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Abstract: Meteorological drought indicators are commonly used for agricultural drought contingency
planning in Ethiopia. Agricultural droughts arise due to soil moisture deficits. While these deficits
may be caused by meteorological droughts, the timing and duration of agricultural droughts need
not coincide with the onset of meteorological droughts due to soil moisture buffering. Similarly,
agricultural droughts can persist, even after the cessation of meteorological droughts, due to delayed
hydrologic processes. Understanding the relationship between meteorological and agricultural
droughts is therefore crucial. An evaluation framework was developed to compare meteorological-
and agriculture-related drought indicators using a suite of exploratory and confirmatory tools.
Receiver operator characteristics (ROC) was used to understand the covariation of meteorological
and agricultural droughts. Comparisons were carried out between SPI-2, SPEI-2, and Palmer
Z-index to assess intraseasonal droughts, and between SPI-6, SPEI-6, and PDSI for full-season
evaluations. SPI was seen to correlate well with selected agriculture-related drought indicators,
but did not explain all the variability noted in them. The correlation between meteorological and
agricultural droughts exhibited spatial variability which varied across indicators. SPI is better
suited to predict non-agricultural drought states than agricultural drought states. Differences
between agricultural and meteorological droughts must be accounted for in order to devise better
drought-preparedness planning.

Keywords: PDSI; Z-index; Receiver Operating Characteristics (ROC); SPI; SPEI; GIS; food
security; droughts

1. Introduction

Ethiopia is a predominantly rural country with a high level of dependence on rainfed agriculture
and pastoral activities. Agriculture and animal husbandry contribute significantly to the nation’s gross
domestic product (42% of GDP) and 85% of the nation’s export earnings, and account for over 85%
of its employment [1]. The vulnerability of the agriculture sector (broadly defined here to include
pastoral activities as well) to drought risk is particularly high due to lack of irrigation infrastructure.
Droughts are known to cause death and disease due to malnutrition, unemployment, migration, social
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unrest, and even violence in the greater Horn of Africa [2]. From an economic standpoint, droughts are
noted to have reduced the GDP of Ethiopia by 1–4% [3].

The government of Ethiopia has recognized that drought management is essential to the sustainable
development of the nation. In 2013, the government adopted a national policy and strategy for disaster
risk management (DRM) which calls for decentralized, stakeholder-based approaches to deal with
recurring disasters such as droughts. Woredas (districts or third level administrative units) are required
to develop drought contingency plans (DCP) to increase local resilience to recurring droughts, and thus,
mitigate the harmful social effects associated with drought events [4].

Understanding drought characteristics is a critical first step towards their management. However,
droughts are a complex phenomenon with no universally accepted definition. They can broadly
be classified into meteorological, agricultural, hydrological, and socio-economic droughts [5].
Fundamentally, meteorological droughts imply precipitation anomalies and the first trigger of a drought
event. Reduced precipitation, in turn, leads to low relative humidity and greater evapotranspiration,
which removes water from surficial soils. The deficits in soil moisture (i.e., green water) are referred
to as agricultural droughts, as they reduce the amount of water available for crops, including the
native vegetation which is necessary for animal husbandry. As precipitation is the fundamental driver
of hydrology, precipitation deficits further manifest as reduced recharge and runoff, and lead to a
reduction in surface water and groundwater reserves (i.e., blue water), causing hydrologic droughts.
However, the relationships between meteorological, agricultural, and hydrological droughts are not
always straightforward. The onset and cessation of agricultural and hydrological droughts do not
typically coincide with meteorological droughts, as the former are affected by other factors (e.g., soil
and watershed characteristics) that control the rate of water movement and storage in soil, surface
water, and groundwater compartments [6].

Therefore, understanding the relationships between meteorological and agricultural droughts
is important for proper drought contingency planning in rural areas of Ethiopia. As most of the
agriculture is rainfed, a strong correlation between meteorological and agricultural drought is to be
expected. However, meteorological and agricultural droughts need not be coincident, nor must the
correlations between these two types of drought be perfect or even strong. The soil moisture at any
time can be affected by precipitation in previous months or seasons, and is also affected by other factors,
including but not limited to soil type and atmospheric temperature. In Ethiopia, while many farmers
grow crops during the Meher growing season that coincides with the longer Kerimt (June–October)
rainy season, the shorter Belg (February–May) rains often provide the soil moisture that is necessary
for tillage and planting activities, and also improve pastures for livestock [7]. Therefore, lagged
relationships between agricultural and meteorological drought indicators are of interest in Ethiopia
as well.

The importance of characterizing the differences between meteorological and agricultural droughts
has been recognized in recent times. Using downscaled climate projections in conjunction with
calibrated models, Wang et al. [8] concluded that agricultural droughts (as measured using standardized
soil water index or SSWI) are more sensitive to climate change than the Standard Precipitation Index
(SPI), an indicator of meteorological droughts. Hernandez and Uddameri [9] utilized SPI and the
standardized precipitation evapotranspiration index (SPEI), a measure of agricultural droughts,
in conjunction with global downscaled model projections, to conclude that droughts in the early
part of the 21st century were likely dominated by temperature increases (moisture deficits and water
demands), while those in the more recent part were controlled by both supply deficits (meteorological
droughts) and increased water demands in South Texas. Using short-term (15 years) meteorological and
remote-sensed vegetation data from Morocco, Ezzine et al. [10] concluded that the relationship between
meteorological and agricultural droughts was low to moderate. Duan and Mei [11] used SPI, SSWI,
and standardized surface runoff (SSRI) indices to study meteorological, agricultural, and hydrological
droughts in the Huai river basin in China, and concluded that agricultural and meteorological droughts
have a greater impact on local water resource management issues.
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Dhakar et al. [12] studied the relationship between SPI (a meteorological drought indicator)
and the satellite-derived vegetation condition index (VCI) (an indicator of agricultural droughts).
They concluded that the relationship between meteorological and agricultural drought indicators
improved with seasonal progression, indicating a time-varying relationship between the two variables.
Gunda et al. [13] compared SPI and PDSI at 13 stations across Sri Lanka. They concluded that these
indicators performed better as agricultural drought indicators under different climatic conditions.
Portela et al. [14] compared meteorological and agricultural droughts using SPI and SPEI indicators in
Eastern Slovakia. Their results indicated that SPI (meteorological) and SPEI (agricultural) droughts
showed similar trends, but that SPI is more sensitive to water shortages and surpluses in this humid
region. Tirivarombo et al. [15] compared meteorological (SPI) and agricultural drought indicators (SPEI)
in Zambia, and concluded that SPEI indicated droughts of greater duration and severity, and cautioned
the use of SPI as a sole indicator of drought. These studies from across the world indicate that there are
differences between meteorological and agricultural droughts which must be recognized for proper
planning and management of agricultural water resources. However, such studies have not been
undertaken in Ethiopia, despite its high reliance on agriculture. A literature review also highlighted
the fact that agricultural and meteorological drought comparisons were often ad hoc and qualitative.
A statistical evaluation framework is generally missing to perform consistent comparisons across
multiple scales on which droughts manifest and across spatial regions of interest.

