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Abstract: Reservoir optimal operation (ROO) has always been a hot issue in the field of water
resources management. Analysis of the relationship of optimal control water level and inflow is
conducive to understanding and solving ROO under deterministic inflow conditions. The current
research uses a fuzzy cognitive map (FCM) as a tool to effectively model complex systems and then
extracts systematic relationship diagrams from the dataset. A new fuzzy cognitive map with offset
(FCM-O) is proposed to overcome the causal inference error caused by non-linear mapping of the
activation function in a traditional FCM. With the application of inferring the causal relationship
between the optimal control water level and inflow of ROO for the Three Gorges Reservoir (TGR),
the experimental results show that, compared with FCM in the min data error, FCM-O reduces 11.11%
and 7.14% in the training and the testing, respectively. Also, the experimental results of FCM-O are
more reasonable than those of FCM. Finally, the following conclusions about the causal inference of
optimal control water level and inflow in ROO for TGR are drawn: (1) The optimal control water level
in September, October and November needs to be raised as much as possible to raise the water head
of power generation, which is mainly affected by the constraints of the maximum operating water
level of the reservoir rather than inflow; (2) the optimal control water level in January, February and
March is positively affected by the inflow of the adjacent months; (3) the optimal control water level
in April is due to the approaching flood season. In order to prevent water discarding, the water level
is low and the optimum operation space is small. All of those shows that FCM-O is more competent
than FCM in the causal relationship between optimal control water level and inflow in ROO.

Keywords: fuzzy cognitive map (FCM); reservoir optimal operation (ROO); dynamic programming
(DP); differential evolution (DE); causal inference

1. Introduction

Reservoir operation optimization (ROO) facilitates flood control, agriculture irrigation,
hydropower generating and shipping [1,2], which serves mankind by optimizing benefits through
meeting societal demands [3]. ROO has always been a hot issue in the field of water resources
management; many researchers have carried out multiple studies on reservoir optimal operation,
such as: Power generation optimal operation [4–7], flood control optimal operation [8–11],
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multi-objective optimal operation [12–18], stochastic scheduling [19–23], and so on [24–26].
To solve ROO efficiently, traditional mathematical programming [27–31] and modern heuristic
algorithms [32–35] are proposed. In addition, some studies on the characteristics of ROO problems have
been obtained. Arvanitidis and Rosing [36] proposed a simplified equivalent reservoir representation
of a multi-reservoir hydroelectric system, and Brandão [37] verified the validity of this method for
modeling the multi-reservoir hydroelectric system optimal operation. Zhao evaluated the marginal
utility principle of the potential energy of dammed water into hydropower depends on both reservoir
storage and release [38], and was used to speed up the efficiency of solving ROO [5,39]. These studies
show that the analysis of the characteristics of the problem improves the stability and high efficiency of
the solving method for ROO. Water level and inflow are as key state variables (sometimes water level
is also regarded as a control variable) and inputs in ROO. Therefore, the analysis of the relationship
of optimal control water level and inflow is conducive to understanding and solving ROO under
deterministic inflow conditions.

Fuzzy cognitive map (FCM) is a graph model that uses a weighted directed graph to visualize
expert knowledge [40]. In FCM, the concepts or elements are treated as nodes, and the strength of
causality is expressed by the signed weights between nodes. Traditionally, domain experts allocate
initial weights. Besides, Hebbian-based learning algorithms [41,42] and evolutionary algorithms [43–45]
can improve the accuracy of the weights, and these new methods can effectively coordinate conflicts
among experts. The obtained FCM model can be used to study the characteristics of complex systems.
Because of these advantages, FCM has been applied to study a wide variety of complex systems,
such as engineering control systems [46,47], education [48] and ecosystems [49,50].

In this paper, a new FCM with offset (FCM-O) is proposed to try to infer the causal relationship
between optimal control water level and inflow of ROO. Major contributions are outlined as follows:

(1) FCM-O is proposed to overcome the causal inference error caused by non-linear mapping of the
activation function. In FCM-O, the activation function is not used, and the offset is introduced
to better train directed weighted graphs to illustrate the specific relationship between any pair
of elements.

(2) The FCM-O of ROO for the Three Gorges Reservoir (TGR) is established. The causal relationships
between optimal control water level and inflow are inferred using FCM-O, and they are presented
as intuitive graphical forms. In addition, some relevant conclusions are obtained.

The remainder of this paper is organized as follows: Section 2 introduces the details of ROO.
In Section 3, the process of obtaining the optimal control water level of ROO using dynamic
programming is presented. Section 4 introduces the details of FCM and FCM-O. In Section 5, FCM and
FCM-O are applied to ROO for TGR, and the experimental results are analyzed. Finally, conclusions are
summarized in Section 5.

2. Problem Formulation

This section introduces the details of ROO, mainly including the mathematical model and
several constraints.

