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Abstract: The temporal and spatial differentiation of the underlying surface in East Asia is complex.
Due to a lack of meteorological observation data, human cognition and understanding of the surface
processes (runoff, snowmelt, soil moisture, water production, etc.) in the area have been greatly
limited. With the Heihe River Basin, a poorly gauged region in the cold region of Western China,
selected as the study area, three meteorological datasets are evaluated for their suitability to drive the
Soil and Water Assessment Tool (SWAT): China Meteorological Assimilation Driving Datasets for the
SWAT model (CMADS), Climate Forecast System Reanalysis (CFSR), and Traditional Weather Station
(TWS). Resultingly, (1) the runoff output of CMADS + SWAT mode is generally better than that of
the other two modes (CFSR + SWAT and TWS + SWAT) and the monthly and daily Nash–Sutcliffe
efficiency ranges of the CMADS + SWAT mode are 0.75–0.95 and 0.58–0.77, respectively; (2) the
CMADS + SWAT and TWS + SWAT results were fairly similar to the actual data (especially for
precipitation and evaporation), with the results produced by CMADS + SWAT lower than those
produced by TWS + SWAT; (3) the CMADS + SWAT mode has a greater ability to reproduce water
balance than the other two modes. Overestimation of CFSR precipitation results in greater error
impact on the uncertainty output of the model, whereas the performances of CMADS and TWS are
more similar. This study addresses the gap in the study of surface processes by CMADS users in
Western China and provides an important scientific basis for analyzing poorly gauged regions in
East Asia.

Keywords: CMADS; SWAT; poorly gauged regions; comparative analysis

1. Introduction

Distributed hydrological models are widely used in the assessment of the impacts of climate
change on surface process, hydrological processes, and water balance [1]. For these models to be able to
provide reliable simulation products that can support water and land management practices, there is an
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increasing need for meteorological forcing data with high precision and spatiotemporal resolution [2,3].
Recent studies have shown that quality of meteorological data represents a major source of uncertainty
in determining model performance [1–5]; improving data accuracy is therefore essential to effectively
reduce model uncertainty [6,7]. A variety of atmospheric reanalysis datasets [8–15] have been widely
used in hydrologic modeling studies [16–21]. Examples of such sets include: Climate Forecast System
Reanalysis (CFSR) [10], produced by the National Centers for Environmental Prediction (NCEP) [8];
the (R1)-NCEP/National Center for Atmospheric Research (NCAR) reanalysis dataset, the (R2)-NCEP-
Department of Energy (DOE) reanalysis dataset [9–11]; European Centre for Medium-Range Weather
Forecast (ECMWF) Reanalysis-Interim (ERA-Interim) [12], ECMWF Reanalysis-15 (ERA-15) [13], and
ECMWF Reanalysis-40 (ERA-40) [14], produced by the European Centre for Medium-Range Weather
Forecasts system (ECMWF); and Modern Era Retrospective-Analysis for Research and Applications
(MERRA) [15] by the National Aeronautics and Space Administration (NASA). Additionally, output
data from global or regional climate models and corresponding downscaled data are widely used to
drive large-scale hydrological models [15–21]. Since the mid-1990s, the United States, European Union,
Japan, and others have implemented a series of global atmospheric data reanalysis plans, which have
yielded three rounds of reanalysis to date. The first generation of reanalysis produced the NCEP/NCAR
global atmosphere reanalysis datasets, covering the period from 1948 onward [10], the ECMWF ERA-15
datasets covering 1979–1993 [16], and the NASA Data Assimilation Office ERA-15 datasets covering
1980–1995 [22,23]. The second generation of reanalysis datasets include the NCEP/DOE reanalysis
(1979 onward) [11], ERA-40 (1958–2001) by ECMWF [14,24], and JRA-25 (1979 onward) by the Japan
Meteorological Agency and the Central Research Institute of the Electric Power Industry [25]. The
recently completed third generation of reanalysis datasets include ERA-Interim (1979 onward) by
ECMWF [26], CFSR (1979 onward) by NCEP [10], MERRA (1979 onward) by NASA [15], and the
Japanese 55-year ReAnalysis (JRA-55) (1958–2012) by the Japan Meteorological Agency (JMA) [27].
JRA-55 has two additional versions: JRA-55C (1972–2012, only fuses routine observations) and
JRA-55AMIP (1958–2012, no observational fusing; equivalent to climate simulation). Recently, a
number of datasets that include information beyond pure atmospheric reanalysis have been produced.
For example, the 20th-century reanalysis (20CR,1871–2008) produced by the National Oceanic and
Atmospheric Administration (NOAA)/Earth System Research Laboratory (ESRL) and the Cooperative
Institute for Research in Environmental Sciences at the University of Colorado [28] adopted Ensemble
Kalman Filter (EnKF) assimilation technology to fuse surface air pressure observations with aerosol
reanalysis (MERRA-AERO, 2000–) [29] and atmospheric chemistry reanalysis (MACC, 2003–) [30]
generated by NASA and ECMWF, respectively. Reanalysis can be used in long-term climate change
research to produce long-term, continuous, and global four-dimensional (4D) datasets; such datasets
allow an in-depth understanding of atmospheric circulation and its effects on climate formation, thereby
facilitating the systematic study of the Earth’s atmosphere. Recently, reanalysis data have been widely
used for a variety of research purposes, including climate monitoring, seasonal forecasting, climate
change modeling and diagnosis, global and regional water cycle and energy balance monitoring, and
climate mode verification.

Although reanalysis datasets use different weather patterns and assimilation systems, all apply
business-mature numerical forecasting models to produce patterns and assimilation systems. For
example, NCEP-NCAR (NCEP1) uses the GSM (T62) business numerical model and the January
1995 Spectral Statistical Interpolation assimilation system; NCEP-DOE (NECP2) uses modified and
improved versions of the model and assimilation systems used by NCEP1; ERA-40 uses the T159
integration forecasting system (IFS) produced by ECMWF with improved Three-Dimensional (3D)
Variational Data Assimilation (3DVar) technology to assimilate data (ERA-40 ceased refreshing after
August 2002); ERA-Interim uses the ECMWF IFS (T255) and a 4D Variational Data Assimilation
(4DVAR) assimilation system, a continuous product of ERA-40. ERA-Interim both improves on the
horizontal resolution of ERA-40 (T159 -> T255) and applies a more advanced 4DVar technology. JRA-25
uses a T106 global spectrum mode (JMA 2002) with a 3DVar-based assimilation system. NCEP has



Water 2019, 11, 2171 3 of 28

built a real-time updated CFSR global reanalysis dataset. CFSR takes a new approach in using a
global high-resolution atmosphere-ocean-land-ice coupled system with a Global Forecast System (GFS)
ocean mode, a Modular Ocean Model-Version 4 (MOM4), and a Noah land mode. The discrete CFSR
assimilation system uses GIS-3DVAR, Global Ocean Data Assimilation System (GODAS), and Global
Land Data Assimilation System (GLDAS) for atmosphere, ocean-ice, and land modes, respectively.
NASA’s MERRA global reanalysis dataset, which uses a Goddard Earth Observing System, Version 5
(GEOS-5) Atmospheric Data Assimilation System (ADAS) based on 3DVar Geographic Information
System (GIS) technology with a horizontal resolution of 38 km (T382), obtains significantly improved
water cycle simulation results. The JMA-55 reanalysis dataset adapts the December 2009 TL319L60
(approximately 60 km) data to a 4DVar assimilation system (T106 inner model) and an offline Simple
Biosphere Model (SiB) (using 3-h atmospheric forcing data).