National scale comparison of recent meteorological droughts using SPI have been undertaken
in recent times in Ethiopia (e.g., Viste et al. [16], Suryabhagavan [17]). However, to the best of our
knowledge, a detailed comparison of meteorological and agricultural droughts has not been undertaken
in Ethiopia. The information generated from such a comparison is vital to understand how precipitation
deficits propagate through agricultural systems and affect a nation’s food security and economic
vitality. Such a comparison can help identify whether supply-side deficits (precipitation anomalies) or
demand-side increases (greater evapotranspiration) control agricultural droughts. This information is
fundamental to developing future monitoring programs within a region. Furthermore, conducting
such a comparison on a national (Ethiopia-wide) scale would also identify regional differences and
help policy makers and governmental agencies prioritize areas of critical need, and help guide the
proper allocation of scarce fiscal and logistic resources for the improvement of water resources.

The primary goal of this study is to compare the evolution of meteorological- and agriculture-related
drought-indices at various temporal scales across Ethiopia at a high spatial resolution. To accomplish
this goal, the study proposes a comprehensive drought comparison framework using a suite of
evaluation metrics covering both exploratory and confirmatory testing methods that can be consistently
applied across multiple spatio-temporal scales. While the results of the study are directly beneficial to
water planners and policy makers in Ethiopia, the developed drought evaluation framework is generic
and can be applied to any region.

2. Methodology

The proposed agricultural and meteorological drought comparison framework begins with
the selection of appropriate indicators to quantify agricultural and meteorological droughts. Time
series of these indicators over a common time period are then used to make comparisons. Drought
indicators provide numerical values whose magnitude indicates the (moisture) state the system is
in. This continuous drought indicator time series can be used directly to understand correlations
between agricultural and meteorological droughts, as well as to perform confirmatory hypothesis
tests to establish their relationships under various lags. For most indicators, negative values below a
prespecified threshold indicate drought. Therefore, indicator time series can be transformed into a
binary (drought/non-drought) time series using the appropriate thresholds. These binary time series
have traditionally been used to calculate drought duration, severity, and intensity [18]. Binary time
series can also be compared to determine the level of agreement between various drought indices,
and can be used to construct contingency tables and perform a wide array of statistical analyses
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to compare meteorological- and agriculture-related droughts. The proposed framework provides
a suite of exploratory and confirmatory tests that can be used to evaluate continuous and discrete
(binary) meteorological and agricultural drought time series, which are illustrated using Ethiopia as
a case-study.

2.1. Selection of Meteorological and Agricultural Drought Indicators

As stated, the first step in the evaluation framework is to select appropriate meteorological
and agricultural drought indicators. While there are many such indicators, the Lincoln declaration
recommended the adoption of the Standardized Precipitation Index (SPI) as a universal indicator of
meteorological droughts [19]. Several studies have adopted this indicator to study meteorological
droughts in Ethiopia [16,17,20–24], and as such, it has been adopted here.

While the quantification of meteorological droughts using SPI has become standard practice
worldwide, no universally-accepted indicator for characterizing agricultural droughts exists today.
It is widely recognized that agricultural droughts are best defined using soil moisture as the master
variable [25]. However, soil moisture has not been extensively monitored in most parts of the world
(Ethiopia included), as doing so has proven to be challenging due to the high level of spatio-temporal
variability of this parameter [26] and lack of reliable methods for upscaling point level measurements
to larger spatial scales [27]. While agricultural drought indices based on model-derived soil moisture
estimates have been proposed [28], calculating them is usually unfeasible for large-scale (regional
and national) studies spanning multiple watersheds. Crop stress and vegetative health indices (e.g.,
the normalized difference vegetation index, or NDVI) have also been used to assess agricultural
droughts [29,30]. However, these methods do not yield standardized measures that can be consistently
compared in space and time, and are also affected by the limited length of the records, as they rely on
satellite-derived data [16,31], and as such, are not suitable for evaluating long-term droughts to capture
natural climatic and hydrologic variability that manifest over multi-decadal scales due to limited data
availability [32,33]. Gridded soil moisture datasets have also been developed in recent times, either
using simple water budgets [34] or energy budgets from remotely-sensed data [35,36]. These derived
datasets can be directly used to study agricultural droughts, especially when their adequacy can be
ascertained using ground-based soil moisture data. Efforts have also been made to archive in situ soil
moisture measurements collected worldwide [37].

In areas where soil moisture data are unavailable to validate model- or remote-sensed-based soil
moisture products, drought indices that utilize temperature-based potential evapotranspiration,
in addition to rainfall, to indirectly capture the effects of soil moisture deficits have been
proposed, and are often used to characterize agricultural droughts [18]. The standardized
precipitation evapotranspiration index (SPEI) uses the standardized measure of precipitation (P)
minus evapotranspiration (PET) to characterize droughts [38]. While SPEI is a meteorological drought
indicator, and does not explicitly model soil moisture dynamics, it is known to correlate well with
agricultural droughts, as the atmospheric water budget (P-PET) affects surface soil dryness [39,40].
Therefore, SPEI computed over short accumulation periods (typically 1–6 months) has been widely
used as an indicator of agricultural droughts [38,39,41–47]. Therefore, SPEI can be viewed as an
agriculture-related drought indicator. In this regard, Vicente-Serrano et al. [38] indicated that the
method used to estimate PET has little bearing on the computation of SPEI, and recommended using the
Thornthwaite model which allows the use of the SPEI drought index with minimal data requirements.

