Supplementary Information

Elimination of micropollutants in activated sludge reactors with a special focus on the effect of biomass concentration

Rana Hatoum^{1,2,3}, Olivier Potier¹, Thibault Roques-Carmes¹, Cécile Lemaitre¹, Tayssir Hamieh², Joumana Toufaily², Harald Horn^{3,4} and Ewa Borowska^{3,*}

- Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, University of Lorraine, Grandville 1, 54001 Nancy and France
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beirut, Lebanon
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
- DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany

*Corresponding author. e-mail: ewa.borowska@kit.edu - Tel.: +49 721 608 42788; Fax: +49 721 608-46497

HRT / SRT	Feed concentration (µg L ⁻¹)								Removal efficiency (%)				Sludge concentration (g _{TSS} L ⁻¹)		
	CAF	SMX	BZT	ROX	ERY	DCF	CBZ	CAF	SMX	BZT	ROX	ERY	DCF	CBZ	
>2-3 / >150d															
(nitrifying						≤1							70 ^b		
conditions) ^a															
12-17h / 1.5–5.1d ^c								44-75						8-15	
16.7h / 6d ^d	1	1				1	1	99	90				20	<10	2.4
58.4h / 54d ^d	1	1				1	1	95	45				10	<10	2.5
15h / 10-12d ^e		0.23-0.57							9		25	2			3
31h / 21-25d ^e		0.23-0.57							60						3
- / 20-40d, >40d ^f							10-40							<20	$2g_{VSS} L^{-1}$
- / 20-40d, >40d ^f						10-40							<20		$2g_{VSS} L^{-1}$
- / >40d ^f		10-40							64-70		64-70	64-70			$2g_{VSS} L^{-1}$
12-20h / 25d ^g		1-5	1-5			1-5	1-5		20-90 ^h				<20 ^g	<20 ^g	
12-20h / 40d ^g		1-5	1-5			1-5	1-5		20-90 ^h				<20 ^g	<20 ^g	4-5.5
12-20h / 80d ^g		1-5	1-5			1-5	1-5		20-90 ^h				<20 ^g	<20 ^g	4-5.5
12h / 3d ⁱ							0.24								
12.5-13.6 / 52- 114d ⁱ							0.32-1.85								

Table S1. Overview of the removal efficiency of some MPs in published studies according to some operational conditions in activated sludge.

^aVieno and Sillanpää [1]; ^bFernandez-Fontaina et al. [2]; ^cSantos et al. [3]; ^dMajewsky et al. [4]; ^eGobel et al. [5]; ^sSuárez et al. [6]; ^gFalås et al. [7] ^bJoss et al. [8] ⁱHai et al. [9]. / --negligeable.

Operating times in each cycle									
	SRT (d)	HRT (h)*	Duration (d)**	Filling (min)	Reaction (min)	Settling (min)	Drawing (min)	# of cyles (d ⁻¹)	Treated wastewater (L d ⁻¹)
SBR-3 d	3	4	30	5	170	60	5	6	30
		8	30	5	410	60	5	3	15
	_	12	30	5	650	60	5	2	10
SBR-10 d	10	4	30	5	170	60	5	6	30
		8	30	5	410	60	5	3	15
		12	30	5	650	60	5	2	10
SBR-20 d	20	4	30	5	170	60	5	6	30

Table S2. Operating schedule of SBRs.

*: Studied HRT is equivalent to the cycle duration; **: Actual kinetics periods. These periods include transition period between phases.

SRT (d)	3	3	3	10	10	10	20
HRT (h)	4	8	12	4	8	12	4
D iamons concern tration (a \mathbf{L}^{-1})	3.3	3.3	3.2	3.0	3.3	3.1	3.5
Biomass concen-tration (g L)	± 0.1						
VSS (%)	70	72	71	79	77	79	81
$DO (mg L^{-1})$	2.5	2.4	2.2	4.4	4.3	4.2	4.4
pH	8.1	8.1	8	7.5	7.8	7.9	8
T (°C)	20.1	19	19	18.1	18	18	19.5

Table S3. Mean values of biomass concentration (± standard error), volatile suspended solids (VSS), dissolved oxygen (DO), pH and T (°C) in the three SBRs during seven experimental setups.

Table S4. Composition of	f the synthetic wastewater and	l supplementary sol	utions I and II.
1		11 2	

Synthetic wastewater (SWW)	Concentration (mg L ⁻¹)						
	SWW1 (SBR-3 d)	SWW2 (SBR-10 d)	SWW3 (SBR-20 d)				
CH ₃ COONa	1200	500	100				
NH ₄ HCO ₃	75	75	75				
KH ₂ PO4	5	5	5				
MgSO ₄ .7H ₂ O	50	50	50				
CaCl ₂ .2H ₂ O	21	21	21				
NaHCO ₃	36	36	36				
Supplementary solution I							
$C_{10}H_6N_2O_8$	50	50	5				
FeSO ₄ .7H ₂ O	20	20	2				
Supplementary solution II							
$C_{10}H_6N_2O_8$	20	20	20				
ZnSO ₄ .7H ₂ O	0.43	0.43	0.43				
CoCl ₂ .6H ₂ O	0.24	0.24	0.24				
MnCl ₂ .4H ₂ O	1	1	1				
CuSO ₄ .5H ₂ O	0.25	0.25	0.25				
NaMoO ₄ .2H ₂ O	0.22	0.22	0.22				
NiCl ₂ .6H ₂ O	0.19	0.19	0.19				
NaSeO ₄ .10H ₂ O	0.21	0.21	0.21				
H_3BO_4	0.14	0.14	0.14				

