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Abstract: Continuous measurement systems are widely spread in sewers, especially in non-pressure
systems. Due to its relatively low costs, turbidity sensors are often used as a surrogate for other
indicators (solids, heavy metals, organic compounds). However, little effort is spent to turbidity
sensors in pressurized systems so far. This work presents the results of one year in-situ turbidity/total
suspended solids (TSS) monitoring inside a pressure pipe (600 mm diameter) in an urban region in
northern Germany. The high-resolution sensor data (5 s interval) are used for the determination of
solids sedimentation (within pump pauses) and erosion behavior (within pump sequences). In-situ
results from sensor measurements are similar to laboratory results presented in previous studies.
TSS is decreasing exponentially in pump pauses under dry weather inflow with an average of
0.23 mg/(L s). During pump sequences, solids eroded completely at a bed shear stress of 0.5 N/m2.
Sedimentation and erosion behavior changes with the inflow rate. Solids settle faster with increasing
inflow: at storm water inflow with an average of 0.9 mg/(L s) and at diurnal inflow variation up to
0.6 mg/(L s) at 12:00 a.m. The results are used as calibration data for a sediment transport simulation
in Part II.
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1. Introduction

The physical characterization of sewage is indispensable for optimization efforts in all areas
of wastewater management. Pumping processes are usually necessary in sewage and storm water
transport. Because of their frequent use, all related processes offer high optimization potential, to name
only a few: sediment transport, energy consumption, and storm water management.

The main key to process understanding and optimization lies in data quality and quantity.
Advanced optimization tools (e.g., numerical simulations) are especially data greedy. Quality and
quantity varies with the data collection method: either ex-situ or in-situ. Ex-situ methods are primary
laboratory experiments. Experiments simulate real world conditions as accurately as possible and
subsequently transfer the results into a representative model region. For example, most stream tests
try to simulate more-or-less real-life conditions.

The advantage of in-situ methods is the proximity to real life. Thus, an imitation is not required.
To measure undisturbed processes, impacts on the system should be kept by a minimum.

Erosion and sedimentation of particulate matter in sewage are the dominating physical
effects regarding the above-mentioned themes (sediment transport, energy consumption, storm
water management). In the past, settling and erosion behavior have been determined by ex-situ
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experiments [1–7]. In case of [1,2], several laboratory experiments were conducted to describe erosion
and settling behavior of the raw sewage inflow to a pumping station (PS) in an urban drainage system
in Rostock (northern Germany). Consequently, the derived results are only temporal snapshots of
continuous highly dynamic sewer processes. A continuous description based on permanent (in-situ)
measurement allows, by far, more statements about raw sewage transport behavior. In this study, the
transport behavior inside a pressure pipe is of interest. Therefore, the measurement is located directly
inside the pressure pipe. Thus, the pipe itself serves as the reaction chamber for the experiments.

This work aims at an in-depth characterization of the erosion and settling behavior of raw sewage
by in-situ total suspended solids (TSS) online measurement for the period of one year. Providing a large
amount of data helps to increase the accuracy of transport simulations and improves the efficiency of
the sewer system. The following three objectives are defined:

• Determine applicability and quality of an in-situ TSS-online measurement system inside a
pressure pipe

• Characterize raw sewage erosion and sedimentation behavior under dry weather inflow
continuously by TSS-online monitoring

• Identify mechanisms changing the transport behavior and characterize modified erosion
and sedimentation

Literature Review

In-situ measurements in the field of urban drainage concentrate usually on non-pressure systems
(open channel flow), often in the context of combined sewer overflows (CSO) and pollutant loads in
combined or storm sewers (e.g., [8–13]). Continuous monitoring systems are almost exclusively used
for the calculation of loads or fluxes. Further data analysis, regarding solids transport behavior, is
often not been conducted. An exception is provided by [12–14], all calculating mass curves from online
data. An in-situ monitoring study, dealing with continuous TSS measurements within pressurized
systems, have not been published as known to the authors.