The Palmer Drought Severity Index (PDSI) originally proposed by Palmer [48] is another
widely-used drought indicator that has been employed to monitor agricultural droughts and estimating
soil moisture deficits [49]. It is now computed using the self-calibrating procedure (SC-PDSI) proposed
by Wells et al. [50], which removes certain rigid empirical assumptions in the original formulation,
and allows PDSI values to be compared across spatial scales. PDSI (implied to mean SC-PDSI here for
brevity) is based on an idealized two-bucket model conceptualization of the watershed, and requires
monthly precipitation (P) and evapotranspiration (PET) data. Dai [51] found that the choice of the
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method for estimating PET had a small effect on PDSI, and the indicator exhibited a strong correlation
with soil moisture, particularly in the summer and autumn months. Its reliability is also likely to be
higher in warm climates (such as Ethiopia), where the hydrology is not affected by spring snowmelt.
PDSI has also been used widely to characterize agricultural droughts [13,52,53]. Studies have shown
that PDSI correlates strongly with SPI values computed using higher accumulations [54,55]. Therefore,
PDSI can be considered as a seasonal indicator of agricultural droughts.

The PDSIt (at any time, t) is a weighted sum of previous month PDSIt−1 value which indicates
climate spell and the moisture anomaly, Zt which measures the dryness (or wetness) over the current
month, t. Mathematically,

PDSIt = p
.
PDSIt−1 + q

.
Zt (1)

where p and q are duration factors obtained from the self-calibration procedure outlined by
Wells et al. [50] at any given location. The Z-index exhibits greater volatility than PDSI, as it largely
depends upon the monthly soil moisture without the effect of antecedent months. It is seen as a good
indicator for characterizing agricultural droughts [56]. As the Z-index removes the effects of previous
months, it is a useful indicator of intraseason (short-term) droughts. Again, a long calibration period
(>50 years) is recommended for calculating PDSI and Z-index [57].

Given the focus on agricultural droughts, the proposed framework recommends using the SPI
and SPEI indices computed at 2- and 6-month accumulations to compare droughts within (intraseason
or short-term) and over the entire growing seasons (full-season or long-term) in Ethiopia. PDSI and
the associated Z-index are also recommended to indicate full-season and short-term drought impacts
over the growing seasons. Thus, the framework recommends the comparison of meteorological- and
agriculture-related droughts on two temporal scales: (1) Intraseasonal comparison of meteorological
and agricultural droughts using SPI-2, SPEI-2, and the Palmer Z-index, and (2) full season comparison
of meteorological and agricultural droughts using SPI-6, SPEI-6, and PDSI. Preliminary investigations
indicated that the use of SPI-1 could pose challenges due to months with no rainfall which can be
ameliorated using SPI-2 without loss of the representativeness of short-term climate dynamics. SPI
and SPEI computed at 2- and 6-month scales effectively bracketed the evaluation results noted at
intermediate scales (i.e., 3-, 4-, and 5-month accumulations). Therefore, evaluations at 2- and 6-month
scales reduce computational burden without any loss of information, at least in the context of Ethiopia,
which is the focus of this study. Similar empirical evaluations will be necessary to select appropriate
scales when the proposed framework is to be applied at other locations.

2.2. Metrics for Comparing Meteorological and Agricultural Droughts

Traditionally, the drought time series have been analyzed using the theory of runs to compute
the duration, severity, and intensity associated with each drought event [18,40]. Advanced stochastic
methods, such as the copula theory, have been used to analyze these drought characteristics [58].
While undoubtedly these advanced methods provide valuable information with regards to droughts
at a given location, visualizing the output from such analyses over large spatial scales is particularly
daunting, given the amount of information that can be generated using advanced stochastic methods.

Preliminary exploratory and confirmatory tools that provide useful information with regards to
droughts, particularly in assessing outputs from multiple drought indicators, are of great practical
significance in visualizing drought characteristics over large spatial scales and developing early insights
related to this phenomenon. The focus of this study is to identify a set of easy to implement tools and
techniques that are amenable to regional-scale visualization and provide initial insights on drought
characteristics. These tools are not to be viewed as a replacement of information derived from the
theory of runs, but as a complementary set of methods that can help communicate initial insights to a
wide range of stakeholders and guide additional analyses.

A consistent set of metrics is essential to compare selected meteorological and agricultural drought
indicators. The proposed framework recommends exploratory data analysis (EDA) as a first step
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of the evaluation process. Visual explorations of agricultural and meteorological time series plots,
autocorrelation, and cross-correlation functions are recommended to obtain preliminary insights into
the behavior of agricultural and meteorological droughts. While these EDA methods are useful to
obtain station-level insights, they are of limited use when comparing agricultural and meteorological
droughts across large (nationwide) spatial scales. Exploratory comparative metrics which summarize
the differences (or similarities) between meteorological and agricultural drought indicators and which
are amenable to mapping are valuable for spatial assessments. Two such metrics are identified as part
of the proposed evaluation framework discussed below.

The Time Series Distance Measure (TSDM) calculates the Euclidian distance between two series.
If two time series are coincident, then TSDM will assume the minimum possible value. The larger
the value of TSDM, the greater the divergence between the two time series. TSDM provides an initial
picture with regards to the simultaneous occurrence of meteorological and agricultural droughts.
As the drought indicators are measured over different scales (units), they need to be normalized on a
common (0–1) scale to identify areas where the two indicators are more coincident, and areas where
they are less so. The normalization of TSDM also allows consistent comparisons to be made across
drought indicators.