2.1. Objective Function

The primary objective of ROO is to maximize the comprehensive benefit of water
resources utilization.

The maximization of power generation is frequently selected as the optimal operation objective.
The power generation represents direct economic benefits, which is a commonly used optimization
objective in ROO [7,32,51]. It can be expressed as follows.

max f1 = max
∑T

t=1
Nt∆t (1)
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Nt = AHtQt (2)

where T is the number of periods; A is output coefficient of TGR; ∆t shows interval of scheduling term;
Nt, Ht and Qt denote output, pure water head and generating discharge in t period, respectively.

2.2. Constraints

The following constraints of ROO should be considered.

(1) Water balance constraint.
Vt = Vt−1 + (It −Ot ) ∆t (3)

Ot = Qt + St (4)

where Vt is reservoir storage at t period; It is inflow at t period; Ot, Qt and St stands for outflow,
generating discharge and deserted outflow, respectively.

(2) Water head equation.
Ht = (Zt−1 + Zt)/2−Zdown

t (5)

Zdown
t = SDR(Ot) (6)

where Ht stands for the water head; Zt is the upstream water level at t period; Zdown
t is tail water level

described in Equation (6); The function SDR() represents the hydraulic connection between Zdown
t

and Ot .

(3) Water level constraint.
Zmin

t ≤ Zt ≤ Zmax
t (7)∣∣∣Zt −Zt+1

∣∣∣ ≤ ∆Z (8)

where Zmin
t and Zmax

t are the minimum and maximum water level limits; and ∆Z is the maximum
amplitude of water level variation.

(4) Power generating constraint.
Nmin

t ≤ Nt ≤ Nmax
t (Ht) (9)

where Nmax
t (Ht) represents the maximum output, which is a function of water head; Nmin

t is the
minimum output limit.

(5) Outflow constraint.
Omin

t ≤ Ot ≤ Omax
t (10)

where Omin
t and Omax

t represent respectively the minimum and maximum outflow limit.

(6) Boundary condition.
Z0 = Zbegin , ZT = Zend (11)

where Zbegin and Zend are initial water level and terminal water level of hydropower station, respectively.

3. Obtaining the Optimal Control Water Level of Reservoir Optimal Operation Using
Dynamic Programming

Dynamic programming (DP) is one of the most well-known and effective methods to handle
the optimization problem with the multi-stage sequential decision, which was first introduced by
Bellman in 1962 [52]. The multiple-period ROO can be formulated as a multi-stage sequential decision
problem, and it is extremely effective for DP to deal with nonlinear objective functions and reservoir
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operation constraints [53–55]. According to the principle of optimality, the recursive function for
reservoir operation in DP can be expressed as below.

Rt(Vt−1,i) = max
Vt, j∈{Vt}

{
Bt(Vt−1,i, Ot, j, It) + Rt+1(Vt, j)

}
(12)

where Ot, j represents the optimal control decision. Considering the water balance Ot =
Vt−1−Vt

∆t + It in
Equation (3), the decision can be expressed by the state Vt−1 and Vt, the Equation (12) can be expressed
as follows.

Rt(Vt−1,i) = max
Vt, j∈{Vt}

{
Bt(Vt−1,i, Vt, j, It) + Rt+1(Vt, j)

}
(13)

Backtracking(Vt−1,i, t) = Vt, j (14)

where Rt(Vt−1,i) represents the benefit of the remaining period from t to T for state Vt−1,i, and the
reservoir capacity is Vt−1,i at the beginning of period t; Bt(Vt−1,i, Vt, j, It) stands for single-period benefit
function. In Equation (12), the benefit of Rt(Vt−1,i) and Bt(Vt−1,i, Vt, j, It) are specified as many scheduling
objectives, such as power generation, flood control, water supply, . . . , etc. Backtracking(Vt−1,i, t) = Vt, j
represents the backtracking relationship between Vt−1,i and Vt, j. The pseudocode of DP is shown in
Algorithm 1.

Algorithm 1 DP for reservoir operation

Input:
1: set Vbegin and Vend; select inflow series {It}.

