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Abstract: This study evaluates the choice of the meteorological data set in the simulation of the
streamflow of a Mexican basin, in the bias correction of climate simulations, and in the climate
change impact on hydrological indicators. The selected meteorological data sets come from stations,
two interpolated data sets and one reanalysis data set. The climate simulations were taken from
the five-member ensemble from the second generation Canadian Earth System Model (CanESM2)
under two representative concentration pathways (RCPs), for a reference period (1981–2000) and
two future periods (2041–2060 and 2081–2100). The selected lumped hydrological model is GR4J,
which is a daily lumped four-parameter rainfall-runoff model. Firstly, the results show that GR4J
can be calibrated and validated with the meteorological data sets to simulate daily streamflow;
however, the hydrological model leads to different hydrological responses for the basin. Secondly,
the bias correction procedure obtains a similar relative climate change signal for the variables, but the
magnitude of the signal strongly varies with the source of meteorological data. Finally, the climate
change impact on hydrological indicators also varies depending on the meteorological data source,
thus, for the overall mean flow, this uncertainty is greater than the uncertainty related to the natural
variability. On the other hand, mixed results were found for high flows. All in all, the selection of
meteorological data source should be taken into account in the evaluation of climate change impact
on water resources.
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1. Introduction

Evaluation of the climate change impact on water resources is an important issue in hydrology
science, as the expected changes in the precipitation and temperature patterns would affect the
availability of water for the population as well as the ecosystems. Additionally, it is expected that
the climate change impact on the hydrological regimes would lead to changes in average runoffs.
For instance, Arnell et al. [1] argue that runoffs would increase in high latitudes, but they would
decrease in other regions, such as Central and South America. The evaluations of the climate change
impact on hydrology must deal with several uncertainties, such as the General Climate Model (GCM),
the emission scenario or the representative concentration pathway (RCP), the statistical bias correction
procedure, and the hydrological model [2–10].

On the other hand, the evaluation of the impact of climate change on water resources requires
high-quality meteorological records in order to calibrate and validate the hydrological models, and to
bias-correct climate simulations. To that concern, the Intergovernmental Panel on Climate Change
(IPCC) argues that historical records in many regions are poor, especially for those more vulnerable to
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climate change; thus, it recommends further research to integrate observations into processed gridded
products [11].

Precipitation data issued from gridded meteorological datasets present important differences
among them. Such differences lead to uncertainty in runoff simulation. For instance, Fekete et al. [12]
evaluated six monthly gridded precipitation datasets in runoff evaluation and found a high uncertainty
in the estimation of runoff in semiarid regions. Biemans et al. [13] evaluated seven gridded datasets
and found great uncertainty in the estimation of simulated runoff over 95 basins, which led authors to
conclude that the range of uncertainty in input data has a critical influence on hydrological simulations
and must be taken into consideration upon communication of results. Geritana et al. [14] evaluated
six gridded datasets in runoff evaluation, and identified underestimation of precipitation which led
to misrepresentation of runoff. Other studies have found good results when gridded data is used to
simulate streamflow with semi-distributed [15] or lumped hydrological models [16].

Nonetheless, few studies have considered the uncertainty of meteorological dataset in the
evaluation of climate change impact on hydrology. For instance, the study of Gao et al. [17] assessed
the uncertainty related to data source in the bias correction of climate simulations for the evaluation
of climate change impact on annual mean streamflow. Meteorological sources included data from
weather stations and from two processed gridded data sets. The authors found that meteorological
data source uncertainty was smaller than the uncertainty related to GCM, but larger than uncertainty
associated to RCP.

The aims of this study are: firstly, to evaluate different meteorological datasets in the calibration
and validation of a hydrological model in the simulation of daily streamflow; secondly, to assess the
choice of meteorological data set in the bias correction of climate simulations; and finally, to evaluate
this uncertainty in the evaluation of the climate change impact on hydrological indicators. Uncertainty
associated with the choice of meteorological data set is also compared to uncertainty related to natural
climate variability.