The characterization of sediments by continuous measurements is mostly applied within ex-situ
laboratory experiments: [6] performed ex-situ tests with wastewater to determine the sediment
accumulation in a pilot flume (d = 300 mm open channel flow, average discharge = 4 L/s) using the same
TSS sensor as used in this study (Hach Lange Solitax). Another example is [7], where sediments were
collected for flushing experiments in the laboratory, equipped with a continuous turbidity measuring
system. Similarly to [1], a continuous turbidity measurement was used to determine the erosion
characteristics inside an ex-situ laboratory device.

The same sensor (Hach Lange Solitax) was also used by [9] inside a combined sewer (in-situ) to
assess the dynamics of erosion and sedimentation events (load calculation).

Hybrids between ex-situ and in-situ are provided by [11,12], where the monitoring sensors were
mounted in external tanks or flumes supplied by a pump from a sewer.

The applicability of online sensor data for urban drainage problems and related uncertainty was
investigated with large effort by: [10–12] and [14–16]. The majority of the data processing methods in
this study based on these publications.

One of the main differences to previous studies lies in the measurement interval (here 5 s).
Sometimes, daily measurements were used as in [6], but with regard to systems dynamics, most studies
used short intervals as in [11] or [14] with a 2 min time step, [7] with 20 s, or [9] with 15 s.

2. Materials and Methods

2.1. Study Side

One of the main PS in the city of Rostock (≈200000 inhabitants) is PS Rostock-Schmarl, conveying
raw sewage from approx. 40000 inhabitants. A special technical feature of the upstream, usually
separating sewer system is the connection to main roads storm water runoff. The storm water system
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itself collects runoff from roof discharge and secondary roads. Whatever the inflow condition to PS
Rostock-Schmarl is, the incoming sewage is filtered at first by a rake with a wide space bar opening
(20 mm) before it is transported directly to the central wastewater treatment plant (wwtp) by four
pumps (each of 55 kW) in two cast iron pipelines (diameter = 600 mm), each over 4500 m length.
A schematic view of the catchment area and the PS in Figure 1 illustrates the study setup.
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Figure 1. Visualization of the catchment area (18.9 km2) in Rostock (Germany) including a schematic
view of the control and monitoring system during the study. The raw sewage inflow passes the rake
and is collected inside the pump sump. Pumps P1 and P2 then conveying the raw sewage directly to the
central wwtp in pressure pipe 2 (DL2). P1 and P2 are controlled over a variable-frequency drive (VFD)
from a PC (connected over a serial port (SER) to the programmable logic controller (PLC)). The VFD
adjusts pumps motor speed according to the control strategy [1,2,17]. All values from TSS sensors (TSS)
and electromagnetic flowmeters (EMF) are stored in the PC.

2.2. In-Situ TSS Monitoring

For a studied period of one year, pumps P1 and P2 were controlled by a PC to perform a rule based,
energy saving control strategy [1,2,17]. The sediment flux was monitored by online TSS measurements
at the in- and outflow side of pressure pipe DL2. Table 1 shows the TSS sensors technical data.
The sensors itself are shown in Figure 2.

Table 1. Technical data of TSS sensors

Sensor Controller Parameter Measuring
Range

Installed and
Measured
Duration

Interval Service
Num. of

Calibration
Processes

Wiper
Self-Cleaning

Interval

Hach
Lange
Solitax

inline Sc

Hach Sc
200 & Sc

1000

Turbidity,
TSS

0.001–4000 FNU,
0.00–150.000

mg/L

343 days
installed; 292

days measured
5 s 1 per

month

5 processes
with 73
samples

15 min

Furthermore, the following parameters were monitored every 5 s over 1 year: pump sump level
(m), inflow to the PS (L/s), pumps power input (kW), frequency of the VFD (F) (Hz), engine speed
(min−1), pressure in DL2 directly after the pump (bar), flow in DL2 (Qpipe) (L/s).
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Figure 2. TSS sensors for monitoring sediment flux in pressure pipes. (a) TSS sensor in PS
Rostock-Schmarl at the pressure side of the pump. (b) TSS sensor in the central wwtp Rostock
at the outflow side of the pressure pipe.

2.3. Sample-Specific Sensor Calibration

The turbidity sensors measuring principle is an infrared due scattered light technique [18].
The TSS eventually calculated from the turbidity by an internal factory calibrated formula. Commonly,
diatomaceous earth is used for the internal calibration process.