Many useful findings have been obtained through the reliability analyses of reanalysis datasets of
the types described above. However, each reanalysis dataset has its own advantages and disadvantages,
and no specific approach results in a uniform performance across geographic regions and time periods.
For example, Zhao et al. [31] found that ERA-40 has a higher confidence level than NCEP-2. Huang’s [32]
analysis of China sounding data revealed that, while ERA-40 produces better pre-1970s interdecadal
East-Asia climate variation results, and NCEP/MCAR produces a better description of troposphere
geopotential height and temperature in Inner Mongolia and North China than ERA-40 for 1970 and
afterward. Although JRA-25 and the JMA Climate Data Assimilation System (JCDAS) produce the
best 6-h global precipitation distributions and quantities over time and space, the low resolution
of JRA-25 renders it unsuitable for mesoscale analysis [24]. Najafi et al. [16] used the CSFR dataset
to drive the Sacramento Soil Moisture Accounting Model (SAC-SMA) and analyzed runoff in the
Donghe River basin based on water supplied by snowfall and melt. Fuka et al. [17] used precipitation
and temperature data from the CFSR dataset (http://cfs.ncep.noaa.gov/cfsr/) to drive a soil and water
assessment tool (SWAT) model and found that SWAT simulations driven by CSFR outperformed those
driven by TWS data. Smith et al. (2013) assessed the water balance relations between the land surface
and atmosphere produced by ERA-Interim, CSFR, and MERRA and concluded that all of these datasets
could skillfully reflect seasonal changes in water balance. Lavers et al. [19] used ERA-Interim, CFSR,
NCEP-NCAR, and MERRA data to study the relation between winter flooding and large-scale climate
activity and demonstrated that all of these datasets could reflect a consistent relationship between the
two. Quadro et al. [20] found that CSFR outperformed NCEP Reanalysis II (NCEP-2) and MERRA in
simulating South American water balance. Wei et al. [21] used CFSR and TRMM to simulate three
cyclones passing through the Taiwan Strait. Despite its wide use, the CFSR dataset has been shown
to produce large uncertainties in precipitation frequency and intensity, although it does successfully
capture large-scale precipitation climatology [33,34]. Precipitation is one of the most important factors
in the processes of generating runoff, but, because of a lack of reliable observations, the CFSR dataset
has low usability and accuracy in modelling precipitation in China.

As noted in the IPCC fourth assessment report [35], global climate models (GCMs) are not
completely applicable in modeling regional climate patterns, as a result of their coarse resolutions.
Several studies have shown that GCMs cannot be directly applied in the assessment of future
regional-scale hydrological changes [36]. Regional climate models have higher spatial-temporal
resolutions than GCMs and have been applied successfully in finer-grained simulation. For example,
Lu et al. [37] used the precipitation output of Mesoscale Community Compressible (MC2) to drive
a land-atmosphere coupling model Xin’anjiang with enhanced forecasting precision and lead time,
although Wang et al. [38] obtained somewhat worse results by using the Regional Climate Model-version
3 (RegCM3) regional climate model to drive a semi-distributed SWAT hydrological model. To validate
the model for use in China, Jeremy et al. [39] used RegCM3 to simulate and analyze monthly and
seasonal rules of precipitation in winter and summer in the monsoon region of East Asia and found
that the model produces large precipitation simulation errors, particularly in winter.

http://cfs.ncep.noaa.gov/cfsr/
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Compared to South-Eastern China, the western region of the country has a sparse distribution of
meteorological stations, which acts as a significant constraint on large-scale modeling. Given the poor
performance of regional climate models and reanalysis datasets in China, it is necessary to develop
a high resolution dataset covering the entire country and evaluate its performance in large-scale
hydrological modeling. To this end, this paper presents the newly developed China Meteorological
Assimilation Driving Datasets for the SWAT model (CMADS), which can be used for large-scale,
SWAT-based hydrological modeling. After comparing the modeling performance of CMADS results to
those obtained using CFSR and TWS datasets, the added value of the CMADS dataset in the large-scale
modeling of the Heihe River Basin (HRB) in China is assessed.

2. Study Region

The Heihe River basin (HRB) (E98◦34′–101◦09′ N37◦43′–39◦06′) contains the second largest inland
river in China, which originates from Qilian Mountain in the south and flows out of the mountain at
the Ying Luoxia hydrological station. The HRB has higher altitudes in the south and west than in the
north and east and is characterized by scarce precipitation, adequate sunshine, and a large diurnal
temperature range. The total catchment area is 9973 km2 with an average elevation ranging from
1980.629 to 4029.827 m (Figure 1).
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Figure 1. Distribution of meteorological stations and hydrological stations in the study area. YLX,
ZMSK, and QLS are Ying Luoxia (Sub-basin 2), ZhaMashenke (Sub-basin 13), and Qilian Mountain
(Sub-basin 20) stations, respectively.

The HRB has an average annual precipitation of 300–700 mm and average annual temperatures
ranging between −3 and 7 ◦C. The mountain region, located at altitudes above 4500 m, is covered with
ice and snow, with the altitude of the snow line increasing from east to west. Due to the large amount
of precipitation and glaciations, as well as the underling mountainous surface and good vegetation
distribution, the Qilian Mountain area serves as the upstream region of the entire HRB. Although the
multi-annual average runoff at Ying Luoxia station is 1.58 billion m3, the annual change in the HRB
runoff changes is low, with a typical ratio of maximum to minimum runoff smaller than three. There
is, however, large intra-seasonal variability, with May and June accounting for 12–25% of the annual
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runoff, and July and September, 50–55%. Financial revenue in the region primarily depends upon
animal husbandry, and there are abundant water resources and developed irrigation facilities.

3. Materials and Methods

Here, the SWAT model is applied to the HRB as a study region to assess the added value of the
CMADS dataset. Using streamflow observations from three hydrological stations in the region obtained
from the HRB Authority, three simulations are conducted using SWAT models driven by CMADS,
CFSR, and TWS data, respectively. Finally, the simulation results are compared with observations

3.1. Land Surface Input Data

3.1.1. Digital Elevation Model

The spatial input data of the SWAT model includes the Digital Elevation Model (DEM),
the river network, and land use data. The DEM data were obtained from the Shuttle Radar
Topography Mission (SRTM)-(90 m) dataset, which is archived by the Consultative Group on
International Agricultural Research (CGIAR)-Consortium for Spatial Information (CSI) SRTM 90
database (http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp) [40]. The DEM data were extracted
and analyzed by the SWAT model in this study. The slope states of the watershed are min: 0.13, max:
68, mean: 13.2, and median: 11.6.