The manuscript is organized as follows: Section 2 describes the basin under study,
the meteorological data sets, the climate simulations, the bias correction method and the hydrological
model and indicators; Section 3 shows the evaluation of meteorological datasets in the reference period,
the performance of the hydrological model, and the evaluation of uncertainty related to the choice
of meteorological data set in the bias correction of climate simulations and in the impact of climate
change on the hydrological indicators; Section 4 discusses results; and finally, Section 5 concludes.

2. Materials and Methods

The model chain in this study consists of global climate model outputs statically bias-corrected and
downscaled to feed a hydrological model. Since we aim to compare the use of different meteorological
datasets in the evaluation of climate change impact on water resources, the bias correction of climate
outputs and the hydrological model calibration and validation procedure were performed with each of
the four selected data sets. This section describes the study basin, the meteorological and climate data,
the bias correction procedure, the hydrological model, and the selected hydrological indicators.

2.1. The Study Basin and the Meteorological Data Sets

The study basin is the Papagayo River Basin, located in south Mexico (Figure 1). The basin has its
farthest headwater in the Sierra Madre del Sur mountain chain and discharges into the Pacific Ocean.
The basin covers an area of 7067 km2 and is located over a Tropical Savannah (Aw) climate region [18].
The mean annual precipitation is 1540 mm and the mean temperature is 20.5 ◦C evaluated for the
1981–2000 period. The discharge data come from the National Surface Water data set [19] for La Parota
gauging station over the same period. The Papagayo River’s flow peaks in September (434 m3 s−1),
while its lowest discharge is in February (30 m3 s−1).
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Figure 1. Study basin.

Meteorological data (daily precipitation and temperature) were obtained from four data sets
(Table 1) that include station observations, interpolated meteorological data and reanalysis data for
the common 1981–2000 period. Meteorological observations (data 1) were obtained from five SMN
(Servicio Meteorológico Nacional) stations located in the basin (Figure 1). In addition, two gridded
processed data sets were also considered: data 2 were taken from the data set for Mexico, the U.S.A.,
and Southern Canada presented by Livneh et al. [20], and data 3, which is the interpolated data set
for Mexico introduced by Zhu et al. [21]. Both data sets were built from SMN data; moreover, data 2
incorporates a topographic adjustment that takes into account mountain precipitation. Finally, data
4 was taken from the NCEP (U.S. National Centers for Environmental Prediction) reanalysis [22],
which is a gridded data set from a numerical weather prediction model that incorporates observed
meteorological data.

Table 1. Meteorological data sets selected for this study.

I.D. Description Source

data 1 Observation from five
meteorological stations (Figure 1)

Servicio Meteorológico Nacional (SMN) via
CICESE (Ensenada Center for Scientific
Research and Higher Education) website [23]

data 2 Interpolated meteorological data
(resolution of 1/16◦)

NOAA (National Oceanic and Atmospheric
Administration) website [24]

data 3 Interpolated meteorological data
(resolution of 1/8◦) CICESE website [23]

data 4 Climate Forecast System reanalysis
(CFSR; resolution of 1/2◦) Texas University website [25]
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Gridded data sets have different resolutions as shown in Table 1. In this study, the selected
hydrological model is a lumped model: thus, for a given variable, the model is fed with one series that
describes the basin as a whole. Therefore, average daily precipitation and temperature were obtained
for each dataset. For the gridded data sets, average precipitation was computed considering the grid
points within the basin. For data 1, the average precipitation was obtained following the Thiessen
Polygon Method [26]. The basin is located in a mountainous area, thus, an interesting technique to
explore is the modification of the Thiessen method proposed by Panagoulia et al. [27], which takes into
account the station elevation.

2.2. Climate Simulations and the Bias Correction Method

For this study, the five-member ensemble from the second generation Canadian Earth System
Model CanESM2 [28] under two representative concentration pathways (RCP 4.5 and RCP 8.5) was
considered. Climate simulations were obtained for a reference period (1981–2000) and two future
periods (2041–2060 and 2081–2100). The five-member ensemble climate simulation was selected
to provide an estimation of natural climate variability. This natural variability can be estimated
by repeating a climate change experiment using a given GCM several times when only the initial
conditions are changed by small perturbations [29]. Therefore, the natural variability is irreducible
even if perfect models would be available [6], and it is used in this study as a baseline to compare the
uncertainty induced by the meteorological datasets.

