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Abstract: The impacts of climate change on precipitation and drought characteristics over 
Bangladesh were examined by using the daily precipitation outputs from 29 bias-corrected general 
circulation models (GCMs) under the representative concentration pathway (RCP) 4.5 and 8.5 
scenarios. A precipitation-based drought estimator, namely, the Effective Drought Index (EDI), was 
applied to quantify the characteristics of drought events in terms of the severity and duration. The 
changes in drought characteristics were assessed for the beginning (2010–2039), middle (2040–2069), 
and end of this century (2070–2099) relative to the 1976–2005 baseline. The GCMs were limited in 
regard to forecasting the occurrence of future extreme droughts. Overall, the findings showed that 
the annual precipitation will increase in the 21st century over Bangladesh; the increasing rate was 
comparatively higher under the RCP8.5 scenario. The highest increase in rainfall is expected to 
happen over the drought-prone northern region. The general trends of drought frequency, duration, 
and intensity are likely to decrease in the 21st century over Bangladesh under both RCP scenarios, 
except for the maximum drought intensity during the beginning of the century, which is projected 
to increase over the country. The extreme and medium-term drought events did not show any 
significant changes in the future under both scenarios except for the medium-term droughts, which 
decreased by 55% compared to the base period during the 2070s under RCP8.5. However, extreme 
drought days will likely increase in most of the cropping seasons for the different future periods 
under both scenarios. The spatial distribution of changes in drought characteristics indicates that 
the drought-vulnerable areas are expected to shift from the northwestern region to the central and 
the southern region in the future under both scenarios due to the effects of climate change. 

Keywords: Effective Drought Index (EDI); meteorological drought; climate change; GCMs under 
RCP scenarios; future drought projections; Bangladesh 

 

1. Introduction 

Nowadays, climate change is regarded as a major global issue, and it poses significant challenges 
to human existence and socio-economic development, particularly in Bangladesh. The dominant 
features of climate change in Bangladesh detected in the late 19th century include the significant 
increases in temperature and monsoon and post-monsoon precipitation due to global warming. 
However, a decreasing trend of precipitation was observed in the winter season [1]. The overall 
increasing rate of warming in Bangladesh is higher than the present increasing rate of global 
warming, and this trend is expected to continue over the 21st century [2–4]. Notably, Bangladesh has 



Water 2019, 11, 2219 2 of 23 

 

been suffering from frequent natural disasters. Among the most expensive natural disasters, drought 
is a chronic natural disaster that can have severe and long-lasting impacts on water resources, 
agriculture, ecosystems, and human societies [5]. The impact of drought events is often worst in 
developing countries because their economies are driven mainly by agricultural products that are 
adversely affected by meteorological droughts [6]. Drought may generally be defined as a scarcity of 
water in a region over a prolonged period of time triggered by a lack of rainfall. Presently, great effort 
needs to be expended on researching future changes in rainfall patterns, which are the major causes 
of drought in Bangladesh and can lead to adverse changes in economic and social development. The 
effects of gradual climate changes and extreme weather events may negatively impact overall socio-
economic development in many regions, and therefore, the scientific community and policymakers 
need more information about the probability of future occurrences of such events [7,8]. 

The Coupled Model Intercomparison Project (CMIPs) has made available general circulation 
model (GCM) outputs for the Programme for Climate Model Diagnosis and Intercomparision 
(PCMDI), and these products are available for research. The climate model outputs from Phase 3 of 
the CMIP (CMIP3) were broadly used in the Intergovernmental Panel on Climate Change (IPCC) 4th 
Assessment Report (AR4) [9]. Recently, climate models from Phase 5 of the CMIP (CMIP5) along with 
greenhouse gas concentration scenarios termed as representative concentration pathways (RCPs) 
were adopted by the IPCC for its 5th Assessment Report (AR5) [10]. The models from CMIP5 joined 
with the RCP scenarios have delivered more precise representations of climate outputs than the 
CMIP3 model results because corrections were made in regard to some key assumptions of climate 
that were overlooked previously by the model developers [11]. Sperber et al. [12] demonstrated that 
the CMIP5 models are more competent for capturing numerous features of the Asian monsoon 
climate compare to the CMIP3 models. Therefore, it is of supreme importance to assess future 
changes in climatological drought by using the precipitation data from the new sets of CIMP5 GCM 
projections. 

Presently, GCMs are the principal tools for predicting and projecting future climate changes. 
However, most such global climate models are typically run at coarse resolutions, e.g., more than 
hundreds of kilometers. Therefore, the GCM outputs are inherently unable to represent regional or 
local climate features and dynamics at the necessary spatial resolutions for detailed analyses [13]. To 
overcome this problem, downscale techniques have been developed to obtain local climate change 
information at the desired scale from coarser-resolution GCM outputs [14,15]. Dynamic downscaling 
data have been recognized to be more representative of fine-scale physical processes than statistical 
downscaling data; however, the former technique requires more expensive computing resources than 
the latter technique [16–18]. A large number of simulations with multiple GCM configurations and 
emissions scenarios can be computed efficiently by using a statistical approach, and such an approach 
is well accepted in the scientific community; these types of data are widely used in downscaling 
climate projections. Thus, projections from multiple GCMs from CMIP5 have been used in this study. 

In parallel, climate change impact assessments at the regional scale rarely use the raw GCM 
outputs because climate model data suffer from systematic biases due to the uncertainty in the 
parameterization of unsolved processes [19]. Therefore, bias-corrected GCM outputs are essential for 
regional climate impact studies and vulnerability assessments. A vast number of bias correction 
procedures are in use, such as the monthly mean correction [20], delta change [21], and quantile 
mapping [22] techniques. The quantile mapping methods are considered to be the most accurate 
methods in terms of precipitation [23] among all of the other methods. Therefore, a quantile based 
bias correction approach was used to adjust for the model biases in this study. 

One way of assessing the changes in future drought characteristics is to use climate projections 
from a couple of GCM simulations under different greenhouse gas emission scenarios [24]. According 
to Coelho and Goddard [25], future changes in precipitation patterns may aggravate drought risk in 
highly vulnerable tropical areas. In several areas, climate change is expected to primarily affect 
precipitation, and thus, it is likely to affect the frequency and severity of metrological droughts. A 
remarkable number of studies have assessed the future drought risks on global and regional scales 
by using multiple climate model scenarios [26–29]. For instance, Chen et al. [30] investigated the 
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future change in the drought pattern over the 21st century in China by using global climate models 
and regional climate models (RCMs) under the SRES (Special Report on Emissions Scenarios) A1B 
scenario, and the findings indicated that droughts will become less frequent in most areas of China. 
Conversely, Wang et al. [31] examined future drought in China by using CMIP5 model outputs under 
the RCP4.5 and RCP8.5 scenarios and revealed that extreme drought events would increase in the 
future. This discrepancy may have been due to the limitations of drought indices and the lack of 
realistic climate information. Importantly, the future drought outlook may depend on the indicators 
used in drought calculations along with realistic climate data. The selection of appropriate drought 
indices is therefore vital for understanding the future drought characteristics and for planning a 
drought mitigation strategy for a region [32]. Hence, it is necessary to predict future drought 
characteristics on a local scale by using realistic climate information and locally applicable and 
appropriate drought indices. 