3.1.2. Soil Distribution and Land Use Data

Soil properties (Figure 2a) and land use (Figure 2b) categories determine the characteristics of
flow generation and concentration in the various Hydrological Response Units (HRUs) of the SWAT
model. The soil data used in this study are obtained from the China Soil Dataset (v1.1), which
is based on the World Soil Database [40]. Soil categories in the basin include: Eutric Leptosols
(31.114%), Gelic Leptosols (28.687%), Luvic Kastanozems (8.673%), Luvic Gypsisols (6.498%), Rendzic
Leptosols (4.342%), Gelic Gleysols (3.339%), Mollic Leptosols (2.517%), Luvic Chernozems (2.447%),
Haplic Kastanozems (2.316%), Cumulic Anthrosols (2.206%), Gelic Cambisols (1.564%), Calcic Gleysols
(1.374%), Haplic Chernozems (1.344%), Terric Histosols (0.772%), Calcaric Phaeozems (0.702%), Calcaric
Fluvisols (0.622%), Calcic Kastanozems (0.602%), Haplic Greyzems (0.340%), Mollic Gleysols (0.311%),
Glaciers (0.120%), and Haplic Gypsisols (0.110%); the percentage figures indicate the ratio of the area
of the soil category to that of the entire watershed area. Eutric Leptosols (31.114%) and Gelic Leptosols
(28.687%) are the dominant soil types in the basin. In the HWSD database, the ratio of GRAVEL, SAND,
SILT, and CLAY of the two dominant soils are 45% Vol., (77% wt.), 11% wt. (12% wt.), 24% wt. (46% wt.),
34% wt. (20% wt.), respectively. The database shows that DRAINAGE of these two types of soils are
Moderate and Imperfect, respectively. This indicates that the drainage effect of Eutric Leptosols, which
is the most widely distributed soil, is moderate, but better than that of Gelic Leptosols.

The land use map (Global Land Cover Database for the year 2000, GLC2000) is obtained from
the China West Data Centre (WestDC) [41]. The main land category in the research area is meadow,
accounting for 64.173% of the watershed area, followed by meadow bromegrass (24.747%), bare rocks
(7.079%), ice (1.253%), desert grassland (0.963%), farmland (0.602%), needle-leaved deciduous forest
(0.461%), gravels (0.421%), bush (0.221%), desert (0.07%), and plain grassland (0.01%). The land use
data are matched with corresponding similar codes in the SWAT land use database and expressed as
the following land use types: MEDW, BROM, ROCK, ICE, DEGA, AGRL, FRSD, GRAV, RNGB, DESE,
and PAST, respectively. To guarantee the accuracy of the ice data, the land use data were overlaid onto
the Second Glacier Inventory Dataset of China [42,43].

To ensure model consistency, the spatial resolution of the DEM, soil and land use data were all set
to 1 km and the projection coordinates were set using Beijing_1954_GK_Zone_17N.

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
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3.2. Hydrological Verification Data

Daily streamflow observations are taken at the ZhaMashenke, Qilian Mountain, and Ying Luoxia
hydrological stations. The details of each station are listed in Table 1.

Table 1. Hydrological stations data statistics in Heihe River Basin (HRB).

Station Name
Nature

Sub-Basin Area
(km2)

Latitude (◦) Longitude (◦) Station
Elevation (m)

Data Period
(year)

Ying Luoxia 243 38.82 100.18 1700.4 2009–2013
Qilian Mountain 310 38.20 100.23 3020.1 2009–2013

ZhaMashenke 126 38.23 99.98 2810.2 2009–2013

3.3. Atmospheric Forcing Input Data

Three types of datasets were used to produce atmospheric data to force the SWAT model (Table 2).
The HRB has four national basic meteorological observation stations: Tuo Le (T1), Ye Niugou (T3),
Qilian (T4), and Zhang Ye (T2); which can be considered to produce the most authoritative spatial results.
To assess the accuracy of CFSR and CMADS in modeling the basin, their respective interpolation results
were analyzed at TWS locations T1–T4. The TWS data were used to obtain daily average air pressure,
average wind speed, average temperature, average relative humidity, daily maximum/minimum
temperatures, and daily precipitation and sunshine duration, with missing observational values filled
by the SWAT model’s embedded weather generator. The SWAT models use the observations to
calculate multi-annual climate conditions [6] and then apply the centroid method to interpolate station
elements [44].

3.3.1. TWS

The TWS dataset represents data from traditional weather stations; Daily Datasets of Surface
Climate Data in China (V3.0) are obtained from National Meteorological Information Center
(https://data.cma.cn/). These datasets contain data from 699 basic meteorological stations in China, and
include the daily data of air pressure, temperature, precipitation, evaporation, relative humidity, wind
speed, and sunshine hours since January 1951. Here, four traditional weather stations are selected in
the Heihe River Basin: Tuo Le (T1), Ye Niugou (T3), Qilian (T4) and Zhang Ye (T2) (Figure 1).

3.3.2. CFSR

The CFSR dataset, which is produced by the American National Environmental Forecasting
Center [8], is a high-resolution global reanalysis dataset covering 98◦34′–101◦09′ E and 37◦43′–39◦06′ N
with a T382 atmospheric resolution, corresponding to 38 km horizontally and 64 floors vertically.

https://data.cma.cn/
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We interpolate CFSR data at intervals of 0.313◦using bilinear interpolation technique and obtain 15
interpolating points (CF1–CF15) in the study region. The spatial resolution is 0.313◦ × 0.313◦ and
the temporal resolution is daily from January 1, 2008 to December 31, 2013, with data including
precipitation, maximum/minimum temperatures, wind speed, relative humidity, and solar radiation.
Although the SWAT model website also recommends using the CFSR dataset to drive and build models
globally, the effectiveness of driving the SWAT model using the CFSR dataset in China has not been
systematically verified.

Table 2. Three types of atmospheric forcing data: Traditional Weather Station (TWS), Climate Forecast
System Reanalysis (CFSR), and China Meteorological Assimilation Driving Datasets for the SWAT
model (CMADS).

Dataset TWS CFSR CMADS

Elements

Daily average air pressure,
daily average wind speed,
daily average temperature,

daily average relative
humidity, daily maximum/

minimum temperatures, 24 h
precipitation, and sunshine

duration

Daily accumulative
precipitation, daily

maximum/minimum
temperatures, daily

average wind speed, daily
average relative humidity,

and daily accumulative
solar radiation

Daily maximum/minimum
temperatures, daily

average wind speed, daily
average relative humidity,

daily accumulative
precipitation, and daily

accumulative solar
radiation

Data original spatial
range

4.00◦ N~53.31◦

N 73.40◦ E~135.05◦ E Global 0◦ N~65◦ N, 60◦ E~160◦ E

Data spatial range of
this study 37◦ N~39◦ N, 98◦ E~101◦ E 24.5.00◦ N~57.00◦ N

44.00◦ E~129.00◦ E
37.5◦ N~39.17◦ N,
98.5◦ E~101.17◦ E

Data timescale 2008.1.1–2013.12.31 2008.1.1–2013.12.31 2008.1.1–2013.12.31

Data original
resolution ratio / 0.313◦, 0.5◦, 1.0◦, 1.9◦, 2.5◦ 0.333◦, 0.25◦, 0.125◦,

0.0625◦

resolution ratio of
this study / 0.313◦ 0.333◦

No. of stations
imported by SWAT

model
4 (T1–T4) 15 (CF1–CF15) 11 (CM1–CM11)

3.3.3. CMADS

The CMADS (obtainable online at http://www.cmads.org) is a public-domain dataset developed
by Dr. Xianyong Meng at the China Agriculture University [45–48]. CMADS’ integration of air
temperature, air pressure, humidity, and wind velocity data is primarily achieved through the Local
Analysis and Prediction System (LAPS)/Space Time Multiscale Analysis System (STMAS) system [45].
Precipitation data are stitched using the Climate Prediction Center Morphing (CMORPH)-produced
global precipitation products and data from the China National Meteorological Information Centre [47],
which contain daily precipitation records observed at 2400 national meteorological stations, in
addition to the CMORPH satellite inversion precipitation products. An inversion algorithm for
incoming solar radiation at the ground surface uses the discrete longitudinal method [47] to calculate
radiation transmission. The resolutions of CMADS V1.0, V1.1, V1.2, and V1.3 are 1/3◦, 1/4◦, 1/8◦, and
1/16◦, respectively.