Initialization:
1: the states (reservoir capacity) are discretized
2: generate discrete set of states {Vt, j}

Calculation:
1: for t = T to 1
2: for i = 1 to n select state Vt−1,i from {Vt−1,i}
3: select optimal decision Vt, j from {Vt, j } to obtain the optimal Rt(Vt−1,i)
4: save the backtracking relationship Backtracking(Vt−1,i, t) = Vt, j
5: end for
6: end for

Output:
the optimal benefit R1(Vbegin) and optimal state (decision) process {Vt}

Algorithm 1 and Figure 1 show the decision-making process of DP for reservoir operation. Vbegin
and Vend of TGR are set as fixed values, which are usually specified by the dispatcher. At the first
and last period, there is only one state different from other periods that the reservoir capacity V is
discretized into n values: {Vt, j}. At t period, Vt, j will be selected from {Vt, j} to obtain the optimal
Rt(Vt−1,i) for each Vt−1,i in {Vt−1,i}, and save the backtracking relationship between Vt−1,i and Vt, j After
recursive computation from T − 1 to 1 period, the optimal benefit R1(Vbegin) and optimal state process
{V∗t, j} can be obtained based on the backtracking relationship previously preserved. The reservoir
capacity is selected as the state in the process of DP for ROO, and water level is often used as a control
attribute in practical engineering applications. The water level and reservoir capacity can be queried
by the relationship between water level and reservoir capacity as Equation (15), where Czv() and Cvz()
respectively represent the functional relationship between reservoir capacity and water level.
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Figure 1. The decision-making process of dynamic programming (DP) for reservoir operation.

{
Z = Czv(V)

V = Cvz(Z)
(15)

In summary, the optimal state (decision) process {Z∗t} or {V∗t, j} depends upon the inflow
sequence (input), the initial and terminal water level of reservoir operation (boundary condition) and
the constraints.

It shows that under the given boundary conditions and constraints, there exists a causal relationship
between the optimal control water level process {Z∗t} and the inflow sequence {It}.

4. Fuzzy Cognitive Map with Offset

This section first introduces some basic concepts related to the FCM. Then a simplified but
practically-improved FCM with offset will be introduced in detail.

4.1. Fuzzy Cognitive Map

FCM was proposed as a generalized cognitive map by Kosko [40]. An FCM is a graph with N
nodes. Each element of the complex system under study is treated as a node. The value of node n is
denoted as Cn(n = 1, 2, . . . , N). Cn ranges (0, 1), and it reflects the status of the corresponding element.
The directed and weighted edges connect the related and paired nodes.

The direction of the edge represents the causal relationship between the nodes. An example of
FCM is shown in Figure 2. The weight of the edge from node i to node j is denoted as wi j ∈ (−1, 1).
A positive wi j represents an excitatory relation from node i to node j, i.e., an increase (decrease) in Ci will
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cause an increase (decrease) in C j, while a negative wi j represents an inhibitory relation. In addition,
there is no relationship from node i to node j when the weight wi j is 0.Water 2019, 11, 2147 7 of 21 
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Figure 2. An example of a fuzzy cognitive map (FCM) and its equivalent weight matrix.
(a) Graph Representation, (b) Matrix Representation.

FCM with N variables (elements) can be expressed as a weighted matrix which is shown in
Equation (16) [50,56]. According to the dataset used to construct the FCM, the value of the ith element,
which is affected by the values of elements that have nonzero connections to the ith node, can be
computed with Equation (17),

W =


w11 . . . w1N

...
. . .

...
wN1 · · · wNN

, wi j ∈ [cos−1 θ− 1, 1](1 ≤ i ≤ N, 1 ≤ j ≤ N) (16)

Ci(t + 1) = f

 N∑
i

wi jC j(t)

 (17)

where Ci(t + 1) and C j(t) are the value of the ith element at the (t + 1)th period, and the value of the jth
element at the tth period, respectively. f () represents the activation function that restricts the values
of the node within the range of (0, 1). There are three widely used activation functions: The signum
function, the trivalent function and the sigmoid function [57]. The sigmoid function has been used by
most of the studies on FCM [58]. The sigmoid activation function is defined as follows:

f (x) =
1

1 + e−λ0x (18)

where λ0 is the parameter that determines the steepness of the sigmoid function at values around 0.
Figure 3 shows the function graph of f (x) with different λ0. Different λ0 make the activation function
work better for the weight matrix of the actual applications. However, it is the commonly used that λ0

is set to 5.0 for the simulated study based on data generated using FCM in the some literature [59,60].
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4.2. Fuzzy Cognitive Map with Offset

The activation function f (x) can restrict the node values within the range of (0, 1). But the

effect of f (x) is greatly affected by the parameter λ0, and f (x) converts
N∑
i

wi jC j(t) nonlinearly into

(0, 1), which may cause data distortion. FCM with an offset is proposed to try to overcome the above
problems. In FCM-O, the activation function is not used, and the offset is introduced to better learn
the structure of a directed weighted graph to illustrate the concrete relationships between any pair of
elements. The weighted matrix of FCM-O is the same as that of FCM as Equation (16). The dynamics
of the node values in the FCM-O is simulated by using the following equation:

Ci(t + 1) =
N∑
i

wi jC j(t) + O f f seti (19)

where O f f seti is the offset of the ith element. The application of offset is to overcome the causal
inference error caused by non-linear mapping of activation function could improve the fitting accuracy
of the FCM, and the result of causal inference will be more intuitive without using the activation
function. The processes of learning the structure of FCM and FCM-O is the same, which will be
described in detail in the following Section 4.3.