To adjust the TSS sensor values to the local raw sewage composition of PS Rostock-Schmarl, a
sample-specific calibration based on a correlation method was repeated 5 times, with 73 separate
raw sewage samples in total. The samples are collected with a ladle from the inflow channel, just
before the rake. Afterwards, the samples are filtered, according to the rakes space bar opening of
20 mm, and subsequently separated into cylinders of a small volume (2.5 L). In the second step,
the TSS concentration is artificially modified to obtain different cylinders with different TSS values.
Therefore, the TSS concentration is decreased by mixing several dilutions using clear water, while
settling increases the TSS values. This procedure provides a wide range of TSS values for calibration
process. Thus, the resulting calibration function is applicable for a broad spectrum of TSS values
without extrapolation. After that, a sample is filled into the calibration cylinder and continuously
mixed by a magnetic stirrer. Next, the sensors are demounted from the pressure pipe and placed
into the calibration cylinder. Subsequently, three sensor TSS values are noted from the controller
board. Finally, each sample is analyzed for TSS by three-fold determination in the laboratory (analysis
according to [19] by filtration and weight loss).

2.4. Fit Calibration Function and Analysis of Sensor Data

Sensor data must be validated before further processing into erosion and sedimentation behavior.
Various literature deals with error assessment and validation of sensor data to find a correlation
function and at least a true area of measured values with respect to uncertainties (i.e., [12] or [15]).
According to these publications, the determination of uncertainties was processed after the commonly
used “Guide to the Expression of Uncertainty in Measurement” (GUM) [20]. Therefore, the following
data analysis scheme was applied:

1. Fit calibration function (TSS to TSS) with errors in y and x direction using the total
least-squares regression;

2. Calculate function parameters uncertainties by Monte-Carlo simulation for 95% confidence level;
3. Transform original sensor data TSSsens by the calibration function into calibrated sensor data TSScal;
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4. Remove TSScal values > 1.000 mg/L, based on local operators’ expertise;
5. Further error assessment by Walsh’s outlier test.

First, the calibration function is performed by the total least-squares regression. By this, errors in
both directions, resulting from the TSS determination inside the laboratory (y) and the TSS measurement
by the sensor (x), were accounted for the optimization problem. The resulting regression function is a
first order polynomial function with the slope b (-) and intercept a (mg/L). The function calculates the
calibrated TSS values TSScal (mg/L) from the original sensor data TSSsens (mg/L), see Equation (1).

f (TSSsens) = b·TSSsens + a (1)

Second, the function parameters uncertainties are calculated for 95% confidence level by
Monte-Carlo simulation in MATLAB (see also [12]). The calculation of a combined uncertainty
resulting from the sensor measurement itself and the field influences (i.e., installation site) has been
omitted. It is assumed, that field influences are already included in the sensor output. It is furthermore
assumed that the field influence occurring during the in-pipe measurement is equal to the field influence
occurring during the calibration process outside the pressure pipe.

Third, the original sensor output TSSsens is transformed into calibrated sensor data TSScal to obtain
the estimated TSS values by Equation (1). Furthermore, the 95% confidence interval is calculated based
on the function parameters uncertainties.

Fourth, all TSS values > 1.000 mg/L are removed from the calibrated data set. The criterion based
on the local operator’s expertise.

Fifth, measurement errors are cleaned by the Walsh outlier test. The test requires no specific
distribution, can easily be coded, enables fast computing, and detects outliers greater and less than the
remaining values.

2.5. Determination of Settling- and Erosion Data

After calibration and error assessment, the final data processing followed, before determination of
settling and erosion data is conducted. The transport characteristics are analyzed based on TSS sensor
values in PS Rostock-Schmarl. The TSS sensor values from the central wwtp are used in Part II as
reference for the sediment transport model.

The data processing scheme is visualized in Figure 3 and is described below. To maintain the
data for determination, the complete data set (Figure 3a) must be split up in two parts: (i) the erosion
data-part (Figure 3b), containing data while one of the two pumps is working; (ii) the sedimentation
data-part (Figure 3c), containing data logged while pumps are shut off. Each data-part (erosion-part
and sedimentation-part) is further split up into separate erosion (Figure 3d) and sedimentation
events (Figure 3e). This is necessary, because the characterization is at least a mathematical
approximation of a single erosion and sedimentation event. These single events are now the basis the
mathematical description.