Climate simulations have systematic biases (i.e., differences in observations within the historical
period) that should be corrected before their use in hydrological models in order to provide consistent
hydrological simulations [7]. In this study, the daily translation method [30] was selected to bias-correct
precipitation and temperature simulations. The method establishes, in a first step, a relationship
(correction factors) between the climate model simulations and the meteorological variables in the
historical period (at different percentiles). On a second step, correction factors are applied to correct
climate simulation in future periods. The daily translation method is applied on a monthly basis, and
50 percentiles are calculated for each month. The corrected daily temperature and precipitation in the
historical reference (ref) period are computed as follows:

Tre f
corr(d)

= Tre f
sim(d)

+
(
Tre f

obs(m,q)
− Tre f

sim(m,q)

)
, (1)

Pre f
corr(d)

= Pre f
sim(d)


Pre f

obs(m,q)

Pre f
sim(m,q)

. (2)

where Tcorr and Pcorr are the bias-corrected temperature and precipitation, respectively. The indexes
correspond to percentile (q), daily (d) time steps, raw climate simulations (sim), and observations (obs)
or other meteorological data source. For the future period (fut), corrected precipitation and temperature
are obtained through:

T f ut
corr(d)

= T f ut
sim(d)

+
(
Tre f

obs(m,q)
− Tre f

sim(m,q)

)
, (3)

P f ut
corr(d)

= P f ut
sim(d)


Pre f

obs(m,q)

Pre f
sim(m,q)

. (4)

The monthly correction factors were computed for the five-member ensemble average,
upon which the correction was performed for each individual member in order to conserve the
inter-member variability.
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2.3. The Hydrological Model and Hydrological Indicators

The lumped conceptual hydrological model GR4J (Modèle du Génie Rural à 4 paramètres
Journalier) was selected for this study. The GR4J model is a daily lumped four-parameter rainfall-runoff

model developed by Perrin et al. [31]. Figure 2 shows the model structure. Input variables are daily
precipitation (P) and potential evapotranspiration (PE). For this study, the PE was computed with the
formulation proposed by Oudin et al. [32], which is based on mean temperature and extraterrestrial
radiation. The hydrology in GR4J is simulated as follows: first, the model calculates the net rainfall
(Pn) or the net evapotranspiration capacity (En) with the subtraction of PE from precipitation. In case
Pn is not zero, a portion of the precipitation (Ps) goes into the production store. If, on the other hand,
En is not zero, a quantity Es is computed as a function of the water that evaporates from the store. The
percolation (perc) from the production store meets the runoff directly. Water quantity Pr is divided into
two flow components routed by two unit hydrographs, UH1 and UH2. A groundwater exchange term
(F) describes water imports and exports. Four parameters are calibrated in GR4J: x1, the maximum
capacity of the production store; x2, the groundwater exchange coefficient; x3, one day ahead maximum
capacity of the routing store; and x4, the time base of the unit hydrograph. A detailed description of
the model structure is presented in Perrin et al. [31].
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The hydrological indicators selected in this study are: the overall mean flow (OMF), which is the
mean daily flow for a given period; the two-year (HF2) and the 10-year (HF10) return period high
flow. To evaluate high flow indicators, it was assumed that the time series follow the log Pearson III
probability density function.

In this study, a five-member ensemble climate simulation was selected to evaluate the impact
of climate change on hydrological indicators. The relative changes on hydrological indicators were
performed with permutations as in Velázquez et al. [6]. This method assumes that each member
of the ensemble (in the historical reference and future periods) is an independent proxy of the
climate. Therefore, the permutation allows comparing the future of a given member in the presence of
all members.

The relative differences of the hydrological indicators (∆ij) are computed as follows:

∆i j =
I f ut
i − Ire f

j

Ire f
j

(5)
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where the i and j subscripts represent the climate model simulations (issued from the five-member
ensemble) used to compute the hydrological indicators. Hence, we obtain 25 values of relative
differences which express the climate change signal (CCS) on a given hydrological indicator.