4.3. Algorithm for Learning the Structure of FCM: Differential Evolution Algorithm

Most of the studies apply data-driven FCM learning algorithms focused on minimizing the
simulation error [61–63] between an output sequence and historical data. A large number of
meta-heuristic FCM learning algorithms exist [63], and can be found in the literature about differential
evolution (DE) algorithm [64].

DE is a simple yet practical method for optimization problems proposed by Price and Storn [65].
Due to its simplicity, easy implementation, fast convergence and robustness, the DE algorithm has
attracted more and more attention, and has been widely applied successfully, such as flow shop
scheduling, piezoelectric performance optimization, economic optimization design, etc. [7,66,67].
A virtual population is used to form an initial solution in feasible space, and then recursive
implementations of differential mutation, crossover, and greedy selection are executed until the
termination condition is met. The solutions in the population evolve into a solution suitable for the
dataset in this evolutionary process.

Finally, an optimal solution that can reasonably and accurately represent the FCM is formed.
The solutions in the population generally represent the weight matrix and some parameters in FCM.
In the greedy selection procedure, the min data error (fitness function) is used to evaluate the solutions
in the population. The objective function in this research is shown as Equation (20).

min(Data Error) = min

 1
T ·N

T∑
t=1

N∑
n=1

(
Cn(t) − C̃n(t)

)2
 (20)

where T is the period number of datasets. Cn(t) and C̃n(t) are the value of the nth element at the tth
moment in the dataset and the corresponding value returned from FCM, respectively. The smaller the
data error is, the better.

LSHADE [68] contains the external archive and the mutation strategy ‘DE/current-to-pbest/1’
like JADE [69] and historical memory of successful control parameter settings like SHADE [70],
and the strategy of linear population size reduction is applied. It secures the first rank (see http:
//www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/-CEC2014.htm) on real-parameter single
objective numerical optimization in CEC2014 competition [71]. Due to the excellent performance of
LSHADE in numeric optimization problems, it is selected to learn the structure of FCM. The parameter
setting and specific implementation of LSHADE are referred to Ref [68].

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/-CEC2014.htm
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/-CEC2014.htm
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Mutation is a change or perturbation with a random element on the population to locate better
solutions. DE creates a mutant vector

→
v i,G by utilizing one or more difference vectors. The mutation

strategy in original DE is “rand/1”, which is expressed in Equation (21).

→
v i,G =

→
x r1,G + F× (

→
x r2,G −

→
x r3,G) (21)

Other common DE mutation strategies are as follows:

� “rand/2”:
→
v i,G =

→
x r1,G + F× (

→
x r2,G −

→
x r3,G) + F× (

→
x r4,G −

→
x r5,G) (22)

� “best/1”:
→
v i,G =

→
x best,G + F× (

→
x r1,G −

→
x r2,G). (23)

� “best/2”:
→
v i,G =

→
x best,G + F× (

→
x r1,G −

→
x r2,G) + F× (

→
x r3,G −

→
x r4,G) (24)

� “current to best/1”:

→
v i,G =

→
x i,G + F× (

→
x best,G −

→
x i,G) + F× (

→
x r1,G −

→
x r2,G) (25)

where the indices r1− r5 represent the random and mutually different integers generated within the
range {1, NP} and different from the index i.

→
x best,G is the best individual in a current generation.

Each strategy has a different ability to maintain the diversity of the population, which may
increase/reduce the rate of convergence in the process of evolution.

LSHADE employs the mutation strategy ‘DE/current-to-pbest/1’ proposed in JADE, which is
shown in Equation (26). ‘DE/current-to-pbest/1’ utilizes an optional external archive to diversify mutant
vectors, and this achieves good performance over many benchmark functions.

→
x pbest,G in Equation (26)

denotes certain randomly-chosen vectors from the top 100× p% individuals. DE/current-to-pbest/1
depends on the control parameter p in order to balance exploitation and exploration (small p behaves
more greedily), and p is a constant set to 0.05 in JADE. JADE defines a set of archived inferior solutions
A, and current population solutions P.

→
x r2,G in mutation strategy is selected from the union P∪A.

The archive A is initialized empty, and then inferior solutions (individuals) are added to the archive in
each generation. The upper bound of archive size is fixed, and if the size exceeds the fixed threshold,
these redundant solutions are randomly selected and removed from the external archive A to keep the
upper bound of archive size equaling to the fixed threshold.