The sedimentation of solid fractions inside a fluid can be described by a settling velocity distribution
(e.g., see [1] or [4]). However, since the turbidity sensors are not able to detect single particle fractions,
the following approximation is applied. The settling events are described as a decay process, modeled
by a differential Equation (2).

dC
dt

= −α·C (2)

Its solution is an exponential decay, called settling rate C(t) (mg/L), see Equation (3). With t (s), the
settling duration in each pump pause, C0 (mg/L), a fixed value relating to the first TSS concentration
in each single sedimentation event, Crest (mg/L), the final solids concentration at the end of each
single setting event and the exponential decay rate α (1/s), which is the key parameter to describe the
settling behavior.

C(t) = C0·e−α·t + Crest (3)
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Figure 3. Data separation scheme: monitored TSS data (a) is split into an erosion- (b) and a sedimentation
part (c). Frequency data from both VFD (for P1 and P2) is used as decision criterion for data separation
(if VFD1 and VFD2 = 0, then settling sequence, else erosion sequence). The separation into single
erosion (d) and sedimentation events (e) is based on a time difference between each value. If the time
difference is larger the logging interval of 5 s (see Table 1), a single event is detected and separated.

Within each time step t, a proportion of the initial TSS concentration C0 settles to pipes invert,
according to the decay rate α, which is received by solving the optimization problem in Equation (4).
With n, the number of values in each settling sequence and TSScal (mg/L), the measured and calibrated
TSS concentration inside the pressure pipe.

min
α

n∑
i=1

(
TSScal,i −Ci

)2
(4)

The erosion events are described according to [1]. The measured erosion rate ea (kg/(m s)) inside
the pipe is calculated from the TSS concentration after pumps start (shown in Figure 3d), by Equation (5).
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With TSScal,i − TSScal,i−1 (mg/L), the TSS difference between measurements, ∆t (s), the time difference
between measurements and As (m2), the surface area of erosion (set to 1 m2 for better comparability).

ea =
TSScal,i − TSScal,i−1

∆t
·As (5)

The measured erosion rate ea can be described as a function of the current bed shear stress, called
erosion rate a (activation of sediments) (kg/(m s)), see Equation (6). With τpipe (N/m2), the current bed
shear stress, τcrit (N/m2), the critical bed shear stress where erosion starts and d (s), the erosion parameter,
which describes the strength of the erosion (equal to slope of the first order polynomic function).

a
(
τpipe

)
= max

(
0, d·

(
τpipe − τcrit

))
(6)

τpipe is calculated by Equation (7), based on the fluid density ρ = 1000 (kg/m3), the flow velocity v
(m/s), and the friction factor λ (calculated after the Colebrook–White equation).

τpipe = ρ·
v2

2
·
λ
4

(7)

The height of τcrit depends on several parameters, as the formerly settling duration (higher τcrit
values for longer settling duration) and the composition of the sewage (organic components raises τcrit
due to biogenic changes). For a detailed description of τcrit see [1]. The erosion rate a is adjusted to the
measured erosion rate ea by solving the optimization problem in Equation (8).

min
d, τcrit

n∑
i=1

(ea,i − ai·wi)
2 (8)

To consider real life conditions inside the pressure pipe, w (kg), the current particle mass on pipe
bottom is multiplied with the erosion rate a. If the sediment bed is empty (w = 0), the erosion rate a
becomes zero. By solving Equation (8), the function parameter d and additionally the critical bed shear
stress τcrit is received.

3. Results and Discussion

3.1. Sensor Calibration Results

The result of the calibration processes is shown in Figure 4. The laboratory TSS correlates to each
sensor TSS by a first order polynomic function.