In the past few years, several studies have projected the average temperatures and annual 
rainfall for Bangladesh in the future [33–35]. For instance, Rahman et al. [34] estimated the annual 
rainfall by using version 3 of an RCM (RegCM3), and the findings indicated that a 50% decrease in 
rainfall will occur by 2060. Nowreen et al. [33] found that the amount of total rainfall is likely to 
increase in the future based on simulations with a 17-member ensemble-driven by the Hadley Centre 
Coupled Model (HadCM3). A number of studies have suggested that the overall monsoon rainfall 
will increase and post-monsoon rainfall will decreases in the future throughout most parts of the 
country [34,35]. Notably, very few studies have been done concerning future drought projections 
[35,36]. Islam et al. [36] evaluated the drought hazards at current and future climate change 
conditions in the western region of Bangladesh by using simulated climate data from the outputs of 
three global climate models for the period between 2041 and 2070. Hasan et al. [35] estimated the 
future drought conditions by using 25 km high resolution downscaled and projected climate data 
generated from the RCM known as PRECIS for a continuous period of 1971–2100. The results 
revealed that droughts will generally decrease in future years but there will be a comparative higher 
frequency of droughts in the mid 21st century. However, all of these studies used the climate model 
output from CMIP3 and were driven by the previous IPCC AR4 scenarios. 

Recently, Hasan et al. [37] projected the future climate and associated extremes while 
considering the new RCP4.5 and RCP8.5 scenarios by using RCM results driven by the GCMs over 
Bangladesh within the new CMIP5. The study revealed that overall precipitation and temperature 
trends are likely to increase in the future over this region. However, drought characteristics were not 
evaluated by using these outputs. Mortuza et al. [38] projected only the future drought frequency 
from 2020 to 2100 by using bias-corrected four GCM (CMIP5) model outputs under the RCP4.5 and 
RCP8.5 scenarios and showed that the drought frequency will decrease in the future (2020–2100) 
compared to the past (1961–2010). They also pointed out that more frequent and severe droughts will 
occur on the west side of the country. However, a complete assessment of future changes in drought 
characteristics in terms of the frequency, duration, and intensity of meteorological drought events 
and seasonal drought days mainly based on CMIP5 multimodel simulated data still has not been 
performed to understand the future conditions of droughts in Bangladesh, and this was the prime 
motivation for this study. The downscaling techniques of spatial disaggregation were utilized in this 
study to provides finer-resolution climate projections. 

Over the year, a good number of drought indices (DIs) have been proposed and developed to 
identify the spatiotemporal patterns of droughts and quantify their intensity. The maximum number 
of drought indices is region-specific, as indices are limited in terms of their applications to different 
climatic conditions due to the inherent complexity of drought phenomena. In Bangladesh, most of 
the studies have measured drought severity by using the Standardized Precipitation Index (SPI; [39]), 
while very few research studies have used other DIs. The SPI is calculated based on the averaged 
monthly precipitation for a certain period. Therefore, the time steps involved in the SPI tend to 
produce several different values for the same period. Additionally, the SPI does not take into account 
the water resources generated by rainfall that may have already been lost due to outflow as well as 
the effect of evaporation. Moreover, the SPI tends to assign equal weight to temporally different 
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precipitation events, thereby resulting in inaccuracies in predictions of the drought severity [40]. 
Byun and Wilhite [41] developed a new series of indices to overcome these limitations. Specifically, 
they used a new concept of effective precipitation (EP), in which the EP represents the summed value 
of all daily precipitation with a time-dependent reduction function. The EDI was found to be more 
responsive to drought conditions compared with other drought indices, and it could capture the real 
essence of the meteorological drought situation in the study area [42–45]. In particular, 
Kamruzzaman et al. [46] empirically demonstrated the superiority of the EDI over the SPI when 
monitoring both long-term and short-term droughts in Bangladesh. Thus, the EDI was employed in 
this study to interpret the changes in drought patterns to gain knowledge about the potential future 
changes in drought over Bangladesh. 

With the aim of investigating the future changes in precipitation and meteorological drought 
characteristics over Bangladesh, the drought characteristics were assessed by using the EDI and the 
bias-corrected CMIP5 GCM precipitation data under the RCP4.5 and RCP8.5 scenarios from 2010 to 
2100 were used in this study. Twenty-nine different GCMs and corresponding Multi-Model 
Ensemble (MME) means were evaluated to assess the performance of the models in reproducing the 
observed drought characteristics during the historical period and for deriving future changes in 
drought characteristics in terms of the frequency, duration, and severity. The changes were evaluated 
in three future time ranges, namely, the 2010s (2010–2039), 2040s (2040–2069), and 2070s (2070–2099), 
and data were compared to the baseline period (1976–2005). 

2. Materials and Methods 

2.1. Study Area and Observation Data 

The study area covers Bangladesh, which is situated in latitudes between 20°34′ and 26°38′ north 
and longitudes between 88°01′ and 92°41′ east in South Asia; this region is bordered by India on three 
sides (i.e., west, north, and northeast), and it is bordered by Myanmar to the southeast. The southern 
border is demarcated by the Bay of Bengal with a long coastline. Although elevations up to 105 m 
above sea level occur in the northern part of the country, most of the elevations are less than 10 m 
above sea level; heights decrease in the coastal south (Figure 1). A predominance of agricultural lands 
is evident, and such lands comprise three-fourths of the total geographical area followed by forests, 
including orchards, as shown in Figure 2. Bangladesh is one of the most vulnerable nations to the 
increasing effects of global climate change. Presently, this country is regularly affected by natural 
disasters such as floods, tornadoes, droughts, and tidal bores. It has experienced drought conditions 
recurrently over the past several years; on average, these events have occurred once in 2.5 years [47] 
and have mainly affected agricultural lands, with huge losses in food grains [48,49]. While drought 
is a periodic occurrence in many parts of Bangladesh, the northwestern part of the country is the most 
susceptible to drought due to the high variability of rainfall [50]. During 2006, the average crop 
production was decreased by 25–30% due to the effects of drought in the northwestern part of 
Bangladesh [51]. This area is comparatively dry in relation to other areas of the country, as it receives 
much lower rainfall [52]. Additionally, this area contains sandy soils that have a low moisture 
retention capacity and a high infiltration rate [53]. Therefore, drought happens in this region 
regularly. 

The climate of Bangladesh is characterized by moderately warm temperatures, high humidity, 
and subtropical monsoons with wide seasonal variations in rainfall. The following four metrological 
seasons are generally recognized: a hot, humid pre-monsoon period (March to May); a humid, warm, 
and rainy monsoon period (June to September); a post-monsoon period (October to November); and 
a dry winter (December to February). Moreover, the cropping season in Bangladesh is categorized 
into Pre-Kharif (March–June), Kharif (July–October), and Rabi (November–February). The mean 
annual temperature within the country is about 25 °C. The temperature varies from month to month. 
In general, the mean temperature across the country usually ranges between 11 °C and 29 °C and 
between 21 °C and 34 °C during the summer months. April is the warmest month in most parts of 
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the country [54]. The annual rainfall in the region varies from 1536 mm to 4124 mm during 1976 and 
2005, and the 30-year averaged annual rainfall was 2410 mm. (Table 1). 