Previous studies have indicated that agricultural and meteorological droughts need not be
coincident [6]. However, agricultural drought indicators may correlate to lagged values of a
meteorological indicator or vice-versa. This situation arises because meteorological droughts are
precipitation dependent, while agricultural droughts depend on both temperature and precipitation.
The cross-correlation function (CCF) evaluates the similarity between two series across various lags.
CCF varies between −1 and 1, where 0 implies no similarity, and negative values indicate inverse
relationships. The maximum value of CCF (regardless of the sign) indicates the maximum strength of
the relationship between the two indicators which could occur at a lag different to zero. While CCF
plots are useful for station-level evaluations, the absolute maximum CCF value can be mapped and
used in an exploratory mode to compare the lagged behavior of agricultural and meteorological time
series across the region of interest to understand the spatial variations in the maximum possible
correlation between agricultural and meteorological droughts.

While EDA is important to obtain critical insights related to agricultural and meteorological
droughts, a confirmatory analysis making use of statistical hypothesis tests is necessary to provide
critical evidence with regards to the joint behavior of meteorological and agricultural droughts.
The Granger test of causality [59] evaluates whether the lagged variables of one time series (X or
meteorological drought indicator) is useful to predict the values of the other (Y or an agricultural
drought indicator). The null hypothesis assumes that the two time series, X and Y, are completely
independent, and therefore, lagged variables of the X time series have no bearing on Y. The alternative
hypothesis implies that adding lagged variables of X enhances the prediction of Y, which, in turn,
indicates a significant correlation between the two time series (albeit at different lags). Mathematically,
the test compares the two following models:

Yt = a + bYt−1 + . . .+ kYt−k (Null Hypothesis is a k− lag endogenous model) (2)

Yt = a + bYt−1 + . . .+ kYt−k+ ∝ Xt−1 + . . .+ λXt=k (Alternate Hypothesis − exogenous model) (3)

and assesses whether the addition of any exogenous parameters is warranted. The Granger test is
useful to evaluate the influence of X (meteorological drought indicator) on Y (agricultural drought
indicator). The test will find in favor of the null hypothesis when the addition of the independent
parameter (X) leads to no improvement in the model estimates (indicating X is not a good predictor
of Y). Only when X improves the model estimate significantly will the model find in favor of the
alternative hypothesis, rejecting the null. However, as linear models are fit (see Equations (2) and
(3)), the test will fail when the added exogenous variables (X) have a very strong relationship with Y,
as this causes multicollinearity in the model. The Granger test of causality confirms (or helps analyze)
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the exploratory CCF plots, as they both work directly with time series of drought indicator values.
The Granger test of causality is recommended as part of the proposed framework to assess the strength
of the association between meteorological drought time series and agricultural drought time series.

While the magnitude of the drought indicator is useful to assess the severity of the drought,
a coarser indication of whether the system is in drought (regardless of the severity) or not is often
enough in long-term planning applications. Furthermore, the drought indicator value does not directly
indicate whether the system is suffering from a drought unless it is compared to a pre-specified drought
threshold [60]. Therefore, binary (drought/non-drought) time series developed using pre-specified
cutoffs are valuable to compare agricultural and meteorological droughts. For the recommended
drought indicators here, the cutoff values can be taken as ≤−1 for SPI and SPEI, ≤−2 for PDSI,
and ≤−1.25 for the Z-Index, based on the recommendations of the US Drought Monitor [60].

Binary agricultural and meteorological time series can also be organized as a 2× 2 contingency table
to evaluate their drought classification characteristics. The Chi-square test evaluates the null hypothesis
that the classifications of meteorological and agricultural droughts are independent of each other
against the alternative hypothesis that there is a correlation between agricultural and meteorological
droughts, and can be used as a first line of evidence to assess the potential correlation of agricultural
and meteorological droughts. The Cohen Kappa test [61,62] uses Cohen Kappa statistics as a measure
of agreement between agricultural and meteorological time series, and evaluates the null hypothesis
of no agreement between the two series against the alternative of statistically-significant agreement
between the two. In addition to hypothesis testing, the magnitude of the Cohen Kappa statistic is
useful to evaluate the strength of the agreement when the null hypothesis is rejected. The proposed
evaluation framework recommends that this statistic be mapped (with non-significant values set to
zero) to understand the spatial variability of the strength of association between agricultural and
meteorological drought indicators.

Receiver Operator Characteristics (ROC) provide another useful set of metrics to compare
agricultural and meteorological drought classifications. A variety of metrics measuring the degree of
similarity (or lack thereof) using the 2 × 2 contingency table was designed from binary drought time
series [63]. The false positive rate (FPR) and the true positive rate (TPR) are two fundamental measures
for evaluating the coincidence between meteorological and agricultural droughts. The area under
the ROC curve (AUC) provides a good single measure to summarize the strength of the relationship
between agricultural and meteorological droughts. In a similar vein, accuracy, specificity, and recall also
evaluate the nature and extent of correlation between agricultural and meteorological droughts [63],
and can be mapped to make spatial comparisons. Table 1 further describes the various terms used in
ROC analyses, and explains how they pertain to the evaluation of meteorological and agricultural
droughts. ROC metrics are all amenable to spatial mapping, making them valuable when comparing
the spatial differences between agricultural and meteorological droughts. As such, the proposed
framework recommends ROC analysis as an integral component for comparing agricultural and
meteorological droughts.

To summarize, the drought assessment framework presented here uses raw drought-state time
series to develop exploratory metrics, i.e., TSDM and CCF, to initially compare differences in agricultural
and meteorological time series. The Granger test of causality is used to statistically test the relationship
between agricultural and lagged meteorological drought indicators. The Cohen Kappa test statistically
evaluates the degree of agreement between meteorological and agricultural drought indicator time
series. Finally, the receiver operator characteristics (ROC) further elucidate the joint behavior of the
meteorological and agricultural droughts which are summarized in Table 1. The suite of methods
adopted here help elucidate the differences between the long-term evolution of meteorological- and
agriculture-related drought indices. These methods are easy to understand and communicate to a
broad range of audiences. They are particularly suited for large regional-scale assessments, as they
can be calculated with minimal computational burden and be readily mapped for the visualization
of regional differences. The proposed methods also provide initial insights to guide the application
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of advanced stochastic methods to study drought characteristics, namely, drought severity, duration,
and intensity. As an illustrative example, the proposed framework is used to study the differences
between meteorological and agricultural droughts in Ethiopia.

