could predict high flow and water balance of the 49 study watersheds
at acceptable levels of accuracy (Table 6, Figures 6–8). We also saw that the use of RMSE that has
been widely employed as an objective function in the regionalization studies provided relatively poor
performance in reproducing low flow and FDC compared to the use of KGE′sqrt. Such a result is
not surprising because KGE′sqrt considers flow variability more explicitly when evaluating model
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accuracy while NSEsqrt is still sensitive to peak or high flow [47]. It is worth noting that optKGE′sqrt

gained significantly higher NSEln and NSEFDC values but slightly lower NSE efficiency as compared
to optRMSE (Figure 3). Such a finding suggests that when low flow is one of the modeling outputs of
interest, we should not solely rely on statistics including NSE and R2 that have been commonly used
but also know that the statistics are very sensitive to high flow. Instead, combining alternative statistics,
such as NSEln and NSEFDC, could provide a balanced view point to model evaluation [8,9,55,70].

The KGE and its variants are kinds of the Euclidian distance (ED) between the optimal and ideal
points for correlation, bias, variance, and variability (Equations (10)–(15)). Pfannerstill et al. [71]
proposed another form of the ED (EDDM, Equation (17)) as an objective function. The two ED measures,
KGEs and EDDM, are similar to each other because both consider pairwise differences (r and NSE),
water balance (β and PBIAS), and flow variability (α, γ, RSRQ0Q5, RSRQ5Q20, and RSRQ20Q70):

EDDM =

√
1
5
(1−NSE)2 +

1
5

(PBIAS
100

)
+

1
5
(RSRQ0Q5)2 +

1
5
(RSRQ5Q20)2 +

1
5
(RSRQ20Q70)2, (17)

where RSRQ0Q5, RSRQ5Q20, and RSRQ20Q70 are RMSE-observations standard deviation ratio
(RSR) [64] for the FDC segments of 0% to 5%, 5% to 20%, and 20% to 70%, respectively. We found that
the values of EDDM are highly correlated with those of KGEsqrt in the study dataset (R2 = 0.79; Figure 9).
Such a finding implies that the ED-based statistics including KGEs and EDDM could serve as an objective
function to efficiently count for the multiple evaluation aspects in an RR model regionalization.
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5. Summary and Conclusions

This study explored ways to accurately regionalize an RR model, i.e., the 3-Tank model, and
evaluated the performance of models regionalized on the basis of the calibration results made with
different objective functions. We also demonstrated the impacts of objective function selection on RR
model regionalization. Results showed that there was no significant difference between the performance
of optRMSE and optKGEsqrt when predicting high flow and water balance. However, the optRMSE
provided poorer performance in reproducing low flow and FDC than optKGEsqrt. The regKGE′sqrt
provided high flow modeling performance similar to that of the calibrated models (optRMSE and
optKGEsqrt). In addition, regKGE′sqrt was superior to the regRMSE when predicting low flow, water
balance, and FDC in the study watersheds. Such evaluation results suggested that regKGE′sqrt can
serve as an effective objective function when regionalizing a daily rainfall-runoff simulation model
for ungauged watersheds in Korea. The regionalization methods proposed in this study should be
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applicable to other watersheds, even though the regression equations developed using the method
might not be suitable for them.
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