The CMADS model was completed over a 11-year period from 2008 to 2018 and has been applied
to many watersheds in East Asia [49–66], achieving good simulations.

3.3.4. Evaluation of CFSR and CMADS Based on TWS

The SWAT model used in this study required the interpolation of 11 stations (CM1–CM11) from
the CMADS V1.0 model (resolution ratio: 1/3◦). The CMADS-derived distributions of multi-annual
total precipitation and maximum/minimum temperatures in the Ying Luoxia River Basin are shown in

http://www.cmads.org
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Figure 3. This study emphasizes verifying the utility of the CMADS dataset for driving hydrological
model in China.Water 2019, 11, x FOR PEER REVIEW 9 of 29 
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temperature distribution) in the Heihe River Basin (HRB) (red area) from 2009 to 2013.

Our preparatory research revealed that there are few meteorological stations in Western China,
making large-scale hydrological simulation difficult without interpolation. Accordingly, CMADS and
CFSR had obvious advantages over TWS data, and 11 and 15 meteorological stations were extrapolated
by CMADS and CFSR, respectively, from the four TWSs (T1–T4) in the basin. Additionally, we found
missing data values at each station, with missing ratios of up to 3.395%, 8.762%, 4.654%, and 7.448% at
TuoLe (T1), Zhang Ye (T2), Ye Niugou (T3), and Qilian (T4), respectively. This contrasts with the lack of
missing values in the SWAT model-driven CMADS and CFSR datasets.

To quantitatively analyze the differences between the interpolated dataset results produced by
CFSR and CMADS for the HRB, we extracted the spatial coordinates of the four TWSs in the study
area (Figures 4 and 5) and evaluated the accuracy produced by the interpolated datasets relative to
the observed data. The TWSs were located at the following spatial coordinates: 38.82, 98.42 (T1);
39.09, 100.29 (T2); 38.42, 99.59 (T3); and 38.18, 100.25 (T4). From this analysis, it was found that the
goodness of fit between CMADS and TWS was better than that between CFSR and TWS, and that
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CMADS underestimated precipitation at all four stations from May–September between 2009 and 2011
(Figure 4). The maximum error in precipitation was 0.28 mm and the correlation coefficient was higher
than 0.992, indicating a high fit between the CMADS and TWS datasets. The performance of CFSR was
generally worse than that of CMADS, overestimating precipitation at each interpolation point over the
period from 2009 to 2013 with errors of up to 1.15 mm/month. Additionally, maximum temperatures
were underestimated at all four stations, with errors ranging from −5.93 to −9.41 ◦C/month (Figure 5,
T4). The evaluation results are listed in Table 3.
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Figure 4. Average monthly precipitation according to TWS (blue), CMADS (red), and CFSR (green) at
four sites (T1–T4) from 2009 to 2013.
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Figure 5. Maximum and minimum temperatures according to TWS (blue), CMADS (red), and CFSR
(green) at four sites (T1–T4) from 2009–2013.

To further investigate the hydrological performance of the three datasets, they were each used to
drive the SWAT model.
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Table 3. Correlation analysis for CFSR and CMADS based on TWS at four sites (T1–T4).

Dataset Elements
TWS (T1) TWS (T2) TWS (T3) TWS (T4)

R2 CORR BIAS R2 CORR BIAS R2 CORR BIAS R2 CORR BIAS

CF-precipitation 0.76 0.87 0.56 0.26 0.51 0.60 0.70 0.84 1.15 0.62 0.79 1.02
CM-precipitation 0.85 0.92 −0.16 0.81 0.90 0.02 0.83 0.91 −0.2 0.92 0.96 −0.04

CF-maximum temperature 0.98 0.99 −6.64 0.98 0.99 −5.9 0.98 0.99 −5.7 0.89 0.94 −9.41
CM-maximum temperature 0.99 0.99 −1.10 0.99 0.99 −1.1 0.99 0.99 −0.7 0.99 0.99 −0.99
CF-minimum temperature 0.98 0.99 −0.56 0.98 0.99 −0.7 0.97 0.98 2.2 0.90 0.95 −3.42
CM-minimum temperature 0.99 0.99 0.73 0.99 0.99 0.82 0.99 0.99 1.1 0.99 0.99 0.40

CF and CM represent CFSR and CMADS, respectively; R2, CORR, and BIAS are the deterministic coefficient,
correlation coefficient, and bias, respectively. Negative bias represents a value underestimated by TWS observations,
and positive bias a value over-estimated by observations.

3.3.5. SWAT Model

The SWAT model is a semi-distributed model that can simulate basin-scale hydrology, sediment
dynamics, and non-point source pollution [6]. Unlike other grid-based distributed hydrological models,
the SWAT model separates an individual basin into several independent HRUs with common land use
characteristics, soil categories, and gradients. Since its initial publication, the model has been widely
used around the world [7].

Model Setting

After dividing the study area into 24 sub-basins (among them, Qilian Mountains, Zha Mashenke,
and Ying Luoxia, which are located in Sub-basin 20, Sub-basin 13, and Sub-basin 2, respectively) based
on DEM information, the SWAT model was used to divide each sub-basin into several HRUs. The
multiple HRUs were chosen to ensure that the details of land use, soil, and slope were retained, with
the threshold set to 0. In the SWAT model, the water balance of each HRU was calculated based on
surface runoff, interflow, base flow, infiltration, river transfer loss, and evapotranspiration. Here, we
refer to the three combinations of forcing data, i.e., CMADS, CFSR, and TWS with the SWAT model, as
the CMADS + SWAT, CFSR + SWAT, and TWS + SWAT modes, respectively.

In all three of the modes, the Penman–Monteith method was applied to calculate potential
evapotranspiration based on solar radiation, temperature, relative humidity, and wind speed. As there
are no solar radiation data in the TWS dataset, the solar radiation under the TWS + SWAT mode was
synthesized using the SWAT model’s Markovian weather generator. Each mode applies methodology
developed by the former US Soil Conservation Service (SCS) to input daily data to calculate surface
runoff and develop an SCS curve, which is a non-linear relation between precipitation and initial loss.
The surface runoff calculated for each HRU was then routed into the main channel and a river storage
method based on a continuity equation is used to calculate main channel water flow.

By applying the centroid interpolation principle, the SWAT model can interpolate spatially discrete
meteorological data at a single point within an overall basin [36]. To reduce errors caused by spatial
dispersion and interpolation (particularly in mountainous areas) and increase the precipitation accuracy
within the HRUs and natural sub-basins, information extracted from the HRB elevation dataset were
extracted and used to identify several common-elevation areas. The elevation module of SWAT model
was activated in this step. The model adjusts the spatial meteorological elements, such as precipitation,
according to the extracted DEM information. The precipitation gradient is then used to simulate
the precipitation distributions within the respective elevation areas based on precipitation generated
through model output.