Table 1. Contingency Table and Receiver Operator Characteristics (ROC) as they pertain to Agricultural
and Meteorological Drought Evaluations.

Ag D: Drought, ND:
Non droughtD ND

Met
D TP FP P = TP + FN TP − True

Positive Coincident Ag and Met droughts

ND FN TN N = FP + TN FP = False
Positive Met. Drought but no Ag. drought

P + N = Total data points used for classification FN = False
Negative Ag. Drought but no Met. drought

TN − True
Negative No Met. Drought and No Ag. droughts

False Positive Rate (FPR) or Recall TP/P Coincidence of Ag and Met. Droughts
over all Ag. droughts

True Positive Rate (TPR) FP/N Fraction of met droughts over all
Ag. Non-droughts

Accuracy (TP + TN)/(P
+ N)

Fraction of co-occurrence of both met
and ag droughts and non-droughts

Precision TP/(TP + FP) Fraction of times Ag and Met droughts
are coincident over all met droughts

Specificity TN/(FP +
TN)

Fraction of coincident Ag. and Met
No-drought states over all Ag. No

drought states

2.3. Illustrative Application—Comparison of Meteorological and Agricultural Droughts in Ethiopia

Data Compilation

Following Asfaw et al. [7], gridded monthly precipitation dataset extracted from GPCC Full Data
Monthly Product Version 2018, produced by Global Precipitation and Climatology Center (GPCC)
and available on 0.5◦ × 0.5◦ grid [64], were used along with temperature data from Climate Research
Unit (CRU TS 4.21), as described in Harris et al. [65]. The GPCC Full Data Monthly Product is the
most comprehensive gridded precipitation dataset available today, and is based on measurements
from over 80,000 stations worldwide. It covers a period ranging from January 1891–December 2016,
when this study was conducted. The GPCC Full Data Monthly Product is the most accurate in situ
precipitation reanalysis data set of GPCC, and aims to support regional climate monitoring, model
validation, climate variability analyses, and water resources assessment studies (e.g., Becker et al. [66],
Zeise et al. [67]). It is also noted to provide representative coverage in Ethiopia [7], and as such, was
deemed suitable for this study.

The National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Center
(CPC) soil moisture dataset [34] and the European Space Agency’s (ESA) Climate Change Initiative
(CCI) soil moisture product [68] were evaluated to develop a soil moisture-based agricultural drought
indicator for Ethiopia. The CPC soil moisture data is based on a bucket model which was calibrated
using data from small watersheds in Oklahoma, USA, whose geography is vastly different from
that of Ethiopia. The ESA-CCI soil moisture data are derived from active and passive microwave
remote-sensed data. While these datasets hold promise to directly characterize agricultural droughts,
their suitability to model Ethiopian soil conditions could not be ascertained, as neither included
soil moisture data from Ethiopia or any other country in East Africa in their calibration/verification
process [34,69]. Soil moisture networks do not exist in Ethiopia, and the only available soil moisture
dataset is for a period of eight years (2002–2010) at one station in Sudan for the entire East Africa [70],
which is woefully inadequate for regional-scale comparisons. As such, these datasets were not used
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further, and the analyses were restricted to more common, agriculture-related drought indices (i.e.,
SPEI, PDSI, and the Z-index).

The CRU Climate Dataset was produced by the Climate Research Unit at the University of East
Anglia, and is gridded at a resolution of 0.5◦ × 0.5◦ over the land mass; it was available with a monthly
time step from 1901–2017 at the time of this study. The CRU dataset is also based on observations from
several thousand stations worldwide. The principal data sources come from the World Meteorological
Organization (WMO) and the National Oceanic and Atmospheric Administration (NOAA, through its
National Climate Data Center, NCDC). This dataset has also been used in several hundred climate
change assessment studies, and is known to provide reasonable estimates for temperature [65]; as such,
it was used to obtain temperature data across Ethiopia and to compute the potential evapotranspiration
needed for SPEI, and was also used as an input for PDSI and Z-index calculations.

Data for the common period of both GPCC precipitation and CRU temperature datasets
(January 1901–December 2016) were extracted for 377 grid locations across Ethiopia (shown in Figure 1),
and used to calculate the drought indicators SPI, SPEI, and PDSI-SC (referred to as PDSI for brevity).
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Figure 1. 0.5◦ × 0.5◦ grid used for evaluations of meteorological and agricultural droughts across
Ethiopia overlaid on agricultural and pasture land.

Short-term SPI calculations could be affected by the presence of months with no rainfall. Therefore,
SPI and SPEI indices were computed using the procedures presented in Stagge et al. [71] to correct for
zero precipitation values. The standard procedures for computing self-calibrating PDSI and the Z-index
were used [50]. Customized scripts were developed in the R programming environment [72] using
existing packages [73–75], as appropriate.

3. Results and Discussion

3.1. Exploratory Data Analysis

The maximum cross-correlation coefficient for various agricultural and meteorological indicators
is plotted in Figure 2, and represents the maximum possible correlation between agricultural and
meteorological drought indicators, regardless of the lag at which they occurred. In the short-term,
the relationship between SPI-2-SPEI-2 exhibits considerable variability, compared to SPI2-Z-index
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values. This result highlights that SPEI-2 is controlled by different mechanisms in different parts of
Ethiopia. When the correlation between SPI-2 and SPEI-2 is strong, precipitation has a higher role
in controlling intraseason droughts (as measured using SPEI-2). Surficial soil dryness (caused by
temperatures) plays a greater role in other areas where the SPI-2 and SPEI-2 correlation is weaker.
In contrast, the association between SPI-6 and SPEI-6 is near perfect. Higher precipitation accumulations
(6 months) in effect dampen the short-term ‘temperature’ dominant signals seen in SPEI-2. In other
words, the ability to store moisture from previous months can help alleviate the short-term droughts
brought about by surficial soil dryness, and points to the need for irrigation systems in Ethiopia.