 
Figure 1. The elevation map of Bangladesh (data source: https://SRTM.csi.cgiar.org). 

 
Figure 2. Location of meteorological stations and land use map of the study area. 

The Bangladesh Meteorological Department (BMD) operates 35 weather stations throughout the 
country. However, only 25 stations have continuous rainfall records for more than 30 years from 1976 
to 2005 (Figure 2). In this study, the daily time series rainfall data were used to evaluate the GCM 
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data for the same period. When working with observation data, missing data are common. Here, 
there were some missing data in the dataset, but the amount was <2%. The average values of the same 
date from neighboring stations were used in place of the missing data. 

Table 1. Mean monthly and annual rainfall at various stations in Bangladesh. 

Station 
Name 

Data 
Period 

Location Mean Monthly Rainfall of Multiple Stations During 1976–2005 (mm) Annual Avg. 
Precip. (mm) Lon. Lat. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rangpur 
1954 to 
present 89.23 25.73 8 11 25 117 274 453 498 356 383 176 8 9 2318 

Dinajpur 1948 to 
present  

88.68 25.65 10 11 14 76 222 358 471 373 370 160 9 10 2082 

Bogra 1948 to 
present 

89.37 24.85 8 13 21 79 209 320 402 293 309 152 12 11 1828 

Rajshahi 1964 to 
present 

88.70 24.37 10 16 25 65 140 261 327 255 285 127 14 11 1536 

Ishwardi 
1961 to 
present 89.05 24.13 6 21 33 86 194 292 326 230 288 117 16 9 1616 

Jessore 
1948 to 
present 89.17 23.18 14 26 46 77 176 318 316 274 269 138 29 13 1695 

Khulna 
1948 to 
present 89.53 22.78 12 39 53 84 193 355 304 329 251 131 37 8 1795 

Shatkhira 1948 to 
present 

89.08 22.72 13 39 42 90 159 295 335 296 280 127 33 9 1717 

Barishal 1949 to 
present 

90.37 22.75 10 25 55 119 212 418 419 362 282 178 46 8 2132 

Patuakhali 1973 to 
present 

90.33 22.33 8 22 43 115 238 535 540 450 342 185 53 6 2536 

Khepupara 
1974 to 
present 90.23 21.98 9 24 49 97 259 513 606 490 369 243 55 8 2721 

Bhola 
1966 to 
present 90.65 22.68 10 30 53 131 265 471 447 388 291 172 43 7 2308 

Maizdi Court 
1951 to 
present 91.10 22.87 10 27 76 154 335 574 750 631 384 181 44 7 3172 

Swandip 1966 to 
present 

91.43 22.48 9 22 68 146 349 699 860 621 436 256 50 9 3526 

Dhaka 1953 to 
present 

90.38 23.77 7 22 69 146 318 346 359 298 326 183 29 12 2115 

Mymensingh 1948 to 
present 90.43 24.72 7 22 38 145 359 395 453 326 322 216 18 10 2309 

Hatiya 
1966 to 
present 91.10 22.43 4 14 42 116 237 541 557 484 322 193 36 12 2559 

Chandpur 
1964 to 
present 90.70 23.27 6 20 61 139 247 341 375 326 259 138 39 7 1956 

Comilla 1964 to 
present 

91.18 23.43 7 24 70 149 322 359 411 318 250 154 34 10 2108 

Feni 1973 to 
present 

91.42 23.03 6 28 69 180 369 535 652 496 330 181 45 9 2900 

Sylhet 1956 to 
present 

91.88 24.9 7 34 149 367 571 769 833 602 529 222 28 13 4124 

Srimangal 
1948 to 
present 91.73 24.3 5 30 89 221 445 442 371 336 296 163 32 15 2445 

Chittagong 
1949 to 
present 91.81 22.35 4 23 50 128 292 560 645 486 227 179 60 13 2669 

Rangamati 
1957 to 
present 92.20 22.53 5 23 62 139 333 504 575 442 294 154 57 13 2601 

Cox’es Bazar 
1948 to 
present 91.97 21.45 5 18 32 117 301 812 869 668 357 198 95 14 3486 

Mean 8 23 53 131 281 459 508 405 322 173 37 10 2410 
±  ± ± ± ± ± ± ± ± ± ± ± ± ± 

STDV 3 8 27 61 96 148 176 126 66 36 20 3 649 

2.2. EDI Calculation 

In this study, EDI was used to characterize droughts in terms of the frequency, duration, 
intensity, and seasonal drought days. The estimation of drought features in this method is the use of 
daily precipitation. The EDI calculation process was carried out according to the following equations: 

𝐸𝑃𝑖 = [( 𝑃𝑚/𝑛] (1) 

𝐷𝐸𝑃 = 𝐸𝑃 −𝑀𝐸 (2) 𝐸𝐷𝐼 = 𝐷𝐸𝑃/𝑆𝑇(𝐷𝐸𝑃) (3) 

In Equation (1), EP is the daily cumulative effective precipitation, Pm is the precipitation of m – 
1 days ago, n is the duration of the preceding period, and i is the duration over which precipitation 
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is summed. For example, if i is 4, then the daily EP is P1 + + +  . In this 
study, i was set to 365 days. 

Secondly, the mean EP (MEP) is computed for each calendar day, i.e., from 1 to 365, and then 
the average of the analyzed 30-year period. The MEP is computed with the results from Equation (1). 
For instance, the MEP of the 1st day of January is the mean of 30 values for the 1st day of January 
composed over 30 years.  

The third step is to calculate the deviation of the EP (DEP) from the MEP (Equation (2)). The DEP 
indicates the deficiency (negative DEP) or surplus (positive DEP) of water resources for a particular 
day. If the dry period is longer than 365 days, i in Equation (1) increases by the number of dry days. 
For instance, if the negative DEP value continues for 2 days, i is set to be 367 and Equations (1–3) are 
again calculated. 

Finally, the standardized value of DEP is calculated, where ST (DEP) denotes the standard 
deviation of each day’s DEP. The EDI is calculated then by using Equation (3). Originally, the EDI 
was proposed for monitoring the drought conditions at a daily time step. Then, it was extended for 
monthly drought monitoring [45,55,56]. In this study, the daily EDI was used for drought 
calculations. 

2.3. Definitions of Drought Characteristics 

The EDI value illuminates the characteristics of drought events researched in this study, as 
shown in Figure 3. A meteorological drought event was considered to have occurred when the EDI 
values were less than −1, as shown in Figure 3. The drought start date was considered to be the day 
in which the EDI first indicated that the value of EDI was −1.0 or below, and the end date was 
considered to be the day when the EDI regained the value of −1.0 and above. Drought durations are 
the periods between the start and the end date, as shown in Figure 3. The drought severity is the 
cumulative deficit below the −1.0 level for the duration of a drought event, as shown in Figure 3, and 
the maximum intensity of a drought is the value of the minimum EDI at each event. 