A simulation period of 2008–2013 was selected, with the year 2008 used for model spin-up and
calibration, and verification periods from 2009–2010 and 2011–2013, respectively.

Sensitivity Analysis

The SWAT-CUP software developed by EWAGE [67] was used to analyze and calibrate the
parameters of each mode. The Sequential Uncertainty Fitting (SUFI-2) algorithm [68,69] was used
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to run SWAT-CUP [70] in conducting model calibration, validation, and sensitivity and uncertainty
analysis. This algorithm has many uncertainties for example, in terms of parameters, conceptual
models, and input, but can attain a 95% Prediction Uncertainty (95PPU) for most measured data. The
95PPU value was calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output
variable obtained through Latin hyper cube sampling. Sensitivity analysis was then used to analyze
which runoff parameters (26 parameters in total) are most sensitive, from which a parameter sensitivity
ranking driven by three types of meteorological data was derived.

Model Calibration

Parameter calibration is an important process in SWAT model building [71–73]. The 14 most
sensitive parameters based on the simulated conditions [74] between 2009 and 2010 were chosen for
calibration and used to validate the model performance from 2011 to 2013 for each dataset; on the basis
of SWAT-CUP sensitivity analysis, the five most sensitive parameters were automatically calibrated
in this study, and the remaining parameters were manually fine-tuned without much change in the
model results. In this process, performance of the parameters was stably calibrated, followed by an
attempted change to the range of other parameters to ensure that the problem of equifinality was
solved. Following calibration at the monthly scale, the parameters were calibrated using daily data and
validated against daily runoff. In this process, we considered the ratio between annual evaporation and
runoff to ensure a reasonable level of simulated total evaporation, precipitation and runoff. The Qilian
Mountain hydrological station was calibrated first, followed by the ZhaMashenke, and finally the Ying
Luoxia station because the latter most station is downstream of the others and accurate calibration of
upstream parameters can be a good foundation for downstream calibration.

Differences were found among the best parameters of the respective models. Table 4 lists the final
values of the model parameters.

Table 4. Final value of Soil and Water Assessment Tool (SWAT) model parameters.

Variable Name Parameter Definition
TWS + SWAT CFSR + SWAT CMADS + SWAT

Parameter Final
Value

Parameter Final
Value

Parameter Final
Value

CN2.mgt SCS runoff curve value 69 55 64

ALPHA_BF.gw Baseflow αfactor 0.337546 0.182795 0.437614

GW_DELAY.gw Delay time (day) of aquifer
replenishment 307.377808 476.718750 295.687683

GWQMN.gw
Water level threshold (mm) of shallow
aquifer when groundwater flowing

into the main river channel
0.612660 0.411690 −0.116476

GW_REVAP.gw Evaporation coefficient of
groundwater 0.096742 −0.005901 0.146628

ESCO.hru Compensation factor of soil
evaporation 1.072486 1.018231 1.008041

ALPHA_BNK.rte Recession constant value of base flow 0.142319 0.033505 0.134332

SFTMP Average temperature (◦C) at snowing
days 6.248940 −1.810063 5.092002

PLAPS Lapse rate of precipitation
/(mm·km−1) 136.724258 178.032104 136.339050

SMFMN Snowmelt factor at 21 December
/mm·(day- ◦C)−1 8.911116 7.507036 9.612769

SMFMX Snowmelt factor at 21 June 0.164362 5.421363 0.109247

TLAPS Lapse rate of temperature/(◦C·km−1) −4.730556 −8.429128 −6.115168
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Model Assessment

The study used two evaluation indices: the Nash-Sutcliffe Efficiency (NSE) and determination
efficiency (R2) [75]; both of these are widely used to assess model performance. NSE, a normal statistical
formula that reflects the degree of fit between observed data and simulated results [76], is given by

NSE = 1−

∑
i
(Qm −Qs)

2
i∑

i
(Qm,i −Qm)

2 , (1)

where Q is the runoff variable, with Qm and Qs representing observed and simulated runoffs,
respectively; Qm represents the average observed runoff value. The NSE equation produced values
ranging from −∞ to 1; an NSE of one corresponds to a close fit between observed and simulated data,
whereas NSEs between 0.1 and 1 correspond to acceptable simulation results, and NSEs less than zero
correspond to poor results.

Determination efficiency reflects the degree of correlation between measured variables and is
calculated as follows:

R2 =

[∑
i
(Qm,i −Qm)(Qs,i −Qs)

]2
∑
i
(Qm,i −Qm)

2∑
i
(Qs,i −Qs)

2 , (2)

where Qm and Qs represent observed and simulated runoff values, respectively, and i is the ith simulated
or observed value.

Whereas some studies have chosen R2 > 0.5 and NSE > 0.5 as criteria for a satisfactory SWAT
model [77], others set NSE > 0.4 as satisfactory [78]. This study adopted the evaluation criterion of
Moriasi et al. [79], under which a monthly-scale simulation NSE ≥ 0.65 or a daily-scale simulation NSE
≥ 0.5 during the calibration period is considered acceptable [77].

4. Results and Discussion

4.1. Daily- and Monthly-Scale Runoff Simulation Results by the Three Modes for Three Sub-Basins

As discussed in the preceding section, three different modes (CMADS + SWAT, CFSR + SWAT, and
TWS + SWAT) were used to obtain monthly and daily runoff series at three stations (Qilian Mountains,
ZhaMashenke, and Ying Luoxia). Based on the model evaluation index developed by Santhi [77] and
Moriasi [79], the CMADS + SWAT and TWS + SWAT modes both achieved satisfactory performance
at the monthly-scale at all three stations (Table 5). At the ZhaMashenke station, on a monthly scale
(Figures 6–8), the CMADS + SWAT results (Figure 7A) are better than those produced by TWS + SWAT
(Figure 7B). As this location lacked a meteorological station, the CMADS dataset outperformed the
TWS dataset. Nevertheless, the monthly simulation results for Sub-basin 2 (Ying Luoxia) produced by
CMADS + SWAT were slightly over-estimated relative to those produced by TWS + SWAT, possibly
because there was more precipitation under the CMADS + SWAT mode (May–Oct each year). Such
over-estimation can also arise from the application of the centroid interpolation method and can be
increased by secondary adjustment of the SWAT model and meteorological data. Regardless, the
slightly over-estimated precipitation produced by CMADS for Ying Luoxia did not result in enhanced
model simulation error (Table 5).
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Table 5. Evaluation of monthly and daily matching results at three stations driven by three
different modes.