With the resulting calibration function, the sensor values are converted into the laboratory values,
before further processing. The calibration functions are fitted with a R2 value of 0.84 for TSS sensor PS
Rostock-Schmarl and with a R2 value of 0.85 for TSS sensor at the central wwtp Rostock. As found in
literature, usual calibration functions used same functions with R2 values between 0.83 and 0.92 [8]
(calibration to turbidity) or, as already summarized in [15], between 0.80 and 0.95 [15] (calibration to
turbidity). Reference [9] obtained a calibration function, for the same sensor used in this study, with a
R2 value of 0.94.

As one can see in the functions slope b, the measured values of both sensors are too high.
Furthermore, we obtained two different calibration functions, although both sensors are identically
and the same TSS samples used for calibration. A reason might be found in the differences to the
internal calibration process. The used material for internal calibration differs from the raw sewage, as
well as the calibration cylinder geometry. Another reason might be in the different controller devices
used for the sensors. Differences in the internal signal processing may cause different values.
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Rostock-Schmarl. (b) For TSS sensor at the central wwtp Rostock.

3.2. Evaluation of the Erosion and Settling Approximation

The evaluation of the raw sewage erosion and settling characteristics is based on an enormous
amount of data. In sum, the TSS sensor in PS Rostock-Schmarl recorded 4238121 values (5 s interval
over 1 year). 2203618 values of them account for erosion sequences and 2034503 values for settling
sequences. The total number of single erosion sequences amount to 6653, while 6733 single settling
events are recorded. This leads on average to ≈24 erosion and ≈24 settling events per day. Hence, the
pumps are working every half hour for 30 min.

For each single erosion and settling event, a mathematical function is adjusted to the measured
TSS values, automatically by a MATLAB code. This enables a fast, uncomplicated, and reproducible
processing. The function itself is given by the settling rate C(t), Equation (3), and by the erosion rate,
written as a(τ,w) (following Equation (8)).

First, we will evaluate the approximations of the erosion and settling processes. Figure 5 evaluates
the fit results graphically. In Figure 5a, all measured erosion rates ea are plotted versus all fitted erosion
rates a(τ,w). A perfect fit is given by f (x) = x or a(τ,w) = ea. For the majority of erosion values, a(τ,w)
follows the perfect fit course with deviations above and below. The fitting results are moderate. R2

value of >=0.9 having 7.3% of the total approximations (n = 481 single events), 33.5% (n = 2100) were
fitted with R2 values of >=0.75, while R2 values of >=0.5 having 54% (n = 3603). So the mathematical
approximation by the erosion rate a(τ,w) is suitable to describe the real process of erosion. Because of
the similar up- and downward deviation, a balance is assumed.

Figure 5b shows all measured TSS values in the pump pauses versus all approximations by C(t).
Here, the majority of the values are located just below the perfect fit line. Accordingly, the settling
process is slightly overestimated. In contrast to erosion, a better fit is achieved for settling. R2 values of
>=0.9 having 31% of the total approximations (n = 2084 single events), 58.4% (n = 3934) were fitted
with R2 values of >=0.75 and R2 values of >=0.5 having 76% (n = 5161).

Both models are able to describe real world conditions appropriately. The deficits in the erosion
approximation may result from its dynamic process. If the TSS sensor measures a value immediately
when the pump starts, it takes 5 s of pumping until the next value is recorded. Within these 5 s, some
sediments are already eroded. This means that a shorter measuring interval is recommended for the
erosion process in later studies. Furthermore, the limited flexibility of the erosion rate a(τ,w) itself, as
it is based on a first order polynomic function (see Equation (6)), contributes to its moderate results.
A transformation into a power function (e.g., a

(
τpipe

)
= d·

(
τpipe − τcrit

)p
) leads to slightly better results

but with larger computation effort, e.g., for a sediment transport simulation.
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Figure 5. Evaluation of the erosion and settling approximation. (a) All measured erosion rates ea vs.
all mathematical approximations by a(τ,w). (b) All measured settling events inside the pipe vs. all
mathematical approximations by C(t).

3.3. Settling and Erosion Characteristics Inside the Pressure Pipe Under Dry Weather Inflow

Transport characteristics are essentially dealing with numerical simulation of sediment transport in
open channel flow or dimensioning of facilities and treatment plants or solids transport inside pressure
pipes. Hence, the in-pipe measurement helps to improve accuracy of the transport characterization
and widen the spectrum of results substantially. Furthermore, it serves as a comparison to laboratory
(ex-situ) results, obtained in [1,2].