 
Figure 3. Schematic concept of the drought characteristics (severity, duration) evaluated with the EDI 
time series. 

In this study, the classification level of dryness follows the EDI classification proposed by Kim 
and Byun [57], as shown in Figure 3, and drought events were also categorized based on the drought 
duration as shown in Table 2. 

The inverse distance weight (IDW) algorithm was used to expand the data to the entire study 
area spatially. Twenty-five (25) weather station location points of the BMD were considered for 
spatial mapping of the change in drought characteristics as well as precipitation. 

Table 2. Drought classification based on the drought duration. 

Duration (Days) Category 
Less than or equal to 30 Very short-term 
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31 to 90 Short-term 
91 to 180 Medium-term 

Greater than 180 Long-term 
In this study, the following different parameters were used for drought characterization: (a) 

frequency—number of drought events according to the severity and duration over the period of 
interest, (b) duration—average duration of all drought events over the period of interest, (c) 
intensity—extreme intensity (minimum value of EDI) among all of the drought events over the period 
of interest, and (d) seasonal drought days—number of drought days in each category in different 
cropping seasons over the period of interest. 

2.4. CMIP5 GCM Projections 

The CMIP5 projection data, including precipitation for the two RCP scenarios (RCP4.5 and 
RCP8.5), were acquired from the outputs of 29 CMIP5 GCM models. The GCM models used in this 
study are described in Table 3. 

Table 3. Summary of 29 climate models from CMIP5 used in this study. 

Model Name Modeling Center Resolution 
(Lon × Lat) 

bcc-csm1-1 Beijing Climate Center, China Meteorological Administration, China 2.81° × 2.79° 
bcc-csm1-1-m 1.13° × 1.12° 

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.81° × 2.79° 
CCSM4 National Center for Atmospheric Research, USA 1.25° × 0.94° 

CESM1-BGC National Science Foundation, Department of Energy, National Center for Atmospheric Research, 
USA 

1.25° × 0.94° 
CESM1-CAM5 

CMCC-CM 
Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 

0.75° × 0.75° 
CMCC-CMS 1.88° × 1.86° 

CNRM-CM5 
Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation 
Avancees en Calcul Scientifique, France 

1.41° × 1.40° 

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organisation in collaboration with the 
Queensland Climate Change Centre of Excellence, Australia 

1.88° × 1.86° 

FGOALS-g2 
Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University, 
China 

2.81° × 3.05° 

FGOALS-s2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.81° × 1.66° 
GFDL-CM3 

Geophysical Fluid Dynamics Laboratory, USA 2.50° × 2.00° GFDL-ESM2G 
GFDL-ESM2M 
HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological Administration, South Korea 1.88° × 1.25° 
HadGEM2-CC Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional 

de Pesquisas Espaciais), UK 
1.88° × 1.25° 

HadGEM2-ES 
inmcm4 Institute of Numerical Mathematics, Russia 2° × 1. 5° 

IPSL-CM5A-LR 
Institut Pierre-Simon Laplace, France 

3.75° × 1.89° 
IPSL-CM5A-MR 2.50° × 1.27° 
IPSL-CM5B-LR 3.75° × 1.89° 

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan 

1.41°×1.40° 

MIROC-ESM 
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute 
(The University of Tokyo), and National Institute for Environmental Studies, Japan 2.81° × 2.79° MIROC-ESM-

CHEM 
MPI-ESM-LR 

Max Planck Institute for Meteorology (MPI-M), Germany 1.88° × 1.86° 
MPI-ESM-MR 
MRI-CGCM3 Meteorological Research Institute, Japan 1.13° × 1.12° 
NorESM1-M Norwegian Climate Centre, Norway 2.50° × 1.89° 

 

The GCM outputs vary considerably in terms of the spatial resolution and include systematic 
biases precluding their immediate application to the assessment of climate change impacts. 
Therefore, certain processes to make up for these limitations are generally required before use. Daily 
data were downscaled for the period of 1976–2100 and bias-corrected against the observation data 
from 25 weather stations by using a simple quantile mapping (SQM) method [58]. The SQM technique 
performs independent refinements by observation points and meteorological variables through 
empirical quantile mapping. In this study, the following three-step process was used: (1) extract the 
GCM grid data corresponding to each target station, (2) estimate the biases of the retrospective 
simulations, and (3) bias-correct the future projections. A single grid covering the target station was 
extracted for each GCM, and the biases of retrospective simulation outputs for the selected grid were 
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estimated in comparison to observations. The differences between the observed and simulated 
cumulative distribution functions (CDFs) for the retrospective period were quantified and then 
applied to the future simulations for a given percentile (Equation (4)): x (𝑡) = x (𝑡) + F F . x (𝑡) − F . F . x (𝑡)  (4) 

Where x' (t) and x (𝑡) denote the bias-corrected and raw future projections on day t, and 𝐹(𝜃) 
and 𝐹 (𝜃) are a CDF of the daily data 𝜃 and its inverse, respectively. The subscripts p.sim, r.sim, and 
obs indicate the future projection, retrospective simulation, and observed daily data, respectively. 

The non-parametric empirical equation temporally measures the amount of daily observation 
data and raw GCM data. According to Gudmundsson [59], the nonparametric methods have shown 
the best skill in reducing the systematic bias compared to the parametric style because these use the 
real distribution of the observed and simulated data, without estimating a probability distribution 
function. 

2.5. Climate Indices for Evaluations of GCMs 

The Joint Expert Team on Climate Change Detection and Indices (ETCCDI) has defined a set of 
27 core climate indices mainly focusing on extreme events, which are derived from the daily climate 
data. In this study, six extreme rainfall-related indices were selected, as shown in Table 4. These 
indices were used to quantitatively evaluate the future extremes and drought-related rainfall patterns 
of 29 CMIP5 GCM data. Analyses were conducted for 30-year periods starting from the 2010s, 2040s, 
and 2070s relative to the 1976–2005 baseline period. 

Table 4. List of the ETCCDI extreme climate indices. 

ID Indicator name Definition Unit 

PRCPTOT 
Annual total wet-day 
precipitation 

Annual total PRCP in wet days (RR ≥ 1 mm) mm 

CDD Consecutive dry days Maximum number of consecutive days with RR < 1 mm days 
CWD Consecutive wet days Maximum number of consecutive days with RR ≥ 1 mm days 

R10mm 
Number of heavy 
precipitation days 

The annual count of days when PRCP ≥ 10 mm days 

R1mm 
Number of days above 1 
mm 

The annual count of days when PRCP ≥ 1 mm days 

SDII 
Simple daily intensity 
index 

Annual total precipitation divided by the number of wet days 
(defined as PRCP ≥ 1.0 mm) in the year 

mm/day 
 

3. Results and Discussion 

3.1. Evaluations for Retrospective Simulations of GCMs 

In this study, the reproducibility of output from 29 CMIP5 GCMs for the historical period from 
1976 to 2005 was evaluated through comparisons with observed data concerning ETCCDI 
precipitation extreme indices, as shown in Table 4. To validate the performance of the bias correction 
algorithms, ETCCDI precipitation extreme indices were used. The statistical characteristics of each 
GCM model have been compared with an observed median to determine the performance of each 
model before (raw) and after bias-correction, and these results are presented in Figure 4. It was found 
that the bias-corrected GCM results reasonably captured the observed patterns of ETCCDI precipitation 
extremes indices, while raw GCM outputs included significant differences from the observed indices. 
The CDD, CWD, and R1mm of the raw GCM outputs were overestimated by 0.64%, 142.79%, and 
11.02%, while R10mm, PRCPTOT, and SDII were underestimated by 43.34%, 59.51%, and 53.19%, 
respectively. Definitions of the indices are given in Table 4. After bias-correction, most of the errors 
were removed and only 11.15% and 55.57% of the errors in CDD and CWD remained, which were 
related to the temporal pattern of a precipitation event. 
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Figure 4. Comparison of raw (left) and bias-corrected (right) reproducibility with observed data for 
all meteorological stations in terms of the (a) CDD, (b) CWD, (c) PRCPTOT, (d) R1mm, (e) SDII, and 
(f) R10mm. 