→
v i,G =

→
x i,G + F× (

→
x pbest,G −

→
x i,G) + F× (

→
x r1,G −

→
x r2,G) (26)

After mutation, LSHADE generates a trial vector
→
u i,G by a crossover operation to enhance the

potential diversity of the population. In the basic version, the binomial crossover is a commonly used
crossover operator operation in DE. It crosses the parent individual

→
x i,G and the mutant vector

→
v i,G to

generate the trial vector
→
u i,G. For each dimension j, it is implemented as follows:

ui, j,G =

{
vi, j,G if rand [0, 1] ≤ CRi or j = jrand
xi, j,G otherwise

(27)

where jrand is an index of uniformly randomly chosen from [1, D], which ensures that the trial vector
→
u i,G gets at least one component from the mutant vector

→
v i,G.

Selection compares the parent individual
→
x i,G with the trial vector

→
u i,G in terms of the objective

function value to determine which vector may survive to the next generation. The operation in
Equation (28) is called a successful update if the trial vector survives to the next generation.
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→
x i,G+1 =


→
x i,G otherwise
→
u i,G if

→
u i,G is better than

→
x i,G

(28)

The corresponding solution and control parameters are called successful solution and successful
control parameters, respectively. Otherwise, they are called unsuccessful update.

For the linear population size reduction, formula (29) shows the dynamic change of population
size in LSHADE. NPmin is set to the smallest possible value, such that the evolutionary operators can
be applied in the case of L-SHADE, NPmin = 4 because the DE/current-to-pbest/1 requires 4 individuals
in Equation (26). NFE is the current number of fitness evaluations, and MAXNFE is the maximum
number of fitness evaluations. Whenever NPG+1<NPG, the (NPG −NPG+1) worst-ranking individuals
are deleted from the population, and the external archive size |A| changes adaptively according to the
dynamic population size, |AG| = round(NP× rarc), rarc is the archive factor. Whenever the size of the
archive exceeds the predefined archive size |A|, the randomly-selected elements are deleted to make
space for the newly-inserted elements.

NPG+1 = round
[(
(NPmin −NPinit

MAXNFE

)
·NFE + NPinit

]
(29)

Control parameters in LSHADE are also updated in an adaptive manner as SHADE. F obeys
a Cauchy distribution in which the location parameter is denoted by µF and the scale parameter equals
to 0.1, F ∼ C (MF, 0.1). Cr obeys a normal distribution in which the mean value is denoted by MCr and
standard deviation equals to 0.1, Cr ∼ N (MCr, 0.1). If the values generated for F and Cr are outside the
range (0, 1), Cr will be truncated to (0, 1), and F will be truncated to be 1 if F ≥ 1, or regenerated if F ≤ 0.
The updating schemes of control parameters F and Cr are listed in Equations (30) and (31), respectively.

Fi,G = randc(MFi,G, 0.1) (30)

Cri,G =

{
0 if MCrh,G = ⊥

randn(MCrh,G, 0.1) otherwise
(31)

Success values of F and Cr in each generation are recorded and used to update SF and SCr.
The updating schemes of control parameters MF and MCr are listed in Equations (32) and (33),
respectively. As MCr is updated, if MCrh,G = “⊥” (where “⊥” denotes a special, “terminal value”)
or max(SCr) = 0 (i.e., all elements of SCr are 0), MCrh,G+1 is set to “⊥”. Thus, if MCr is assigned the
terminal value “⊥”, then MCr will remain fixed at “⊥” until the end of the search.

This has the effect of locking Cr to 0 until the end of the search, causing the algorithm to enforce
a “change-one-parameter-at-a-time” policy [72], which tends to slow down convergence, and is effective
on multimodal problems.

MFh,G+1 =

{
meanWL(SF) if SF , ∅
MFh,G otherwise

(32)

MCrh,G+1 =


⊥ if MCrh,G = ⊥ or max(SCr) = 0
meanWA(SCr) if SCr , ∅
MCrh,G otherwise

(33)

where index h (1 < h < H) determines the position in the memory to update. The index h is initialized
to 1 at the beginning. h is incremented whenever the entry (MFh, MCRh) is updated once. If h > H,
h is set to 1. In the update Equations (32) and (33), the weighted mean meanWA(SCr) is computed
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according to Equation (35) referred to by Peng et al. [73]. The weighted Lehmer mean meanWL(SF) is
computed using the formula below, and as with meanWA(SCr):

meanWL(SF) =

∑|SF|
k wk· SF2

k∑|SF|
k wk· SFk

(34)

meanWA(SCr) =
|SCr|∑
k=1

wk · SCrk (35)


wk =

fk∑|SCr|
k=1 fk

fk =
∣∣∣∣ f (→u i,G) − f (

→
x i,G)

∣∣∣∣ (36)

5. Case Study

5.1. Description of Research Area

The Yangtze River is the third longest river in the world, the largest river in China. The Three
Gorges Reservoir (TGR) is the key backbone of the Yangtze River Basin (See as Figure 4), and the
operation and management of TGR will inevitably affect the river basin ecosystem of the upper and
lower reaches. The main parameters of TGR are listed in Table 1. In order to defend the coming flood
in the flood season, the TGR empties storage capacity, and its water level dropped to 145 m at June 10.
Then TGR begins to store water in September 1.
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5.2. Dataset Acquisition and Preprocessing 

The main purpose of the study is to infer the causal relationship between the optimal control 
water level process { *

tZ } and the inflow sequence { tI } in ROO. Section 3 describes in detail how to 
obtain an optimal control water level of reservoir operation by DP. The time step was monthly. 