3. Results

This section shows, firstly, the comparison between meteorological datasets in the historical
reference period; secondly, the performance of the hydrological model calibrated and validated
with each dataset; and finally, the climate change signal on meteorological variables and
hydrological indicators.

3.1. Comparison of Meteorological Data Sets in a Reference Period

Figure 3 shows the mean monthly precipitation and temperature as evaluated with the four
data sets for the period 1981–2000. Compared to station data (data 1), it can be noted that for dry
months (November to April) the mean precipitation evaluated with the other data sets is very similar.
However, in wet months (May to October), precipitation is underestimated in the processed gridded
precipitation (data 2 and data 3) and overestimated in the reanalysis data (data 4). For example,
observed precipitation in August shows a value of 338 mm, while showing a value of 187 mm, 284,
and 500 mm for data 2, data 3, and data 4, respectively. Additionally, Figure 3a shows differences in
the annual cycle for data 2 and data 3 as July precipitation is lower than June and August precipitation.Water 2019, 11, x FOR PEER REVIEW 7 of 19 

 

Figure 3. Mean monthly precipitation (a) and temperature (b) for the Papagayo River Basin (1981–
2000). 

Figure 4 shows the empirical cumulative distribution functions for daily precipitation and 
mean temperature over the study basin, while Table 2 compares the value of some percentiles of 
interest. This figure shows the general underestimation in precipitation for data 2 and data 3 and the 
overestimation for data 4; for instance, the relative difference (compared to data 1) for percentile 75 
is −33%, −13%, and +80% for data 2, data 3, and data 4, respectively. Regarding mean temperature, 
the highest difference (compared to data 1) for data 2 and data 5 is found in quantile 90 (3.0 °C and 
1.6 °C, respectively), while for data 4, the highest difference is presented in quantile 10 (3.3 °C). 

 

Figure 4. Empirical cumulative distribution functions for daily precipitation (a) and mean daily 
temperature (b) for the Papagayo River Basin (1981–2000). 
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Regarding the mean monthly temperature, Figure 3b shows a general underestimation of
temperature; for instance, the difference in the observed temperature (data 1) in the warmest month
(June) is 2.9 ◦C, 1.4 ◦C, and 2.4 ◦C for data 2, data 3, and data 4, respectively. Additionally, Figure 3b
shows that the reanalysis (data 4) estimates the highest temperature in May rather than June.

Figure 4 shows the empirical cumulative distribution functions for daily precipitation and
mean temperature over the study basin, while Table 2 compares the value of some percentiles of
interest. This figure shows the general underestimation in precipitation for data 2 and data 3 and the
overestimation for data 4; for instance, the relative difference (compared to data 1) for percentile 75
is −33%, −13%, and +80% for data 2, data 3, and data 4, respectively. Regarding mean temperature,
the highest difference (compared to data 1) for data 2 and data 5 is found in quantile 90 (3.0 ◦C and 1.6
◦C, respectively), while for data 4, the highest difference is presented in quantile 10 (3.3 ◦C).
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Table 2. Selected percentiles (pctl) for daily precipitation and mean temperature computed with the
meteorological data sets for the period 1981–2000.

pctl Precipitation (mm day−1)

data 1 data 2 data 3 data 4

50 0 0.33 0.37 0.67
75 5.39 3.59 4.66 9.73
90 20.86 11.13 16.64 26.64

Temperature (◦C)

10 18.28 15.75 17.19 14.91
50 20.87 18.03 19.40 18.20
90 22.30 19.23 20.69 20.15

3.2. Calibration and Validation of the Hydrological Model

In the following step, hydrological model GR4J was calibrated (over the 1987–1993 period) and
validated (over the 1995–2000 period) with the four meteorological data sets. Table 3 shows the
performance of the hydrological simulations with several statistics: 1) the Nash Sutcliffe Efficiency
Coefficient (NS) [33] which ranges from −∞ to 1, where 1 indicates a perfect match between simulated
and observed discharge; 2) the Mean Absolute Percentage Error (MAPE) [34,35]; and 3) the Threshold
statistics (TS), which is the number of data points with an absolute relative error less than x% [36].
A smaller MAPE and larger TS indicate a good performance.