3.2. GCM Skills in Reproducing Drought Characteristics 

Drought event reproducibility from GCM simulations was evaluated through EDI values 
calculated from the raw and bias-corrected GCM projected rainfall, which was compared with 
observed EDI values calculated from the BMD data from 1976 to 2005, as shown in Table 5. In this 
study, the average events from 29 GCMs were considered as historical drought events over 30 years. 
Results were compared for different BMD stations. 

Table 5 presents the number of moderate, severe, and extreme drought events that occurred in the 
past based on observed and modeled results. The results showed that the bias-corrected GCM data could 
capture the averaged frequencies of moderate and severe droughts over the country quite well, while raw 
model data underestimated the frequency of moderate droughts by 9% and overestimated that of severe 
droughts by 5% compared to the observed values. However, bias-correction did not improve the spatial 
variability of droughts as well as the skills in representing extreme drought events. The number of 
observed moderate drought events varied within a range of 17–102 over the stations, whereas raw and 
bias-corrected modeling results showed ranges of 46–55 and 51–58, respectively. Similar limitations in 
representing the spatial variability of drought events were also found in the case of severe droughts. This 
was likely due to the issue of the coarse resolution of the GCM itself (Table 3). Specifically, the grid spacing 
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of the GCM configuration may not be detailed enough to present the spatial distributions of the variable 
(i.e., the frequency) on a station basis. 

Table 5. Comparison of several drought events calculated from observed precipitation data and raw 
and bias-corrected GCM data for 1976–2005. Values in parentheses refer to the standard deviation of 
the results over the GCMs. 

Stations 
Moderate Drought Severe Drought Extreme Drought 

Observed 
Historical 

(Raw) 
Historical 

(Bias-Corr.) Observed 
Historical 

(Raw) 
Historical 

(Bias-Corr.) Observed 
Historical 

(Raw) 
Historical 

(Bias-Corr.) 
Rangpur 43 52 (±12.3) 58 (±13.5) 3 8 (±4.2) 8 (±2.8) 2 2 (±1.7) 1 (±1.2) 
Dinajpur 48 50 (±13.2) 58 (±13.3) 11 7 (±4.4) 7 (±2.7) 4 2 (±1.8) 1 (±1.2) 

Bogra 54 50 (±12.0) 51 (±13.3) 11 8 (±3.7) 9 (±2.9) 3 2 (±1.8) 1 (±0.8) 
Rajsahi 55 46 (±11.0) 56 (±11.9) 10 8 (±4.2) 7 (±3.5) 3 2 (±1.6) 1 (±1.4) 

Ishwardi 60 48 (±08.7) 55 (±11.2) 5 8 (±4.0) 8 (±3.1) 2 2 (±1.6) 1 (±1.2) 
Jessore 86 47 (±10.1) 56 (±10.2) 10 9 (±4.2) 8 (±3.4) 2 2 (±1.6) 2 (±1.1) 
Khulna 65 49 (±11.4) 52 (±10.8) 13 9 (±4.8) 8 (±3.5) 2 2 (±1.5) 1 (±1.0) 
Satkhira 65 46 (±10.6) 54 (±11.3) 13 9 (±4.2) 8 (±3.5) 5 3 (±1.8) 2 (±1.4) 
Barisal 71 49 (±11.4) 51 (±15.1) 20 9 (±5.0) 9 (±3.1) 4 2 (±1.6) 2 (±1.2) 

Patuakhali 21 48 (±11.8) 57 (±12.1) 2 9(±4.0) 9 (±3.4) 2 3 (±1.7) 2 (±1.4) 
Khepupara 60 48 (±12.4) 54 (±11.0) 11 9 (±3.7) 9 (±3.4) 7 3 (±1.7) 2 (±1.3) 

Bhola 43 48 (±12.2) 54 (±12.8) 8 10 (±5.1) 9 (±3.7) 2 2 (±1.7) 2 (±1.3) 
Maizdicourt 68 52 (±13.7) 54 (±13.4) 16 9 (±5.1) 9 (±4.1) 1 2 (±1.4) 2 (±1.0) 

Sawndip 61 54 (±16.6) 54 (±17.1) 4 8 (±4.1) 8 (±3.3) 3 3 (±1.8) 2 (±1.4) 
Dhaka 102 47 (±10.9) 57 (±10.5) 10 9 (±4.2) 8 (±3.2) 3 2 (±1.9) 2 (±1.3) 

Mymensingh 49 51 (±14.8) 57 (±13.4) 12 8 (±4.4) 8 (±3.2) 2 2 (±1.6) 2 (±1.0) 
Hatiya 61 51 (±15.7) 54 (±09.7) 2 9 (±4.6) 8 (±3.6) 1 2 (±1.7) 2 (±1.1) 

Chandpur 17 48 (±11.0) 54 (±11.5) 0 9 (±5.0) 7 (±3.9) 1 2 (±1.5) 1 (±0.9) 
Comilla 64 52 (±13.6) 54 (±13.1) 11 9 (±4.8) 8 (±3.3) 4 2 (±1.5) 1 (±1.0) 

Feni 45 55 (±14.3) 56 (±15.5) 6 9 (±4.9) 9 (±3.9) 5 2 (±1.8) 2 (±1.3) 
Sylhet 84 54 (±14.4) 51 (±11.8) 9 8 (±4.6) 9 (±3.6) 3 2 (±1.4) 2 (±1.3) 

Srimongal 53 54 (±13.7) 57 (±12.8) 5 8 (±4.1) 8 (±3.5) 2 2 (±1.7) 2 (±1.3) 
Rangamati 54 53 (±15.9) 58 (±17.3) 9 8 (±4.1) 7 (±2.7) 3 2 (±1.7) 2 (±1.3) 
Cox’s bazar 19 46 (±12.9) 56 (±13.3) 3 10 (±3.7) 9 (±4.2) 1 2 (±1.5) 2 (±1.5) 
Chittagong 24 52 (±15.6) 58 (±15.5) 0 9 (±4.6) 8 (±4.0) 0 2 (±1.9) 2 (±1.2) 
Bangladesh 54.88 49.94 55.04 8.16 8.60 8.2 2.68 2.29 1.68 
In percent 

(%) 
 Under-

estimate 9% 
Match  Over-

estimate 5% 
Match  Under-

estimate 15% 
Under-

estimate 37% 

The frequency of observed extreme droughts varied within a range of 0–7 over the stations, while 
the raw and bias-corrected modeling results showed ranges of 2–3 and 1–2, respectively, during the 
historical period between 1976 and 2005. As only a few extreme drought events occurred in the past, 
the model was not able to provide enough indications of such an occurrence. This was likely due to 
the differences between the observed and GCM temporal patterns of precipitation events such as the 
CDD and CWD, of which errors remained even after bias-correction (Figure 3). However, bias-
corrected GCM data reasonably provided information on severe and moderate droughts. These 
findings were similarly discussed in the previous study by Hasan et al. [35]. 