Figure 4. The location of the research area in China.

Table 1. Main parameters of the Three Gorges Reservoir (TGR).

Parameter TGR

Adjustment ability Season
Total reservoir capacity (billion m3) 39.30

Regulating storage (billion m3) 16.50
Hydro plant discharge range(m3/s) (98, 800, 4500)

Upriver water level range (m) (175, 145)
Installed capacity (MW) 22,400
Normal water level (m) 175

Maximum water level amplitude(m/d) 0.6
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5.2. Dataset Acquisition and Preprocessing

The main purpose of the study is to infer the causal relationship between the optimal control
water level process {Z∗t} and the inflow sequence {It} in ROO. Section 3 describes in detail how to
obtain an optimal control water level of reservoir operation by DP. The time step was monthly.
Therefore, the scheduling period begins at June 1 and ends at June 1 of the next year. The initial water
level Zbegin

i and terminal water level Zend
i are set to 145 m. There is the historical inflow data of TGR

for 55 years from 1959 to 2014. The objective of reservoir optimal operation is to maximize power
generation as Equation (1). Figure 5 shows the inflow sequence {It} and the optimal control water level
process {Z∗t} obtained by DP. From June to September, the water level of TGR is limited to the flood
limit level (145 m) to prevent floods. Therefore, our research period focuses on the non-flood season,
that is, September to May of the next year. {Z∗t} and {It} are illustrated in Figure 6 under the condition
of a certain inflow sequence. Z f represents the flood limit level.
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According to the regular “Optimal Operation Scheme of the Three Gorges” drawn up by Chengdu
Engineering Corporation Limited, the water level control generally follows these regulations:

(1) For power generation, the water level of TGR should be higher than 145 m, which is the dead
water level. In addition, TGR should keep lower than the normal water level 175 m.

(2) From July to early September, the TGR runs according to the flood control mode.
(3) TGR begins to store water in September, and reaches 175 m by late October. TGR had better fill

up quickly to improve the efficiency of power generation.

After the inflow sequence {It} and the optimal control water level process {Z∗t} for 55 years from
1959 to 2014 obtained by DP, all the data of {Z∗t} and {It} were preprocessed with Equations (37) and
(38) to normalize the influence of each element and avoid the dominant elements whose absolute
values are much larger than those of the other attributes. Z′t,y and Z∗t,y (t = t1, . . . , tT−1; y = 1, . . .Y)
are the normalized and pre-normalized optimal control water level of tth period with the yth inflow
sequence. Zmin and Zmax are the minimum and maximum values of the optimal control water level
under all the different inflow sequence conditions, respectively. T is the number of research periods.
Y is the number of inflow sequence. I′t,y and It,y (t = t1, . . . , tT; y = 1, . . .Y) are the normalized and
pre-normalized inflow of tth period with the yth inflow sequence. Imin and Imax are the minimum and
maximum values of the optimal control water level under all the different inflow sequence conditions,
respectively. The month corresponding to t = t1, . . . , tT−1 is shown in Table 2. All the data were
randomly divided into two parts (3/4 and 1/4) for training and testing. The final result is the FCM or
FCM-O model with minimum data error.

Table 2. The month corresponding to t = t1, . . . , tT−1.

t t1 t2 t3 t4 t5 t6 t7 t8 t9

month
9 10 11 12 1 2 3 4 5

Sept Oct Nov Dec Jan Feb Mar Apr May


Z′t,y =

(
Z∗t,y −Zmin

)
/(Zmax −Zmin)

Zmin = min
∀t∈[t1,...,tT−1],∀y∈[1,Y]

{
Z∗t,y

}
Zmax = max

∀t∈[t1,...,tT−1],∀y∈[1,Y]

{
Z∗t,y

} (37)


I′t,y =

(
It,y − Imin

)
/(Imax − Imin)

Imin = min
∀t∈[t1,...,tT ],∀y∈[1,Y]

{
It,y

}
Imax = max

∀t∈[t1,...,tT ],∀y∈[1,Y]

{
It,y

} (38)
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5.3. Case Study and Discussion

In this case, FCM and FCM-O are established to infer the causal relationship between optimal
control water level {Z∗t,y} and inflow {It,y} of ROO for TGR. In order to simplify the model,
the relationship between inflows in each month is neglected. In addition, the recursive formula
of DP in Section 3 shows that {Z∗t,y} mainly depends on {It,y} under given boundary conditions and
constraints. Therefore, the model description of the above FCM and FCM-O can be simplified to the
following expressions.