Driving
Data

(Sub-Basin 20) Qilian
Mountain Control

Station

(Sub-Basin 13)
ZhaMashenke Control

Station

(Sub-Basin 2) Ying
Luoxia Control Station

NS R2 NS R2 NS R2

Monthly

CFSR +
SWAT 0.32 0.21 0.49 0.50 0.45 0.46

CMADS +
SWAT 0.75 0.85 0.95 0.95 0.92 0.95

TWS +
SWAT 0.80 0.87 0.92 0.94 0.96 0.97

Daily

CFSR +
SWAT 0.26 0.27 0.35 0.38 0.45 0.49

CMADS +
SWAT 0.58 0.66 0.75 0.78 0.77 0.80

TWS +
SWAT 0.62 0.68 0.74 0.77 0.77 0.79Water 2019, 11, x FOR PEER REVIEW 15 of 29 
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We also found that the simulation results produced by the CFSR + SWAT mode were unsatisfactory
at three stations. Relative to the observations, runoff was generally overestimated (although
underestimated in summer), with the NSE efficiency coefficient reaching only 0.49 at maximum
(Figure 6C, Figure 7C, and Figure 8C). Runoff overestimation was also present during the increasing
runoff period from October to August in all three sub-basins. Each set of September simulation
results was also underestimated by CFSR + SWAT. As the model overestimated the distribution of
precipitation over the course of each year, the basin flow was also overestimated (Figure 6C, Figure 7C,
and Figure 8C). This precipitation overestimation occurred because the CFSR data were not corrected
against observed data obtained from meteorological stations. Although runoff was simulated well
following model parameter calibration, the CFSR + SWAT mode tended to overestimate precipitation
(Figure 4), possibly because it underestimated maximum temperature (Figure 5). The overestimation



Water 2019, 11, 2171 14 of 28

of CFSR precipitation caused the CFSR + SWAT-modeled evaporation to significantly exceed local
annual evaporation following calibration.
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On the monthly scale, we found that the observed runoff fell within 95PPU when the SWAT model
was driven by CMADS. Compared with the Qilian Mountain control station (Figure 6), the P-factors of
ZhaMashenke control station (Figure 7), and Ying Luoxia Control Station (Figure 8) are more obvious.
Only part of the measured runoff value fell within the range of 95PPU when the SWAT model was
driven by TWS. There was a large deviation between the observed runoff and the 95PPU driven
by CFSR. We believe that this was due to the over-estimation of CFSR precipitation. From the best
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simulation point of view, CMADS-driven runoff perfectly reproduced the observed results (Figure 7A)
at ZhaMashenke control station, while TWS was slightly underestimated (Figure 7B). Additionally,
compared to CFSR’s best simulation (Figure 6C, Figure 7C, and Figure 8C), CMADS and TWS showed
good simulation performances at the three stations. Overall, we found that CMADS outperformed
TWS in terms of uncertainty, and CFSR performed worst. In the best simulation, CMADS data was
slightly better than TWS, and the CFSR performance was the worst.

Following monthly-scale calibration in the three sub-basins (Figures 6–8), the optimal parameters
were applied to the SWAT model for continued calibration and adjustment of the three modes on a
daily scale. As with the monthly simulation, both CMADS + SWAT and TWS + SWAT performed well
at a daily scale (Table 5, Figures 9–11). The runoff simulation results produced by these modes were
quite consistent with the daily hydrological maps for the three stations. By contrast, the simulated peak
values at Qilian Mountain (Figure 9B) and ZhaMashenke (Figure 10B) produced by the TWS + SWAT
mode were underestimated, while the peak at Ying Luoxia was slightly overestimated. Meanwhile, the
simulated daily CMADS + SWAT results at Qilian Mountain (NS = 0.58, R2 = 0.66) were both acceptable,
and the model also performed satisfactorily at Ying Luoxia (NS = 0.77, R2 = 0.80) and ZhaMashenke
(NS = 0.75, R2 = 0.78). The March–April simulated daily results at ZhaMashenke produced by CMADS
+ SWAT were higher and had larger amplitude than the observed results; however, the model’s
simulation results were better than those produced by the TWS + SWAT mode during other periods.
The peak simulation accuracies of CMADS + SWAT at Qilian Mountain and ZhaMashenke exceeded
those produced by either the TWS + SWAT or CFSR + SWAT modes. Overall, the CMADS + SWAT
mode simulations agreed more closely with the observed data than those produced by the other two
modes, particularly at the Qilian Mountain and ZhaMashenke control stations. These results indicate
that CMADS data can effectively capture spatial heterogeneity that is missed when a limited number of
conventional meteorological stations is used, a factor that limits the applicability of TWS to simulating
basin water balance.
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Figure 11. Simulation results of monthly average runoff of three different modes at Ying Luoxia control
station from 2009 to 2013: (A) CMADS + SWAT mode; (B) TWS + SWAT mode; (C) CFSR + SWAT mode.

The interval range of 95PPU on the daily scale was significantly smaller than that on the monthly
scale. This phenomenon was observed at all three hydrological control stations (Figures 9–11). However,
similar to the monthly scale, the measured runoff value driven by CMADS basically fell within the
range of 95PPU, followed by that driven by TWS and CFSR. From the best simulation, the performance
of CMADS and TWS was similar, and the CFSR simulation results and observations show great errors
(Figures 9–11).

Our comparison of the monthly-scale and daily-scale simulation results produced by a SWAT
model driven by three types of datasets (TWS, CSFR, and CMADS) reveals that CMADS + SWAT can
simulate historical HRB runoff processes much better than the widely used CFSR dataset (see Table 5).
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4.2. Five-Year Monthly-Scale Runoff Simulation Results for Three Sub-Basins

Following parameter calibration, the water yield (WYLD) produced by the CFSR + SWAT mode
reached a level similar to that produced by the other modes. However, the CFSR precipitation element
was reflected in only a few large-scale precipitation modes. Similar to the results shown in Figure 12A,
the CFSR + SWAT mode runoff result reached a peak consistency in July but was generally inconsistent
with observation in other periods. In Figure 12, it can be seen that CFSR + SWAT overestimated during
periods of rising (Jan–Jun) and declining (Oct–Dec) runoff and also overestimated annually between
July and September.Water 2019, 11, x FOR PEER REVIEW 19 of 29 
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Figure 12. Comparison between five-year average monthly runoff (2009–2013) simulated results from
three different modes (TWS + SWAT, CFSR + SWAT, and CMADS + SWAT) and observed values at
(A) Qilian Mountain Sub-basin, (B) ZhaMashenke Sub-basin, (C) Ying Luoxia Sub-basin, and for the
(D) average basin value.

Figure 12A,C,D shows that both the TWS + SWAT and CMADS + SWAT modes slightly
underestimated between March and May (a rising runoff period).

Compared to the CMADS + SWAT mode, TWS + SWAT produced a slight underestimation
in November (a declining runoff period). In general, both TWS + SWAT and CMADS + SWAT
closely reproduce the monthly average peak value of runoff observation. The TWS + SWAT mode
overestimated for January, April–May, and October–December and produced significant underestimates
for mid-May through September.

However, although CFSR datasets overestimated precipitation, this phenomenon was not seen for
runoff in July. We found that CFSR runoff was underestimated in June–September, whereas runoff

was nearly overestimated in other months of the year. However, CMADS and TWS did not show
this phenomenon. We believe that the precipitation of CFSR was overestimated in early spring, when
snowmelt occurs, which led to further overestimation of runoff, and further affected the calibration
process of the summer (July–August) model. This shows that the model error caused by precipitation
from CFSR data is positive.

4.3. Differences Caused by Water Balance

Water balance analysis is an important tool in evaluating water resources and can aid in
differentiating the quality of various forcing data [34,41]. Our analysis of the water balance components
in the HRB produced using the three modes reveals that using overestimated CFSR precipitation as an
input to the SWAT model leads to higher amounts of evaporation and estimated water balances than
under the other two datasets (Figure 13).
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Figure 13. Water balance chart in Heihe River Basin (HRB) for the three modes (TWS + SWAT, CFSR +

SWAT, and CMADS + SWAT), where PREC, SURQ, LATQ, GWQ, PERCOLATE, SW, ET, and WYLD
represent precipitation, surface runoff, lateral flow, return flow, percolation to shallow aquifer, soil
water, evaporation and transpiration, and water yield, respectively.