3.3. Changes in Precipitation 

This study evaluated how the characteristics of precipitation, which could potentially induce 
drought events, will change in the future so that we could better illuminate the driving processes 
underlying changes in droughts. The spatial distributions of averaged precipitation amounts from 
the MME mean in the 2010s, 2040s, and 2070s were compared to the baseline period (1976–2005) 
under the RCP4.5 and RCP8.5 scenarios, as shown in Figure 5. The projected percentage change in 
precipitation was uneven over the entire country, but overall, precipitation tended to increase in the 
future over Bangladesh. 

For the beginning of the century (the 2010s), Bangladesh is expected to face an increase of up to 
18.72% and 26.23% in precipitation under RCP4.5 and RCP8.5, respectively, compared to the baseline 
period. In particular, the maximum increases were located on the border between the Natore, Panbna, 
and Kustia districts. An increase of up to 14.63% in precipitation was also projected to occur by the 
middle of the century (the 2040s) under RCP4.5 compared to the baseline period, but the amount was 
less than that from the 2010s. The highest increases were found in the Shatkhira and Comilla districts, 
which are located in the southern and eastern regions, respectively. However, the most significant 
increase of rainfall, up to 35.67%, was projected during the middle of the century (the 2040s) under 
RCP8.5, especially in the districts in the northern region, and the increasing trend grew more severe 
with time. Growth of up to 26.14% and 53.95% in precipitation was also projected to occur under 
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RCP4.5 and RCP8.5, respectively, by the end of the century (the 2070s) over Bangladesh. The highest 
increase in rainfall is expected to happen over the northern region of Bangladesh, especially the 
Dinajpur and Rajshahi districts. 

Overall, the dominant feature detected was that the widespread precipitation will be increased 
in the 21st century over Bangladesh, especially under the RCP8.5 scenario. This result agreed with 
the previous study by Fahad et al. [60]. The increasing trend of precipitation may generally imply a 
decrease in drought occurrence. 

 
Figure 5. Percentage (%) change of precipitation over Bangladesh for the 2010s (1st column), 2040s 
(2nd column), and 2070s (3rd column) under the RCP4.5 (upper row) and (2) RCP8.5 (lower row) 
scenarios relative to the baseline period (1976–2005). 

The future changes in climate indices (PRCPTOT, CWD, CDD, R10mm, R1mm, and SDII) 
calculated by using data from the 29 GCMs for RCP4.5 and RCP8.5 were further investigated, as 
shown in Figure 6. When comparing the median values of the box and whisker diagrams, most of the 
climate indices showed changes indicative of increasing severity of precipitation (i.e., more 
precipitation with a lower number of rainy days). According to Figure 6c, the total annual 
precipitation (PRCPTOT) tended to increase gradually in the three future periods under both RCP 
scenarios; PRCPTOT increased at the end of the century (the 2070s) by around 31.98% under the 
RCP8.5 scenario compared to the baseline period followed by about 17.66% under the RCP4.5 
scenario in the same period. Conversely, the number of rainy days (R1mm) decreased in the middle 
(the 2040s) and end of the century (the 2070s) by around 0.51% and 0.61%, respectively, under RCP8.5 
and by 0.49% at the beginning of the century under RCP4.5 compared to the baseline period, as shown 
in Figure 6d. This finding was related to the gradual increase of the simple daily rainfall intensity 
(SDII) and heavy rainfall events (PRCP ≥ 10 mm), as shown in Figure 6e,f. 
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Figure 6. Future changes of climate indices under RCP4.5 (left) and RCP8.5 (right); (a) CDD, (b) CWD, 
(c) PRCPTOT, (d) R1mm, (e) SDII, and (f) R10mm. 

Changes in the frequency of precipitation events were also manifest as changes in the duration 
of dry spells (consecutive dry days, CDD) and wet spells (consecutive wet days, CWD). The CDD 
will be increased in the three future periods under both scenarios, as shown in Figure 6a. The highest 
CDD rise occurred at the end of the century (the 2070s) by around 12.08% under the RCP8.5 scenario 
compared to the baseline period followed by approximately 9.57% in the middle of the century 
(2040s) under the same scenario. However, the lowest CDD increase occurred at the beginning of the 
century (the 2010s) by around 4.83% under the RCP8.5 scenario compared to the base period. The 
CWD is also expected to show a minimum increase in the 21st century with a range of 1.12 to 2.37% 
compared to the base period as shown in Figure 6b. The highest CWD increase occurred at the end 
of the century (2070) under the RCP8.5 scenario, while the lowest rise occurred in the middle of the 
century (the 2040s) under the RCP4.5 scenario. Previously, Hasan et al. [37] also projected that heavy 
rainfall is expected to increase in the future. 

Generally, the change in extreme precipitation index patterns confirms the increasing trend of 
precipitation in the future. Moreover, a decrease in the number of drought events and a reduction of 
long-term drought duration can be expected given the related increases in total precipitation in 
Bangladesh. However, the CDD will be increased, which may lead to an increase in extreme drought 
events as well as extreme drought days in the future. However, the model used in this study cannot 
provide the real essence of changes in extreme drought events (Table 5). 
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3.4. Projections of Future Changes in Drought Characteristics 

Future climatological changes in drought frequency, mean duration, and maximum intensity 
was investigated by using the GCM simulations in the 2010s, 2040s, and 2070s compared to the 
baseline period (1976–2005) under the RCP4.5 and RCP8.5 scenarios. To compute the differences 
between baseline and future drought characteristics, the percent change for the three next periods 
under each scenario were calculated by counting the number of events for each level of drought 
severity and duration for the three future periods under both scenarios. 

3.4.1. Changes in the Drought Frequency 

Figure 7 compares the drought frequency for each level of drought severity (i.e., extreme, severe, 
and moderate drought events) and future periods under the RCP4.5 and RCP8.5 scenarios. Overall, 
the projected changes in drought frequency for the three future periods showed different 
characteristics. However, the respective change in climatological severity under RCP4.5 and RCP8.5 
exhibited a constant magnitude response for any future period, thus indicating an insignificant effect 
of emission scenarios on the projected change in extreme and severe droughts. Besides, extreme 
droughts are not expected to change much in the 21st century under both scenarios. 