The cross-correlation between SPI-2 and the Z-index (intraseason) is good (0.6–0.8) over most
of Ethiopia, and does not exhibit significant spatial variability. The Z-index is computed using a
two-bucket model which accounts for soil moisture dynamics over 1 m of soil. This tends to mask the
surficial drying effects noted in SPEI-2. The correlation between SPI-6 and PDSI is also good, but not as
strong as SPI-6 and SPEI-6, and exhibits some variability, likely due to differences in parameterizations
across different locations obtained using the self-calibration process. Overall, based on CCF, SPI
serves as a better surrogate for simulating long-term (seasonal) agricultural droughts than short-term
(intraseason) droughts. In both cases, SPI does not explain all the noted variation in agricultural
droughts (except perhaps those computed using SPEI-6).
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Figure 2. Maximum Cross-Correlation Coefficient between meteorological (SPI) and agricultural (SPEI,
Z-index, PDSI) droughts in Ethiopia.

The time series distance measure (TSDM) evaluates the aggregated distance between agricultural
and meteorological drought indicators. As the measurement scale of different indicators is different,
Figure 3 plots the normalized distance (normalization was done such that smallest distance has a
value of unity, while largest distance has a value of zero; intermediate values are on a linear 0–1 scale).
As TSDM measures the distance at any given point in time (and not on lags), it is akin to a lag-0
cross-correlation coefficient. Therefore, the comparison of spatial patterns of CCF presented in Figure 2
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and TSDM in Figure 3 shows where the relationship between meteorological and agricultural indicators
are strongest at lag-0, or likely to covary. It can be noted that the region where the SPI-2 and SPEI-2
correlation is strongest also exhibits a strong TDSM correlation. The low to moderate CCF values
shown in Figure 2 for SPI-2 and SPEI-2 CCF correspond to areas where the relationship between
the indicators is stronger at other lags. A comparison of TSDM (Figure 3) and CCF between SPI-2
and the Z-index (Figure 2) shows that the maximum strength between these two variables occurs at
non-zero lags. This result suggests that short-term soil moisture dynamics are not affected by changes
in precipitation alone.
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Figure 3. Normalized Time Series Distance Measure (TSDM) between agricultural and
meteorological indicators.

A comparison of short- (SPI-2 and SPEI-2) and long-term (SPI-6-SPEI-6) droughts indicates that as
accumulation periods increase, so does the area over which lag-0 becomes higher. This result is to be
expected because, at longer timescales, there is a greater possibility that a parcel of land will experience
both meteorological and agricultural droughts. Again, a comparison of CCF (Figure 2) and TDSM
(Figure 3) for SPI-6 and SPEI-6 shows regions where the relationship between meteorological (SPI-6)
and agricultural droughts (SPEI-6) may be strong, but the droughts need not be coincident. The degree
of coincidence between SPI-6 and PDSI, as measured using TDSM, is much lower when compared to
SPI-6 and SPEI-6 relationship, indicating a lagged relationship between SPI and PDSI, which likely
arises due to greater moisture buffering capacity in PDSI, compared to SPEI.

Exploratory data analysis using CCF and TSDM metrics indicate that agricultural and
meteorological droughts exhibit moderate to strong correlation over much of Ethiopia. However,
these droughts need not always be coincident. SPEI indicates a greater degree of spatial coincidence
with SPI as compared to Z-Index and PDSI, especially at higher accumulation levels (i.e., for seasonal
droughts). The coincidence, or lack thereof, is important to evaluate whether SPI (a meteorological
drought indicator) can serve as a useful surrogate for capturing agricultural droughts; the results
suggest that the suitability of SPI as a surrogate for agricultural droughts depends upon the choice of
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the agricultural drought indicator, the assessment scale (short- or long-term), and the location within
the country.

3.2. Confirmatory Hypothesis Testing

An exploratory data analysis indicated that the correlation between agricultural and meteorological
droughts was strong, but not always coincident. A Granger test of causality was performed to
statistically confirm this result, as presented in Figure 4.
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Figure 4. Spatial locations in Ethiopia where the Granger test rejected the null hypothesis of no
correlation between meteorological and agricultural droughts (1-null hypothesis was rejected at
0.05 significance; 0-null hypothesis was not rejected or multicollinearity issues were found).

The Granger test of causality indicated that adding a meteorological drought indicator generally
improves the prediction of agricultural droughts, suggesting that SPI can be a lagged indicator of
SPEI (i.e., moisture deficits from previous precipitation events impact current agricultural droughts).
However, the Granger test was inconclusive in many places, especially for SPEI-6. The locations where
SPI and SPEI were strongly correlated caused multicollinearity issues during the application of the
Granger Test. Overall, it can be inferred that the Granger test generally found that lagged values of
SPI can be useful to predict (or improve the prediction of) agricultural drought indicators when the
strength of the relationship is not strong enough to cause multicollinearity effects. This result generally
confirms the qualitative assessment that a relationship between lagged SPI and agricultural drought
indicators is noted at many locations across Ethiopia.

A Chi-square test was performed to evaluate the correlation between binary-encoded
(drought/non-drought) agricultural and meteorological drought time series. The results from the
Chi-square test were significant at all locations and for all combinations of agricultural-meteorological
drought indicators. While the Chi-square test is commonly used, one of its limitations is its tendency
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to reject the null hypothesis of independence, even when the correlations are small, especially for large
sample sizes. Some correlation between the indicators is to be expected, because they all, to some degree
or another, depend upon precipitation. While the Chi-square test may be capturing this result, it does
not help tease out the effects of how various agricultural drought indicators modify the precipitation
signal. As such, the Chi-square test, while common, is of limited value for comparing agricultural and
meteorological drought indicators (therefore, the results of the test are not presented here for brevity).