Z̃′tZ,y = f

 tT∑
tI=t1

wtZtII′tI,y

 (39)

Z̃′tZ,y =

tT∑
tI=t1

wtZtII′tI,y + O f f settZ (40)

where Z̃′tZ,y is the tZth optimal control water level at the yth inflow sequence returned from FCM or
FCM-O. wtZtI represents the weight of the edge from the tIth inflow to the tZth optimal control water
level. The corresponding objective function in this case is shown as Equation (25).

min(Data Error) = min

 1
(T − 1) ·Y

tT∑
tZ=t1

Y∑
y=1

(
Z′tZ,y − Z̃′tZ,y

)2
 (41)

LSHADE is selected to learn the structure of FCM, and the number of max fitness evaluations is
set to 10,000 × D. D is the dimension of the problem. From Figure 6, it can be seen that the number
of node Z∗t,y is 8, and the number of node It,y is 9 (T = 9). So D = 8× 9 + 8 = 81 in FCM and FCM-O
(λ0 of f (x) in FCM and O f f settZ in FCM-O are needed to search for each Z∗t,y). Table 3 shows the min
data error of FCM and FCM-O for training and testing. Compared with FCM in the min data error,
FCM-O reduces 11.11% and 7.14% in the training and the testing, respectively. It shows that FCM-O is
superior to FCM in terms of its minimum data error. The weight matrix and parameter of training
results of FCM and FCM-O are shown in Tables 4 and 5.

Table 3. The min data error of the fuzzy cognitive map (FCM) and fuzzy cognitive map with offset
(FCM-O) for training and testing.

Method Training Testing

min data error
FCM 0.0045 0.0056

FCM-O 0.0040 0.0052
FCM-O vs. FCM in the reduction of min data error 11.11% 7.14%

Table 4. The weight matrix and parameter of training results of FCM.

Z9 Z10 Z11 Z12 Z1 Z2 Z3 Z4

I9 −1.00 1.00 1.00 1.00 0.20 −0.03 −0.30 −0.24
I10 −1.00 1.00 1.00 1.00 −0.09 −0.13 −0.07 −0.16
I11 −1.00 1.00 1.00 1.00 1.00 1.00 0.72 −0.16
I12 −1.00 1.00 1.00 1.00 1.00 0.62 0.79 −0.40
I1 −1.00 1.00 1.00 1.00 1.00 1.00 1.00 −1.00
I2 −1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.36
I3 −1.00 1.00 1.00 1.00 1.00 1.00 1.00 −1.00
I4 −1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.09
I5 −1.00 1.00 1.00 1.00 0.01 −0.29 0.10 −0.34

λ0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
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Table 5. The weight matrix and parameter of training results of FCM.

Z9 Z10 Z11 Z12 Z1 Z2 Z3 Z4

I9 0.00 0.00 0.00 0.00 0.01 −0.08 −0.05 −0.03
I10 0.00 0.00 0.00 0.00 −0.08 −0.01 −0.03 −0.01
I11 0.00 0.00 0.00 0.00 0.18 0.51 0.71 0.01
I12 0.00 0.00 0.00 0.02 0.71 0.15 0.42 0.11
I1 0.00 0.00 0.00 −0.01 1.00 1.00 1.00 0.14
I2 0.00 0.00 0.00 0.02 1.00 1.00 1.00 0.16
I3 0.00 0.00 0.00 0.00 0.50 1.00 1.00 −0.16
I4 0.00 0.00 0.00 0.00 0.03 0.38 1.00 0.12
I5 0.00 0.00 0.00 0.00 −0.18 −0.18 0.15 0.02

O f f settZ 0.00 1.00 1.00 1.00 0.84 0.67 0.56 0.11

It can be seen from Figure 5a that Z∗9, Z∗10 and Z∗11 maintain the same water level under different
inflow sequences. TGR begins to store water in early September. According to the regulations, the water
level at the end of September is not higher than 162 m, while Z∗9 reaches the upper boundaries of the
constraint at 162 m. TGR is generally full to 175 m of normal water level from October to December,
while Z∗10 and Z∗11 reaches the upper boundaries of the constraint at 175 m. It illustrates that TGR
should impound water as fast as possible during the impoundment period, raising the head of power
generation so as to increase the total power generation, which is consistent with the conclusions of
many literatures [5,32,38,74]. Figure 5b shows that I9 ranges in (12,000, 40,000) m3/s, while I10 ranges
in (11,000, 28,000) m3/s and I11 ranges in (8,000, 16,000) m3/s. These indicate the value of Z∗9, Z∗10 and
Z∗11 are more affected by upper boundaries of the water level constraint constraints than by inflow.
However, the weighting coefficients of It,y to Z∗9, Z∗10, and Z∗11 in FCM are 1 or−1 in Table 4, which shows
that Z∗9, Z∗10 and Z∗11 are greatly affected by It,y. The conclusions obtained by FCM do not match the
accepted conclusions that Z∗9, Z∗10 and Z∗11 are more affected by constraints than by inflow, and the
weighting coefficients of It,y to Z∗9, Z∗10 and Z∗11 in FCM-O are 0, which seems reasonable. The reason
for the above causal inference errors in FCM lies in the inability of the activation function f (x) to deal
with variables with offsets that are not 1 or −1. All of those shows that FCM-O is more competent than
FCM in the causal relationship between optimal control water level and inflow in ROO both in min
data error and reasonableness of results.