From Figure 13 it can be seen that the precipitation distribution in the basin produced by CFSR
was much higher than that produced by the other two datasets, with an average annual precipitation
of 864.35 mm, compared to those from CMADS and TWS, at 442.45 and 458.48 mm, respectively.
Previous studies have shown that the annual precipitation in the main stream area of the Heihe River
is 459.7 mm [80], a figure consistent with the overestimated precipitation produced by CFSR. The
TWS + SWAT and CMADS + SWAT modes respectively partitioned 42.6% and 43.3% of precipitation
into runoff, while the CFSR + SWAT mode partitioned only 25.5% into runoff. We also found that the
proportions of side, subsurface, and lateral seepage flow during the runoff generation period were
higher with CFSR + SWAT (44.2%, 39.9%, and 44.17%, respectively) than with the other modes.

The overestimated precipitation produced by CFSR + SWAT also resulted in reduced soil moisture
relative to the other modes, possibly because of the high amount of evaporation occurring under the
CFSR + SWAT mode. By contrast, the actual evapotranspiration produced by the CFSR + SWAT mode
was much larger than that by the other two modes (the annual average evapotranspiration under the
CFSR + SWAT mode was 498.27 mm, compared to 245.18 and 253.09 mm under CMADS + SWAT and
TWS + SWAT, respectively). Actual measurements reveal that the annual average evapotranspiration
in the Heihe River mountain and main stream areas is approximately 279.3–294.1 mm [80]. It appears
that fitting the water balance produced by CFSR + SWAT to observed runoff caused it to overestimate
precipitation, which in turn led to increased evaporation and reduced soil moisture. Thus, although
the water balance with CFSR + SWAT was similar to those under the other two modes, its poor
performance in simulating evaporation and precipitation significantly decreased the accuracy of CFSR
in modelling the HRB.

To refine the performance of the three modes with the goal of better reproducing seasonal water
balance changes, the change in seasonal distribution of the overall water balance in the HRB over the
course of a year was extracted for each mode (Figure 14).
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Figure 14. Seasonal Water balance chart in Heihe River Basin (HRB) of the three modes (TWS + SWAT,
CFSR + SWAT and CMADS + SWAT), where PREC, SURQ, LATQ, GWQ, PERCOLATE, SW, ET, and
WYLD represent precipitation, surface runoff, lateral flow, return flow, percolation to shallow aquifer,
soil water, evaporation and transpiration, and water yield, respectively.

Analyses of the respective water balance evolutions revealed that the surface runoff (SURQ), water
yield (WYLD) and precipitation (PREC) produced by each mode were consistent (Figure 14) and correlate
well with the average monthly runoff (Figure 13) and precipitation distribution (Figure 15) within
different sub-basins. A more in-depth assessment revealed that, although the annual distributions
of precipitation and evaporation were similar, the total precipitation and evaporation components
produced by CFSR + SWAT were significantly higher than those by the other two modes. In terms of
magnitude, the CMADS + SWAT and TWS + SWAT results were fairly similar to the actual data, with
the results produced by CMADS + SWAT lower than those produced by TWS + SWAT. The modelling
also successfully reproduced the annual water balance in the basin (Figure 13).
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Figure 15. Precipitation distribution of CMADS, CFSR, and TWS dataset with (-E) and without (-NE)
the elevation module at (A) Qilian Mountain, (B) ZhaMashenke, and (C) Ying Luoxia stations.

In terms of surface runoff components, the CFSR + SWAT mode overestimated the overall
watershed results during April of each year, whereas the other two models (CMADS + SWAT and
TWS + SWAT mode) produced results closer to the actual April values.

The overall HRB reaches a peak surface runoff from June to August. Whereas the CMADS +

SWAT mode perfectly reproduced the peaking characteristics of the basin, the TWS + SWAT mode
could not reproduce the peaking from June to August. As with the surface runoff results, CMADS +

SWAT could, unlike the other modes, perfectly reproduce the lateral flow (LATQ), return flow (GWQ),
and percolation to shallow aquifer (PERCOLATE) components. In terms of soil water content (SW),
CFSR + SWAT and CMADS + SWAT produced highly fluctuating peaks and valleys, whereas TWS +

SWAT produced smoother results. Melting processes occurring in the HRB in March cause the soil
moisture content of the basin to rise steeply, with a maximum occurring during the precipitation peak
from June–August. The performance of the TWS + SWAT mode is inferior compared to both CMADS
+ SWAT and CFSR + SWAT in simulating the seasonal changes in soil moisture content. Overall, the
CMADS + SWAT mode has a greater ability to reproduce water balance than the other two modes.
Seasonal water balance analysis is important because these changes are complex; the meteorological
conditions (such as air temperature, precipitation, humidity, etc.) and the distribution of surface soil
and land cover are changing. For example, in April, CMADS precipitation is higher than that in March,
while soil moisture is slightly lower. From June to July each year, TWS precipitation reaches its peak,
whereas soil moisture of TWS is lower than that in May. The former may be attributed to the freezing
of soil water weight caused by the melting of snow in the basin, and the latter may be attributed to
vegetation transpiration and soil evaporation in July.

From the overall point of view of water balance, CMADS and TWS have similar spatial distribution
patterns and are similar in terms of order of magnitude, whereas CFSR datasets exhibit larger deviations
from TWS. This is due to the deviation in precipitation. In the process of model calibration, model
parameters and uncertainties differ in three ways because of the great differences in the methods. The
SWAT model driven by CFSR exhibits more errors than do the other modes. Since precipitation is
an important factor in distinguishing the characteristics of the above three products, we focus on a
comparative analysis of precipitation elements below.

Precipitation is an important factor controlling watershed runoff processes. To assess the ability of
the SWAT-driven CMADS dataset to reflect the real conditions in the HRB, a bias calculation of the
precipitation distribution generated by the SWAT model across the three sub-basins was conducted
(Figure 16).
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Figure 16. Bias distribution of annual average precipitation of CMADS, CFSR, and TWS datasets in
different sub-basins.

It was found that the average annual precipitation produced by CMADS + SWAT exceeded that
produced by TWS + SWAT only in the Ying Luoxia basin, and was smaller than the precipitation
produced by the other modes in the remaining sub-basins. In the datasets, precipitation was obtained
via elevation correction and barycenter interpolation of the SWAT model. Due to a lack of observed
data, it was difficult to judge which model produced the most reliable precipitation, which thus had to
be judged using other methods.

To quantitatively investigate how the SWAT model’s built-in elevation module affects precipitation
distribution, we analyzed precipitation results for the three sub-basins (Sub-basin 20-Qilian Mountain,
Sub-basin 13-ZhaMashenke, and Sub-basin 2-Yingluoxia) with and without the elevation module
applied (Figure 15). Since we only obtained observational data (especially runoff data) for these three
sub-basins, we believe that the analysis of these three typical sub-basins will be more representative
and credible. After analysis, we found some consistent relations between precipitation distribution
(Figure 15) and the previous water balance (Figures 13 and 14). The precipitation produced by the
CFSR dataset exceeded that by both the TWS and CMADS datasets, with values of 526.42, 1012.982, and
1053.66 mm for the respective sub-basins, which significantly exceeds the local multi-annual average
precipitation (459.7 mm) [79]. An examination of Figure 16 reveals more concentrated precipitation
peak values for CFSR and CMADS than for TWS, particularly in the Qilian Mountain basin (Figure 15A).