According to Figure 7, it was found that the MME mean produced the maximum number of 
moderate drought events compared to the others. For the beginning of the century (the 2010s), 
moderate droughts decreased by around 9% and 14% under RCP4.5 and RCP8.5, respectively. 
However, only severe droughts increased by about 15% under both of the scenarios. Moreover, 
moderate droughts decreased by about 18% in the middle of the century (the 2040s) compared to the 
base period under both of the scenarios, while severe droughts are expected to remain the same under 
both scenarios. Furthermore, the moderate and severe droughts events are expected to decrease by 
around 29% and 12%, respectively, at the end of the century (the 2070s) compared to the base period 
under the RCP4.5 scenario, while 38% of moderate and 23% of severe drought events will decrease 
in the same period under the RCP8.5 scenario. 

 
Figure 7. Change in the drought intensity based on a historical period (1976–2005) in regard to 
extreme, severe, and moderate drought events under the (a) RCP4.5 (left) and (b) RCP8.5 (right) 
scenarios. 

The spatial distributions of climatological changes in drought frequency for the future periods 
are shown in Figure 8. The projected percentage change in drought frequency was non-uniform over 
the country. However, the overall drought frequency will likely decrease with time under climate 
change. The CMIP5 does not well capture the spatial variability in Bangladesh, as discussed in Table 
5. Therefore, the spatial distributions analyzed here may contain large uncertainty. 



Water 2019, 11, 2219 15 of 23 

 

 
Figure 8. Percentage (%) change in the drought frequency over Bangladesh for the 2010s (1st column), 
2040s (2nd column), and 2070s (3rd column) under the RCP4.5 (upper row) and RCP8.5 (lower row) 
scenarios relative to the baseline period (1976–2005). 

For the beginning of the century (the 2010s), the drought frequency appeared to decrease in most 
of the country. In particular, the maximum decrease was detected in the eastern mountainous regions, 
especially the Chittagong and Bandarban districts, with ranges up to 10–15% compared to the base 
period under the RCP4.5 scenario. However, it increased up to 3% in the districts of Jessore and 
Satkhira, but only under RCP4.5, by the 2010s compared to the base period. On the other hand, the 
drought frequency decreased all over the country under the RCP8.5 scenario. The highest decrease 
was detected in the districts of Noakhali, Hobigonj, and Moulovibazar during the 2010s. 
Furthermore, a decrease of up to 23% in drought frequency was also projected to occur by the middle 
of the century (the 2040s) under RCP4.5 compared to the baseline period, which was greater than that 
from the 2010s. The highest decrease was detected in the districts of Mymensingh and Chittagong. A 
decrease in frequency, up to 24%, was projected to occur over Bangladesh during the middle of the 
century (the 2040s) under RCP8.5, especially in the eastern region. A greater decrease in frequency 
can be expected over Bangladesh for the 2070s than for the 2010s and 2040s. A decrease of up to 
33.33% and 46.77% in drought frequency was also projected under RCP4.5 and RCP8.5, respectively, 
to occur by the end of the century (the 2070s) over Bangladesh relative to the baseline period of 1976–
2005. The highest decrease in frequency was projected to occur over the drought-vulnerable northern 
and northeastern regions of Bangladesh, especially in the Rajshahi and Sylhet districts. 



Water 2019, 11, 2219 16 of 23 

 

3.4.2. Changes in the Drought Duration 

Figure 9 presents the changes in drought duration for the 21st century based on the historical 
period (1976–2005) concerning long-term, medium-term, short-term, and very short-term drought 
events under the RCP4.5 and RCP8.5 scenarios. Overall, the projected changes in drought duration 
for the three future periods (the 2010s, 2040s, and 2070s) showed different characteristics. However, 
the respective change in the climatological length of droughts under RCP4.5 and RCP8.5 exhibited a 
stable magnitude for any future period, thus showing a negligible effect of emission scenarios. The 
medium-term droughts are not expected to change in the 21st century under both scenarios except 
by the end of the century (the 2070s) under RCP8.5, where a decrease of 55% was detected compared 
to the base period. Only the long-term droughts will decrease by around 55% over the three future 
periods under both scenarios compared to the base period. 

According to Figure 9, The short-term and very short-term droughts will be decreased in the 
21st century under both scenarios except for at the beginning of the century (the 2010s) under RCP4.5. 
The highest decreasing rates of very short-term and short-term drought events can be expected at the 
end of the century and will amount to around 26% and 21%, respectively, compared to the base 
period under the RCP4.5 scenario, while 36% of the very short-term and 31% of the short-term 
drought events decreased in the same period under the RCP8.5 scenario. 

 
Figure 9. Change in the drought duration based on a historical period (1976–2005) in regard to long-
term, medium-term, short-term, and very short-term drought events under the (a) RCP4.5 (left) and 
(b) RCP8.5 (right) scenarios. 

The mean duration of droughts was computed from the average duration of all drought events 
in the historical and three future periods with the MME mean of the GCMs. The climatological 
changes in mean drought duration for the future periods are shown in Figure 10. The difference is a 
percentage that designates the change in the mean duration of droughts, where a negative value 
indicates a decreasing trend and vice versa. The average length of droughts can be expected to decline 
in the 21st century all over the country. However, the decreasing rate varied with the projected 
period, location, and emission scenario. The results indicate that the decreasing rate will be increased 
with time and the highest decreasing rate can be expected during the end of the century (the 2070s) 
under RCP4.5. 

In particular, the mean duration of droughts is expected to decrease within a range of 0 to 15% 
over the entire country, whereas the highest decrease will occur in the districts of Chittagong, Cox’s 
Bazar, and Jessore at the beginning of the century (the 2010s). The values decreased within a range of 
6–24% and 14–36% in the middle of the century (the 2040s) and end of the century (2070s), 
respectively, under the RCP4.5 scenario. The highest decreases occurred in the hilly district of 
Rangamati in the 2040s and in the Rangpur and Dinajpur districts in the 2070s. On the other hand, 
the RCP8.5 scenario results tended to show a higher decreasing rate in the northern region, especially 
in the Bogra district. In particular, the mean duration of droughts decreased within a range of 0 to 
−16% all over the country at the beginning of the century (the 2010s), and decreases occurred within 
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a range of 6–24% and 10–28% in the middle of the century (the 2040s) and end of the century (2070s), 
respectively, under the RCP8.5 scenario. 

 
Figure 10. Percentage (%) change in the mean drought duration over Bangladesh for the 2010s (1st 
column), 2040s (2nd column), and 2070s (3rd column) under the RCP4.5 (upper row) and RCP8.5 
(lower row) scenarios relative to the baseline period (1976–2005). 

3.4.3. Changes in the Drought Intensity 

The intensity of the EDI was computed from the MME means derived from the GCMs, and 
resulting data were used to assess the extreme intensity trends (minimum values of the EDI) among 
all of the drought events in the three future periods compared to the historical period (1976–2005). 
The difference is a percentage designating the change in maximum intensity of droughts, where a 
positive value indicates an increasing trend and vice versa. The climatological changes in the 
maximum drought intensity for future periods are shown in Figure 11. Overall, the projected change 
in maximum drought intensity for the three future periods showed different characteristics. The 
maximum drought intensity increased over most of the country at the beginning of the century (the 
2010s). However, a greater decrease can be expected for the end of the century (the 2070s) under 
RCP8.5. 