The Cohen kappa test rejected the null hypothesis of independence between agricultural and
meteorological droughts at all locations (at 5% significance level). Figure 5 presents the Cohen kappa
values; a comparison with Figure 2 (CCF plot) indicates considerable similarities. The Cohen kappa is,
however, more conservative (except perhaps for SPI-6 and SPEI-6 in combination) in defining the degree
of agreement between agricultural and meteorological indicators. This result arises because unlike
CCF, the Cohen kappa is computed using binary (drought/non-drought) time series, and therefore,
the comparison is not simply on magnitudes, but on classified drought states.
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Figure 5. Cohen kappa values across Ethiopia for agricultural and meteorological drought
indicator combinations.

The degree of association, as measured using the kappa statistic, is higher for SPI-SPEI combinations
than for SPI-PDSI (Z-Index) combinations. It is important to recognize that the Cohen kappa statistic
was computed on classified time series, while CCF was calculated using raw indicator values. As the
thresholds for categorizing between drought and non-drought are different for each indicator, the kappa
measure provides a more realistic picture of concordance between agricultural and meteorological
droughts. PDSI and Z-index exhibit a lower level of agreement with SPI when their values are encoded
into drought and non-drought climate states, suggesting that the duration of droughts predicted by
SPI is not consistent with those predicted by PDSI and the Z-index.
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3.3. Receiver Operator Characteristics (ROC) Analysis

The true positive rate (TPR), or sensitivity, denotes the fraction of time in which meteorological
droughts are coincident with agricultural droughts. Therefore, TPR provides a direct evaluation of
how well SPI-based meteorological drought indicators capture the agricultural droughts predicted by
SPEI and PDSI (Z-Index).

Figure 6 depicts the TPR computed TPR values across Ethiopia. It is evident that coincident
meteorological and agricultural droughts occur at different frequencies across the nation, and depend
upon the choice of the indicator for characterizing meteorological droughts. While SPI can better
predict SPEI-based short- and long-term droughts over much of the country, the TPR rates for these
combinations also exhibit the greatest variability. In general, SPI and SPEI are coincident 50–80% of
the time, but their coincidence can be lower than 30% in some regions. Short-term SPI2-SPEI2 are
highly non-coincident in the Somali Region of Ethiopia (Southeastern sections) where belg (short-rainy
season) rainfall is prominent, and the region has greater aridity then other parts of the country.
The covariation of SPI (meteorological) and PDSI and the Z-index (agricultural) is lower with most
regions of the country, being in meteorological and agricultural drought states 30–70% of the time.
While the covariation between SPI and PDSI (Z-index) is lower compared to SPEI based agricultural
drought indicators, they also exhibit much more homogeneity across the nation. Thus, SPI may only
capture a smaller fraction of agricultural droughts (as predicted by PDSI and the Z-index), but it does
so consistently across the nation. On the other hand, SPI may be able to better capture the agricultural
droughts predicted by SPEI in some locations, but it does not do so consistently. Furthermore, Figure 6
also indicates that the accumulation period plays a critical role in defining the covariation between
SPEI- and SPI-based indicators.
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The false positive rate (FPR) denotes the fraction of time there is a meteorological drought but not
agricultural drought, and is mapped across Ethiopia for various indicator combinations of interest
in Figure 7. Agricultural systems may exhibit a delay in responding to the onset of meteorological
droughts, especially if the soil moisture is buffered from previous rainfall events that occurred prior to
the initiation of droughts. Smaller values of FPRs indicate a greater coincidence of agricultural and
meteorological droughts.

Again, the SPI-SPEI combinations indicate greater coincidence in some parts of Ethiopia, but also
exhibit considerable variability. The extent of precipitation accumulation is particularly significant
in the south-eastern (Somali) region of the county for SPI-SPEI combination. The SPI-6 and PDSI,
and SPI-2 and Z-index combinations generally show greater divergence, but the noted deviation
is more uniform across the nation. In general, meteorological droughts exist without the onset of
agricultural droughts no more than 15% of the time, regardless of the indicator used, but can be less
than 4% of the time (with 4–10% being a typical range).
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Figure 7. False Positive Rate (FPR) for various drought indicator combinations across Ethiopia.

The Receiver Operating Characteristics (ROC) Curve is depicted in Figure 8, and plots the FPR
and TPR values for each location. The 45◦ line on the ROC curve indicates the line of equal FPR and
TPR. The coincidence of a meteorological and agricultural droughts increases (due to non-random
relationships) when points fall in the upper triangular portion shown in Figure 7. The point (0,1)
indicates a perfect coincidence (i.e., 100% of the time) between meteorological and agricultural droughts.
As almost all points fall in the upper triangle, a reasonably strong, non-random relationship between
agricultural and meteorological droughts can be ascertained, regardless of the indicators.

While the covariance of the Z-index and SPI-2 is not strong, there is also less variability across
the nation. The strength of the relationship between SPI-2 and SPEI-2 can vary widely, and similar
behavior can be seen for SPI-6 and SPEI-6 (long-term) drought combination as well. This result again
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indicates that if SPEI is chosen as an agricultural drought indicator, SPI may or may not serve as a
useful surrogate to signify agricultural droughts, depending upon the location of interest. On the
other hand, if the Z-Index and PDSI are chosen as drought indicators, SPI is likely to be a poorer but
consistent surrogate across the nation for characterizing agricultural droughts.
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drought combinations.

The AUC values shown in Figure 9 not only reconfirm the findings from earlier metrics, but are
also helpful in evaluating areas where meteorological indicators covary to a higher extent with a
selected agricultural indicator. It is evident from Figure 9 that SPI-2 can be useful as a surrogate in some
portions when SPEI-2 is selected as an agricultural drought indicator. However, along the northern and
western borders and southeastern portions of the country, the level of surrogacy offered by SPI-2 is the
same, regardless of which agricultural indicator is used. GIS mapping of AUC allows one to ascertain
the minimum level of surrogacy that SPI provides, regardless of the choice of agricultural indicator.