The example in Figure 6a shows a typical situation in PS Rostock-Schmarl, comparable to usual
urban drainage pumping stations. The diurnal course of TSS is separated, according to Figure 3,
into erosion events (blue) and settling events (red). The diurnal course of the raw sewage inflow is
presented by Qinflow and the resulting pump flow by Qpipe (right axes).

The TSS values during the night are relatively low. They reach a minimum of ≈200 mg/L at about
03:30 a.m. (in pump sequence) before starting to increase from 06:00 a.m. to 12:00 a.m. up to 400 mg/L.
Peaks up to 600 mg/L may be the result of the sensor wiper, cleaning the sensor from heavy dirt
(e.g., paper shreds). The TSS course follows the inflow course of Qinflow. Hence, there is a relationship
between TSS and Qinflow. Low inflow results in low TSS values and vice versa. It results from the water
usage and the hydraulic conditions in the upstream sewers. An increased solids amount reaching the
PS by increased water consumption (stool, cooking, etc.). Furthermore, high water consumption raises
the hydraulic performance in the upstream sewers and erodes deposits.

The TSS course is characterized by two long settling periods. A specific settling characteristic
becomes clear within these two periods. The TSS first decreases rapidly but then slows down. This is
also addressed in [2], where the same characteristic was found. Accordingly, an exponential function
(see Equation (3)) describes this process most appropriate. Consequently, the TSS never decreases to
full extend in pump pauses.

Figure 6b shows an exemplary settling course in detail, while Figure 6d shows the resulting settling
rate. Although the pump pause only takes ≈17 min, the TSS inside the fluid reduces from ≈200 mg/L
at about 27.5% to ≈145 mg/L. The effect of the exponential decrease shows the risk of forming a
consolidated sediment layer inside the pressure pipe, even in short pump pauses. If sediments erode
incompletely within the subsequent pump sequences, permanent deposits are likely to develop.
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Figure 6. Monitored data in PS Rostock-Schmarl for day 328 (a) including exemplary erosion and
settling determination scheme (b–e). (a) Qinflow and Qpipe (right axis) and TSS sensor data including
95% confidence levels (left axis). (b) Settling event: TSS values (TSScal) after pumps stop in the night.
(c) Erosion event: TSS values (TSScal) after pumps start at night. (d) Settling event determination: TSS
values (TSScal) and approximated settling rate C(t) including fit results. (e) Erosion event determination:
erosion rate ea and approximated erosion rate a(τ,w) including fit results.

Figure 6c,e shows the subsequent erosion sequence and the determination of the erosion rate.
The erosion process always forms an s-shaped curve (Figure 6c). This shape is characterized by a
restrained start and is followed by an increased erosion. The inflection point of the s-curve marks the
beginning of the decrease phase with a weakening erosion. The formerly settled solids are completely
eroded from ≈145 mg/L up to ≈200 mg/L within 30 s. The resulting erosion rate (Figure 6e) shows
an abrupt increase at the beginning, which is due to its moderate fitting results (R2 = 0.83). Similar
to the smoother decline at the end of the erosion event, a more gradual increase is assumed for the
beginning. The maximum erosion appears at ≈0.43 N/m2 and so, before the maximum shear stress
level of ≈0.5 N/m2 is reached. A further increase of shear stress (feasible by parallel pumping of P1
and P2) would not result in further solids erosion, as the maximum erosion level is already reached
and the decline remarks the emptying of the sediment layer.
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3.4. Comparison to Laboratory (Ex-Situ) Results

The results of the ex-situ laboratory experiments in [1] are similar to the in-situ measured erosion
processes in this study. Both methods show the typical s-curve while eroding solids. Hence, the
resulting erosion rates are quite similar. Especially the calculated duration for a complete resuspension
in [1], with regard to similar hydraulic conditions (≈ 0.5 N/m2 bed shear stress), is nearly equal to real
world processes (duration ≈ 30 s). Thus, both methods (in-situ and ex-situ) are applicable to determine
the erosion characteristics of raw sewage.