In particular, the maximum increase occurred in northern and southwestern coastal regions, 
especially the Borguna district, with ranges up to 8–10% under the RCP4.5 scenario, whereas a 
maximum increase up to 6–8% was also projected under the RCP8.5 scenario, in locations including 
the southwestern and central regions, during the beginning of the century compared to the base 
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period. However, values decreased up to 1–2% in the districts of Rajshahi and Sylhet only under 
RCP4.5 in the 2010s, and negligible decreases were detected under the RCP8.5 scenario. 

 
Figure 11. Percentage (%) change in the maximum drought intensity over Bangladesh for the 2010s 
(1st column), 2040s (2nd column), and 2070s (3rd column) under the RCP4.5 (upper row) and RCP8.5 
(lower row) scenarios relative to the baseline period (1976–2005). 

Besides, the maximum drought intensity for the middle of the century showed a tendency to 
decrease under RCP4.5 but an increasing trend under RCP8.5. Precisely, a decrease of up to 6–8% in 
the drought intensity is projected to occur by the middle of the century (the 2040s) under RCP4.5 
compared to the baseline period. The higher decrease was located in the hilly eastern region and 
southwestern coastal region, especially in the districts of Rangamati and Chittagong. Conversely, an 
increase in the intensity of up to 6–8% was projected to occur over Bangladesh during the middle of 
the century (the 2040s) under RCP8.5, especially in the central region. 

A decrease of up to 4–6% and 8–10% in the maximum drought intensity was also projected under 
RCP4.5 and RCP8.5, respectively, by the end of the century (the 2070s) over Bangladesh relative to 
the baseline period of 1976–2005. The highest decrease in intensity was detected over the drought-
vulnerable northern region and northeastern region of Bangladesh, especially in the Rajshahi and 
Sylhet districts under the RCP8.5 scenario. 

3.5. Projections of Seasonal Changes in the Number of Drought Days 

In this study, the changes in moderate, severe, and extreme drought days were investigated 
during the Pre-Kharif, Kharif, and Rabi seasons for the 2010s, 2040s, and 2070s compared to the 
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baseline period (1976–2005) under the RCP4.5 and RCP8.5 scenarios. The different categories of 
drought days were counted by using EDI values based on the MME means of 29 GCMs under both 
scenarios. The drought days estimated at different stations are presented by using box plots. The 25th 
and 75th quartiles of drought days are demarked by the lower and upper lines of the boxes, whereas 
the median value drought days are indicated by the middle lines of the boxes at different stations 
over Bangladesh. The changes in drought days for the Pre-Kharif, Kharif, and Rabi drought seasons 
are shown in Figure 12. Overall, an increase of median values of extreme drought days was observed 
with some exceptions, whereas the opposite trends in moderate and severe drought days were 
detected under both scenarios compared to the base period. 

 
Figure 12. Future changes in seasonal drought days under RCP4.5 (left) and RCP8.5 (right); (a) 
moderate, (b) severe, and (c) extreme droughts. 

Particularly, the maximum decrease in the moderate and severe drought days was found in the 
Rabi season with changes of around 50% and 44% under RCP4.5 and 44% and 53% under RCP8.5, 
respectively, during the end of the century (the 2070s) compared to the base period. However, the 
severe droughts days increased at the beginning of the century in the Pre-Kharif and Kharif seasons 
by around 28% and 3%, respectively, under RCP4.5, and 12% in the Pre-Kharif season under RCP8.5. 
The moderate drought days are expected to increase at the beginning of the century in the Pre-Kharif 
and Kharif seasons by 14% and 7% under RCP4.5, respectively, and 6% in the middle of the century 
under RCP8.5, respectively. However, values are not expected to increase in the future under the 
RCP4.5 scenario. Only 30% of the extreme drought days will be decreased in the Kharif season in the 
middle of the century under RCP4.5, while 17% and 10% decreases are expected in the Kharif and 
Rabi seasons, respectively, at the end of the century under the RCP8.5 scenario. The highest increase 
in extreme drought days was found in the Pre-Kharif season, and the increase was around 205% at 
the end of the century under RCP4.5. 
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4. Conclusions 

Climate change is regarded as a future threat that is expected to change regional hydrological 
patterns as well as the characteristics of droughts, which could lead to severe drought-related 
disasters. Hence, it is important to assess the impacts of climate change on potential future droughts. 
Such work will allow us to respond preventively by providing policy analysis information and useful 
guidance to policymakers, who can devise a framework for water resource management as well as 
agricultural adaptation in the future. In this regard, the principal objectives of this study were to 
evaluate the changes in drought-related precipitation extremes and drought characteristics over 
Bangladesh by using 29 GCM projections under the RCP4.5 and RCP8.5 scenarios for the period of 
2010–2099. The Effective Drought Index (EDI) was used for the characterization of droughts in terms 
of the frequency, duration, intensity, and number of drought days. To evaluate the reproducibility of 
the GCMs, retrospective simulations of models for the historical period from 1976 to 2005 were 
compared to the quantities based on observed climatology. It was found that the bias-corrected GCM 
results showed an appropriate consistency with observation data and were successfully able to 
reproduce the real essence of the drought situation compared to the raw GCM data except for extreme 
drought events. Future changes of drought characteristics were then investigated for the entire area 
by using the historical period as the calibration period. The differences between climate change 
scenarios were not recognizable from the results because a statistical trend analysis was not included 
in the study. The changes in drought characteristics in the future were examined only through 
comparisons with the historical period. The increasing or decreasing trends of future precipitation 
and drought characteristics were visually inspected in this study. 

The future changes in precipitation tended to show increases under both scenarios; the 
increasing rate was higher under RCP8.5 than RCP4.5. The projected change in climatological 
frequencies of drought based on severity and duration under RCP4.5 and RCP8.5 exhibited a 
consistent magnitude for any future period, thus indicating a negligible effect of emission scenarios 
on the projected changes in the extreme and severe droughts and long-term and medium-term 
droughts. Overall, the drought frequency, mean duration, and maximum intensity will likely 
decrease with time under climate change in relation to the increase of total precipitation. In particular, 
the occurrence of severe and moderate droughts will be less frequent in the 21st century, according 
to this research. The frequency of extreme drought events did not show a significant change in the 
21st century under both scenarios. However, the extreme drought days are likely to be increased in 
most of the cropping season and future periods under both scenarios, which may affect agricultural 
production in the future, as driven by the increasing pattern of CDD. The spatial pattern of change 
in drought characteristics indicates that the drought-vulnerable areas will be shifted from the 
northwestern to central and southern coastal regions in the future due to the effects of climate change. 
However, GCM may predict the trends well but may not reveal the change in a spatial pattern in 
detail. 

Lastly, to our best of knowledge, this study is the first attempt to characterize the future droughts 
in Bangladesh widely using the EDI. The present results can help resource managers to optimally 
allocate scarce water resources and develop long-term strategies for protecting communities against 
natural hazards related to water scarcity. Furthermore, the outcomes of the study are expected to 
represent important measures for mitigating the losses in agricultural production for drought-prone 
areas in Bangladesh. 
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