Precision provides an estimate of the fraction of times meteorological and agricultural droughts
are coincident over all meteorological droughts. Precision is another measure that helps evaluate the
concordance of agricultural and meteorological droughts, and thus, helps evaluate the suitability of
SPI in capturing agricultural droughts being predicted by SPEI, PDSI (Z-index). Figure 10 illustrates
that the precision values exhibit extreme variability across Ethiopia. Not all meteorological drought
conditions translate into agricultural drought conditions. Various factors such as antecedent soil
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moisture (water stored from previous rainfall events) and plant adaptations to water stress help buffer
agricultural systems against meteorological droughts. However, in areas with higher values of precision,
the buffering capacity is low, and the onset of a meteorological drought quickly causes agricultural
droughts. Therefore, SPI can serve as a useful early-warning detector of agricultural droughts.
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While the focus so far has been on the drought climate state, it is equally important to consider both
agricultural and meteorological non-drought states. Specificity can be viewed as a complement to the
False Positive Rate (FPR). While FPR looks at coincident times of both agricultural and meteorological
droughts across all agricultural droughts, Specificity is the fraction of time in which both meteorological
and agricultural systems are in non-drought states over all times in which the agricultural system is in
a non-drought state. Specificity is useful to assess the fraction of time when there are no climate-related
water stresses on the agricultural system.

Figure 11 depicts specificity measures for various meteorological-agricultural drought indicator
combinations. The results suggest that the specificity across Ethiopia is reasonably high, regardless of
the agricultural drought indicator used. Where there is no meteorological drought, there is unlikely to
be an agricultural drought. According to these results, SPI can be a very useful indicator to highlight
agricultural non-drought states. A comparison of the False Positive Rate (Figure 7) and Specificity
(Figure 11) suggests that SPI is much better suited to indicate when the agricultural system is not in a
drought state, more so that when it is in one.
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Accuracy measures the total number of coincident agricultural and meteorological drought and
non-drought states against all possible states. Accuracy thus provides a comprehensive evaluation
of using SPI as a surrogate for other agricultural drought indicators, considering both drought and
non-drought states.

Figure 12 suggests that SPI has at least 60% accuracy in predicting agricultural (drought and
non-drought) states, and it can be over 95% in some instances. Again, the spatial variability of accuracy
for different agricultural drought indicators is evident from Figure 12. In general, the accuracy is
better for SPI-SPEI combinations, more so than SPI-PDSI (Z index) combinations. However, as seen in
Figure 11, the accuracy is high because of the ability of SPI to better predict agricultural non-drought
states, more so than its ability to predict agricultural drought states. Therefore, a stand-alone evaluation
of accuracy does not provide the full picture with regards to the ability of SPI to predict agricultural
droughts, and accuracy results must be viewed in the context of false positive rates (recall) and precision
estimates to assess which states (drought or non-drought) are being better predicted by SPI.
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3.4. Conclusions

The key takeaway from this study is that the common practice of using SPI to study agricultural
droughts in Ethiopia is inadequate over much of the country, especially if drought indicators that are
based on soil water balance (i.e., PDSI and the Z-index) are used to define agricultural droughts. This
result should not be construed to imply that SPI has no role to play in the stakeholder-driven drought
contingency planning required as part of the Ethiopia’s national policy on disaster risk management.
The onset of meteorological droughts (as measured using SPI) was often sooner than agriculture related
droughts (SPEI, PDSI and Z-index). As such, SPI provides an early warning of impending agricultural
droughts. However, agricultural-related droughts tend to persist longer, and as such, SPI is not a
suitable indicator for identifying agricultural drought cessation. A strong correlation between SPI and
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agricultural drought indicators was also noted for non-drought states, which suggests that SPI is likely
useful to manage the largely rainfed agricultural systems during non-drought states.

While this study provides a pragmatic framework with which to compare agricultural and
meteorological droughts and visualize differences between the two on a national scale, it can certainly
be improved upon. It is important to recognize the reconnaissance nature of the methodology and use
it as a launching pad to guide more in-depth analyses of drought characteristics, especially looking
at drought severity, duration, and inter-drought duration characteristics (see Figures S1–S9 in the
accompanying Supplementary Information for a preliminary analysis of these metrics). A detailed
investigation of these characteristics in Ethiopia is underway, and will be the focus of a subsequent
paper. As droughts are multi-faceted and manifest on multiple scales, it is recommended that a suite of
drought indicators be used as part of drought contingency planning. This study highlights some useful
datasets and agriculture-related indicators that can be readily adopted for this purpose. This study
also points to gridded soil moisture datasets that can be used to directly quantify the soil moisture
dynamics, and therefore, agricultural droughts. However, their usage is currently limited, due to the
lack of suitable data for ground-truthing the model derived or remotely-sensed soil moisture estimates.
As agriculture will continue to play a major role in sustaining a rapidly-growing population and
shaping the economic development of Ethiopia, the development of a robust soil moisture network
must be a top priority for the nation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/11/2218/s1,
Additional maps depicting median (50th percentile), InterQuartile Range (IQR) and Robust Coefficient of variation
(RCV) for drought severity, duration and inter-drought duration across Ethiopia for SPI, SPEI and PDSI (Z-index) at
intraseasonal and seasonal time-scales can be found in the Supplementary Information section. See Figures S1–S9.
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41. Potopová, V.; Štěpánek, P.; Možný, M.; Türkott, L.; Soukup, J. Performance of the standardised precipitation
evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic.
Agric. For. Meteorol. 2015, 202, 26–38. [CrossRef]

42. Oloruntade, A.J.; Mohammad, T.A.; Ghazali, A.H.; Wayayok, A. Analysis of meteorological and hydrological
droughts in the Niger-South Basin, Nigeria. Glob. Planet. Chang. 2017, 155, 225–233. [CrossRef]

43. Zambreski, Z.T.; Lin, X.; Aiken, R.M.; Kluitenberg, G.J.; Pielke Sr, R.A. Identification of hydroclimate
subregions for seasonal drought monitoring in the U.S. Great Plains. J. Hydrol. 2018, 567, 370–381. [CrossRef]
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