However, the in-situ characterization of the erosion events is much harder compared to the ex-situ
method in [1], as the solids inside the pipe are moving in two main directions (upward and forward,
micro-effects ignored). Therefore, next to the formerly settled solids directly under the TSS sensor,
particles settled at the upstream section of the pressure pipe affecting the measurement. A closed
reaction chamber, within the ex-situ experiments in [1], simplifies the measurement extremely, as the
erosion process of a controlled suspension is detected. This may be another reason for the moderate
fitting results (see previous chapter).

A direct comparison to the ex-situ settling experiments in [2] is not possible. The in-situ method
measures the TSS reduction in the fluid phase (by a calibrated turbidity sensor) and the ex-situ method
measures the total mass increase at the bottom of a cylinder (by weight loss). Furthermore, the
mathematical description differs from [2]. However, by converting the cumulative growth from [2] into
the fluids particle loss, an equal course to the settling rate is found (exponential shape). Furthermore,
both methods counted approximately the same solids amount after similar settling durations. 25.4%
of solids mass settle in a laboratory test within 17 min while approximately 27.5% of the solids settle
within the same duration inside the pressure pipe.

A continuous measurement of solids decrease inside a fluid phase by a sensor is by far much easier
and more worthwhile, than a manually ex-situ determination of solids mass growth. The laboratory
experiment lags behind the sensor determination, because of the high effort in designing and
construction, sampling, the experimental conduction and mass detection. The continuous and
automated in-situ measurement scores by a unique installation, simple maintenance, and calibration,
high-resolution measurement (5 s interval) and automated data processing.

3.5. Effect of Storm Water Inflow to Settling and Erosion Characteristics

Due to the connected road runoff, a changed erosion and sedimentation behavior is assumed
by storm water inflow. Several storm events were measured during the study period. One example
is shown in Figure 7. Figure 7a shows a rain event at 07:00 p.m. with 4.9 mm/h precipitation (right
axis). The inflow curve shows the storm runoff slowly reaching the pump sump (see Qinflow, left
axis). The TSS course (left axis) is separated into erosion (blue) and sedimentation sequences (red).
The TSS concentration increases significantly up to ≈600 mg/L after the peak runoff reaches the pump
sump. Figure 7b compares a dry weather inflow erosion rate (1b) with a storm water erosion rate (2b).
The maximum erosion increases with the storm inflow almost by a factor of five. One reason is the
storm runoff composition. Solids (sand, tire abrasion, etc.) are washed off from roads and entering the
sewer. Furthermore, the increased discharge erodes pre-settled and consolidated deposits and spills a
mixture of runoff solids and sewer solids to the PS.
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Figure 7. Effect of storm water inflow to erosion and sedimentation. (a) Qinflow and TSS data (both
on left axis) during rainfall event from 06:00 p.m. to 08:00 p.m. with a peak of 4.9 mm/h (right axis).
(b) Erosion rate a(τ,w) during storm water inflow (2b) compared to dry weather inflow (1b). (c) Settling
rate C(t) during storm water inflow (2c) compared to dry weather inflow (1c) including mean decrease
∆C/∆t. The German Weather Service (DWD) provides the precipitation data.

The following sedimentation process (2c) is significantly different compared to dry weather
conditions (1c), accordingly. The increased TSS inflow raises the start value of sedimentation (C0) from
≈400 mg/L up to >600 mg/L. A better comparison of the settling processes is provided by the mean
decrease, which is defined as the difference quotient in the interval [t1;tend], see Equation (9).

∆C
∆t

=

∣∣∣C(tend) −C(t1)
∣∣∣

tend − t1
(9)

In this example, the TSS concentration decreases under dry weather inflow (1c) with 0.28 mg/(L s),
while under storm water inflow (2c) twice as fast with 0.65 mg/(L s). Hence, next to the solids
concentration, the solids composition changes as well. This indicated an increased inflow of heavier
particles (runoff- and sewer solids). The total mean decrease under dry weather inflow, calculated
over 4520 settling events, is 0.23 mg/(L s), while under storm water inflow 0.9 mg/(L s) (calculated
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over 9 rain events). Therefore, a more than 3.5-times faster settling can be assumed under storm water
inflow. This increases the risk of blockages significantly. The risk is highest when the solids enter the
pressure pipe. The storm runoff reaches the pump sump 1 h after the rain event and enters the pressure
pipe usually 1.5 h after the rain event. The accumulation of particles on roads and the deposition of
solids inside the sewers increases with longer dry periods. This is due to missing wash-off and limited
discharge. Hence, the risk of blockages in the pressure pipe increases for short but intensive rain events
after long dry weather periods. However, this effect is not investigated within this study.