Text S1. Calculation of Solid Retention Time (SRT). The target SRTs were maintained manually by adjustment of biomass concentration in SBRs at the end of the aeration period according to reference [10] using the Eq. (S1):

$$SRT = \frac{c_{\text{TSS V}}}{c_{\text{TSS eff}} \, Q_{eff} + c_{\text{TSS w}} \, Q_w}$$
(S1) (1)

where C_{TSS} : Total Suspended Solids concentration in the reactor (g_{TSS} L⁻¹); V: reactor volume (L); C_{TSSeff} : Total Suspended Solids concentration in the effluent (g TSS L^{-1}); $Q_{eff.}$: effluent flow rate (L d^{-1}); C_{TSSw} : Total Suspended Solids concentration of the withdrawn sludge (g TSS L-1);Qw: sludge withdrawal (L d-1).

Source parameters							
Gas Temperature	200 °C						
Gas Flow	8 L min ⁻¹						
Nebulizer	40 psi						
Sheath Gas Temperature	300 °C						
Sheath Gas Flow	12 L min ⁻¹						
Conillowy	Positive: 4500 V						
Capinary	Negative 3500 V						
Nogzla Valtaga	Positive 500 V						
NUZZIE VOltage	Negative 300 V						

Table S5. Source parameters applied during sample measurements.

Compound	RT min	Polarity	Precursor Ion	Quantifier	CE	Qualifier	CE
Benzotriazole	3.3	Positive	120.1	65.0	24	92.1	20
Benzotriazole-d4	3.3	Positive	124.1	41.4	48	96.0	20
Caffeine	3.0	Positive	195.1	137.9	20	110.0	24
Caffeine- ¹³ C ₃	3.0	Positive	198.2	140.0	20	43.5	44
Carbamazepine	5.8	Positive	237.1	193.4	28	178.9	40
Carbamazepine-d ₈	5.8	Positive	245.2	202.1	24	200.6	40
Diclofenac	8.0	Positive	296.0	213.9	40	250.0	12
Diclofenac-d4	8.0	Positive	300.1	218.0	36	-	-
Diciorenae-u4	0.0	Negative	298.0	-	-	254.0	8
Erythromycin	3.6	Positive	734.5	158.0	32	576.0	20
Erythromycin-d ₃	3.6	Positive	737.5	161.0	32	579.4	20
Roxithromycin	3.9	Positive	837.5	158.0	36	679.4	20
Roxithromycin-d7	3.9	Positive	844.6	158.0	36	686.5	20
Sulfamethoxazole	4.4	Positive	254.1	155.9	12	92.0	28
Sulfamethoxazole-d4	4.4	Positive	258.1	159.9	36	151.1	12

Table S6. Mass spectrometric parameters for detection.

Figure S1. Removal efficiencies of wastewater parameters (COD, N-NH₄⁺ and P-PO₄³⁻) and nitratenitrogen production over 4 h, 8 h and 12 h HRT for SRT - 3 d and SRT - 10 d (error bars present standard error).

Figure S2. Removal and k': apparent-first-order fits (h⁻¹) of other investigated MPs; number of replicates = 3; error bars indicate one standard error.

Figure S3. Change of concentration of (a) BZT and (b) ERY during biological treatment in reactors inoculated with biomass at concentrations of 3, 5 and 8 g L⁻¹; k': apparent-first-order removal rate constant (h^{-1}) at SRT - 10 d and HRT - 4 h.

References

- Vieno, N.; Sillanpää, M. 2014. Fate of diclofenac in municipal wastewater treatment plant — A review. Environ.Int, 69, 28–39.
- Fernandez-Fontaina, E.; Omil, F.; Lema, J.M.; Carballa, M. 2012. Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants. Water Research, 46, 5434–5444.
- Santos, J.L., Aparicio, I., Callejón, M., Alonso, E. 2009. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal Hazardous Materials, 164, 1509-16.
- Majewsky, M.; Gallé, T.; Yargeau, V.; Fischer, K. 2011. Active heterotrophic biomass and sludge retention time (SRT) as determining factors for biodegradation kinetics of pharmaceuticals in activated sludge. Bioresource Technology, 102, 7415– 7421.
- Gobel, A.; Mcardell, C.; Joss, A.; Siegrist, H.; Giger, W. 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of The Total Environnment, 372,361–371.
- Suárez, S.; Reif, R.; Lema, J.M.; Omil, F. 2012. Mass balance of pharmaceutical and personal care products in a pilot-scale single-sludge system: Influence of T, SRT and recirculation ratio, Chemosphere, 89, 164-171.
- Falås. P.; Wick, A.; Castronovo, S.; Habermacher, J.; Ternes, T.A.; Joss, A. 2016. Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Resource, 95, 240-249.
- 8. Joss, A.; Zabczynski, S.; Göbel, A.; Hoffmann, B.; Löffler, D.; McArdell, C.S.; Ternes, T.; Thomsen, A.; Siegrist, H. 2006. Biological degradation of

pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Resource, 40, 1686-1696.

- Hai, F.; Shufan, Y.; Muhammad, A.; Vitor,S.; Samia, S.; Martina, S.S.; Jody, G.; Zhi-Qiang, X.; Kazuo, Y. 2018. Carbamazepine as a possible anthropogenic marker in water: occurrences, toxicological effects, regulations and removal by wastewater treatment technologies. Water 10, 107.
- 10. Henze, M.; Van Loosdrecht, M.C.M.; Ekama, G.; Brdjanovic, D. 2008. Biological wastewater treatment: principles, modelling and design. London, IWA Publishing.