Application of the elevation module to the SWAT model resulted in somewhat of an increase in
precipitation, particularly around July. The precipitation produced by the CMADS + SWAT mode
in Ying Luoxia between May and September was approximately 39.7% higher than that by TWS +

SWAT (Figure 15), resulting in a larger overestimation of the monthly runoff under the former model.
However, the daily runoff simulation R2 value of 0.8 from the CMADS + SWAT mode exceeded that
produced by the TWS + SWAT mode (Table 5). It was also determined that, for weather stations located
a long distance from a hydrological station or in areas lacking in weather stations, the CMADS + SWAT
mode achieved better results. It is also seen from Figure 15B that less precipitation was produced by
CMADS + SWAT than by TWS + SWAT between April and June and August and October. Furthermore,
the fit between simulated and actual peak values and base flows produced by the CMADS + SWAT
mode for the ZhaMashenke Sub-basin (Figures 7A and 10A) were superior to those produced by TWS
+ SWAT (Figure 7B, Figure 10B, and Figure 14B and Table 5). The simulation results produced by the
CMADS + SWAT and TWS + SWAT modes for the Qilian Mountain Sub-basin were both satisfactory.
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Overall, the CFSR shows precipitation over-estimation in most seasons in the HRB. This
phenomenon is particularly evident in April–October of each year, and precipitation over-estimation
peaks in July of each year. The application of the elevation module to the SWAT model makes the
over-estimation more obvious, wherein the estimated trend is an increasing trend in overestimation.
This affects the output of the model to a large extent and is directly reflected in the water balance.
Compared to the results of CFSR, when CMADS and TWS drive the SWAT model, the precipitation
results are more similar. As TWS is the observation data, we believe that CMADS is closer to the real
precipitation situation in the HRB, and the error from the SWAT model driven by TWS and CMADS is
much smaller than that driven by CFSR.

5. Conclusions

Here, CMADS, TWS, and CFSR datasets were used to force a SWAT model. The performances
of the respective combined models in simulating streamflow in the HRB were then compared. It
was found that CFSR overestimated precipitation, particularly in summer. As it applies advanced
assimilation technology (STMAS) and is bias-corrected using data from China’s national automatic
observation stations, the CMADS dataset outperformed CFSR in terms of both accuracy and spatial
resolution. TWS was found to perform poorly, particularly in Western China, where climate stations are
sparse. The quantitative analysis of water balance components is essential in supporting the ecological
and hydrological management of large river basins. As TWS data often cannot satisfy large-scale
hydrological modelling requirements in regions with sparse observation stations, CMADS can be a
valuable resource for obtaining atmospheric forcing data for hydrological modelling exercises.

Overall, the main conclusions of this paper are as follows:

1. With regard to the accuracy of meteorological data, the results obtained using the CMADS dataset
generally match observations obtained at automatic stations in China. The goodness of fit between
CMADS and TWS was better than that between CFSR and TWS.

2. The runoff results obtained by the CMADS-driven SWAT model almost perfectly reproduce
historical runoff data. This excellent performance is not only reflected in the runoff simulation
evaluation indicators, but also found through the analysis of 95PPU. CMADS outperforms TWS
in terms of uncertainty, and CFSR performs worst. In the best simulation, CMADS data is slightly
better than TWS, and CFSR performance is the worst. This excellent performance by CMADS is
similar on both monthly and daily scales, while CFSR shows poor simulation ability due to the
overestimation of summer precipitation.

3. The CMADS + SWAT mode has a greater ability to reproduce water balance than the other two
modes. However, because of the complexity of surface processes in the basin, further investigation
is needed.

4. Overestimation of CFSR precipitation results in a greater error impact on the uncertainty output
of the model, whereas the performances of CMADS and TWS are more similar when driving the
SWAT model.
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Abbreviations

HRB Heihe River Basin
SWAT Soil and Water Assessment Tool
CMADS China Meteorological Assimilation Driving Datasets for the SWAT model
CFSR Climate Forecast System Reanalysis
TWS Traditional meteorological Station
CMADS+SWAT SWAT Model Driven by CMADS
CFSR+SWAT SWAT Model Driven by CFSR
TWS+SWAT SWAT Model Driven by TWS
NCEP National Centers for Environmental Prediction
NCAR National Center for Atmospheric Research
ECMWF European Centre for Medium-Range Weather Forecast
ERA-Interim ECMWF Reanalysis-Interim
ERA-15 ECMWF Reanalysis-15
ERA-40 ECMWF Reanalysis-40
MERRA Modern Era Retrospective-Analysis for Research and Applications
NASA National Aeronautics and Space Administration
EnKF Ensemble Kalman Filter
IFS Integration Forecasting System
MOM4 Modular Ocean Model Version 4
3DVAR Three-Dimensional Variational Data Assimilation
GODAS Global Ocean Data Assimilation System
GLDAS Global Land Data Assimilation System
GEOS-5 Goddard Earth Observing System, Version 5
ADAS Atmospheric Data Assimilation System
GIS Geographic Information System
SiB Simple Biosphere Mode
JRA-25 Japanese 25-year ReAnalysis
JMA Japan Meteorological Agency
JCDAS JMA Climate Data Assimilation System
SAC-SMA Sacramento Soil Moisture Accounting Model
TRMM Tropical Rainfall Measuring Mission
IPCC Intergovernmental Panel on Climate Change
GCMs Global Climate Models
MC2 Mesoscale Community Compressible
RegCM3 Regional Climate Model, version 3
CGIAR Consultative Group on International Agricultural Research
CGIAR-CSI CGIAR Consortium for Spatial Information
HRUs Hydrological Response Units
GLC2000 Global Land Cover Database for the year 2000
WestDC China West Data Centre
MEDW Meadow
BROM Meadow Bromegrass
ROCK Bare Rocks
ICE Ice
DEGA Desert Grassland
AGRL Farmland
FRSD Needle-leaved Deciduous Forest
GRAV Bravels
RNGB Bush
DESE Desert
PAST Plain Grassland
DEM Digital Elevation Model
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SCS Soil Conservation Service
SUFI-2 Sequential Uncertainty Fitting
95PPU 95% prediction uncertainty
CN2.mgt SCS runoff curve value
ALPHA_BF.gw Baseflow factor
GW_DELAY.gw Delay time (day) of aquifer replenishment

GWQMN.gw
Water level threshold (mm) of shallow aquifer when groundwater flowing into
the main river channel

GW_REVAP.gw Evaporation coefficient of groundwater
ESCO.hru Compensation factor of soil evaporation
ALPHA_BNK.rte Recession constant value of base flow
SFTMP Average temperature (¡æ) at snowing days
PLAPS Lapse rate of precipitation /(mm¡¤km-1)
SMFMN Snowmelt factor at 21 December /mm¡¤(day-¡æ)-1
SMFMX Snowmelt factor at 21 June
TLAPS Lapse rate of temperature
NSE Nash-Sutcliffe Efficiency
R2 Determination Efficiency
PREC Precipitation
SURQ Land surface runoff

LATQ Side flow
GWQ Subsurface flow
PERCOLATE Lateral seepage flow
SW Soil water
ET Actual evaporation
WYLD Runoff
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