3.6. Comparison to Laboratory (Ex-Situ) Results

A changed sedimentation behavior is already recognized in [2]. Samples, collected under storm
water inflow settling significantly faster. Comparable laboratory tests showing a mean decrease for
storm water samples by 1.1 mg/(L s), while 0.18 mg/(L s) for dry weather samples.

3.7. Diurnal Variation Settling and Erosion

Settling and erosion characteristics are changing not only with storm water inflow. As already
mentioned previously, TSS follows the inflow course. As settling and erosion depends on TSS, their
behavior follows TSS and consequently inflow. Hence, changes are also assumed due to the diurnal
variation of inflow. This relation is shown in Figures 8 and 9. Both showing the average diurnal
variation of inflow (black line), including boxplots for hourly mean decrease (Figure 8) and hourly
maximum erosion per event (Figure 9).
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Figure 9. Diurnal variation of the max erosion (boxplots) including total average erosion over 3451 single
erosion events (red line) and the average Qinflow for dry weather conditions (black line).

Both indicators (mean decrease and maximum erosion) follow the up- and downward course of
inflow. Especially in the morning, the swage is characterized by slow settling processes (<0.1 mg/(L s))
and low erosion rates (<0.0025 kg/(m s)). This can be explained by the reduced water usage in the
night (reduced solids input, reduced hydraulic performance in upstream sewers). Vice versa, due to a
high water usage in morning hours, peak inflows reaching the PS at lunch and changing the sewage to
a faster settling mixture (up to 0.5 mg/(L s)). Accordingly, the erosion rate increases up to 0.02 kg/(m s).
The increased erosion rate is a result of a faster settling process. The more solids settle within the pump
pauses, the more solids can be eroded in the pump phases. Hence, the erosion rate depends on the
pump pause duration. Longer pump pauses generally occur in the night or in the morning with low
inflow rates (see [2]). Nevertheless, due to a slow settling sewage, the erodible amount of solids is low.
The erodible amount is at its peak, when the settling process is fast (usually at midday), irrespective to
pump pause duration. Concluding, the sewage settling characteristics (slow or fast) determine the
deposits formation more than the duration of the pump pauses.

4. Conclusions

The paper presents a continuous in-situ TSS measurement system for raw sewage inside a
pressure pipe and the determination and characterization of settling and erosion behavior based on
high-resolution sensor data. Ultimately, the following findings are concluded:

• The installed sensors are suitable for supervision of TSS fluxes inside sewage pressure pipes;
• Periodically calibration and maintenance of TSS sensors result in reliable data;
• TSS sensor data allow for a characterization of solids sedimentation and erosion behavior;
• Measured in-situ erosion and settling results are similar to ex-situ (laboratory) results;
• Settling accelerates with high inflow rates (storm water inflow, diurnal inflow peaks) and

decelerates with low inflow (reduced TSS inflow in night phases);
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• Erosion rate increases and decreases based on the available amount of solids, hence, with changing
settling behavior;

• Solids are eroded before maximum shear stress level reached

Within continuous sensor measurements, a huge amount of data is generated. Especially with
regard to urban water simulations, this provides the opportunity for precise calibration up to specified
scenarios. Hence, changes of solids erosion and sedimentation caused by storm water inflows of various
intensity or by the diurnal inflow can be dynamically implemented into hydraulic models by providing
a wide spectrum of appropriate calibration parameters. The presented results are primarily used for a
sediment transport simulation inside the pressure pipe of PS Rostock-Schmarl, presented in Part II of
this publication: “Sediment Transport in Sewage Pressure Pipes, Part II: 1D Numerical Simulation”.
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