To analyze the results of FCM-O, the weight matrices corresponding to all subfigures are shown
in Figure 6. Because the relationship between inflows is neglected, and the optimal control water level
depends on the sequence of inflow, and are unrelated to the adjacent water level, the optimal control
water level only pays attention to the in degree and offset, and all out degrees are 0.

Table 6 shows the in degree and offset of each Z∗t of Figure 7. Z∗9, Z∗10, Z∗11 and Z∗12 need to reach
higher operating water levels, which are more affected by constraints than by inflow. So there is no
inflow but only offset acting on Z∗9, Z∗10, Z∗11 and Z∗12, as shown in Figure 7a–d. Z∗1, Z∗2 and Z∗3 reflect the
optimal control water level in the early stage of the water supply period, and Z∗1, Z∗2 and Z∗3 range in
(145, 175) m. In the early stage of the water supply period, TRG should reduce the discharge as much as
possible and maintain a higher head, so as to increase power generation under the premise of meeting
the minimum discharge constraint. Therefore, Z∗1, Z∗2 and Z∗3 are mainly affected by the inflow in recent
months. The larger the inflow, the smaller the amount of water that the reservoir needs to release,
and correspondingly, Z∗1, Z∗2 and Z∗3 will be higher. The inflow in recent months has shown positive
effects to Z∗1, Z∗2 and Z∗3. Z∗4 reflects the optimal control water level at the end of the water supply period
(before the flood season). There are many elements to be considered in Z∗4. First, Z∗4 needs to maintain
a high water level to ensure a higher head, thereby increasing power generation. Secondly, Z∗4 needs
to avoid too high a water level to produce discarded water when emptying the reservoir before flood
season. Therefore, Z∗4 has a narrow range and is less affected by inflow in different months as shown in
Figures 5a and 6h.
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Table 6. The in degree and offset of each Z∗t of FCM-O.

In Degree In Element OffsettZ

Z9 0 0
Z10 0 1
Z11 0 1
Z12 3 I12, I1, I2 1

Z1 9 I9, I10, I11, I12,
I1, I2, I3, I4, I5

0.84

Z2 9 I9, I10, I11, I12,
I1, I2, I3, I4, I5

0.67

Z3 9 I9, I10, I11, I12,
I1, I2, I3, I4, I5

0.56

Z4 9 I9, I10, I11, I12,
I1, I2, I3, I4, I5
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The results in this research are consistent with some abovementioned literatures.
Moreover, our studies made these conclusions quantitative. Meanwhile, we found some details
that were overlooked previously, such as the conclusion that Z∗9, Z∗10 and Z∗11 are more affected by
constraints than by inflow, and the inflow in recent months has shown positive effect to Z∗1, Z∗2 and
Z∗3. In addition, we can use this relationship to estimate the optimal control water level with inflow
in FCM-O.

6. Conclusions

A new FCM with offset was proposed to try to infer the causal relationship between the optimal
control water level and the inflow of ROO. To test its performance, the FCM and FCM-O of ROO for
TGR are established. The optimal control water levels of TGR were obtained by DP with the historical
inflow data for 55 years from 1959 to 2014. Then all the data of this optimal control water level and
inflow were randomly divided into two parts (3/4 and 1/4) for training and testing. The FCM or
FCM-O model were trained with minimum data error by LSHADE. The experimental results show
that, compared with FCM in the min data error, FCM-O reduces 11.11% and 7.14% in the training
and the testing, respectively. In addition, FCM-O can deduce that the optimal control water level
from September to December needs to be raised as much as possible, which are mainly restricted by
constraints and are not affected by inflow. The optimal control water level from January to March also
needs to maintain a high water level, and the inflow in recent months has a positive effect upon it.
The optimal controlled water level at the end of April is at the end of the water supply period and near
the flood season. The optimal control water level at the end of April needs to maintain an appropriate
high water level, so as to avoid the risk of discarding water while guaranteeing high water head to
increase power generation. In addition, the relationship obtained by FCM-O can be used to estimate
the optimal control water level with inflow.
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