Water 2019, 11, 2110 8 of 17

Table 3. Nash Sutcliffe Efficiency Coefficient (NS), Mean Absolute Percentage Error (MAPE)
and Threshold statistics (TS) obtained in the calibration (Cal; 1987–1993) and validation (Val;
1995–2000) periods.

Data 1 Data 2 Data 3 Data 4

NS
Cal. 0.79 0.87 0.88 0.54
Val. 0.84 0.85 0.58 0.52

MAPE
(%)

Cal 46.4 101.8 28.8 44.5
Val 56.5 113.1 33.8 84.6

TS5
(%)

Cal. 6.9 7.9 7.2 8.0
Val. 6.5 5.4 12.9 3.2

TS25
(%)

Cal 32.4 34.3 42.4 33.6
Val 29.8 27.6 58.6 19.8

TS50
(%)

Cal 60.6 50 91.4 61.3
Val 52.6 40.3 81.3 37.6

From this table, it can be noted that the model calibrated and validated with data 1 (station
observations) and with data 2 (a processed data set) obtains a good performance with NS values of 0.84
and 0.85 in validation period. Additionally, calibration with data 3 also achieves a good performance
in calibration (0.88), but not in validation (0.58). In contrast, the hydrological model calibrated and
validated through reanalysis data (data 4) presents the lowest performance, with NS values of about
0.54. The most important difference in NS values between calibration and validation periods is
observed for data 3, as a result of variations in the precipitation annual cycle. For instance, in the
wet season (May–October), the difference in precipitation is −194 mm for data 3, which is important
compared with data 1, data 2, and data 4 (−18 mm, −50 mm and −67 mm, respectively). Furthermore,
data 4 shows the precipitation peak in different months: July and August for the calibration and
validation periods respectively. These results show mixed performance of the hydrological model in
the simulation of the observed daily discharge in terms of the NS Efficiency Coefficient.

Further insight into the simulated discharges is shown in Figure 5, which presents the scatterplot
of observed and simulated daily discharges obtained through the study meteorological data sets.
This figure shows a good agreement between data 1 and data 3, with a slight overestimation and
underestimation of medium flows respectively. In contrast, data 2 (Figure 5b) does not allow for
simulation of low discharges and data 4 shows a large dispersion of the high flow scatters. The good
performance of data 1 and data 2 in terms of NS is due to the importance of high flows as the
NS coefficient is computed with differences between simulated and observed discharge as squared
values [37]. Furthermore, data 2 shows a poor performance in terms of MAPE because this statistic
yields to large percentage errors if the observed values are very small as in the case of low flows [35].
In contrast, data 3 shows a good performance in terms of MAPE and TS because of the good simulation
of low and medium flows.

The four calibrated parameters of the conceptual model GR4J have no physical meaning; however,
the study of Pagano et al. [38] assumed that each parameter of GR4J controls a process in the model:
higher values of X1 (maximum capacity of the production store) increase soil moisture in the basin;
X2 describes the exchange of water, whose value can be either positive (in case of water imports) or
negative (for water exports; [31]); X3 (one day ahead maximum capacity of the routing store) controls
the discharge of base flow, and X4 is the time base of the unit hydrograph, thus, higher values of
this parameter attenuate the hydrograph. Analysis of the parameters shows that, when using data 1,
GR4J considers that the soil moisture high (X1 = 1464 mm) and the water export positive (X2 = 1.8 mm).
Regarding the behavior of the basin with gridded processed data, GR4J estimates a lower soil moisture
in the basin (X1 = 164.6 mm and 49.3 mm for data 2 and data 3, respectively); moreover, the hydrological
model assesses water imports for data 2 (X2 = 4.94 mm) and water exports for data 3 (X2 = −2.1 mm).
In the case of reanalysis data (data 4), GR4J evaluates high moisture in the basin (X1 = 2957 mm)
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and water export (X2 = −5.1 mm). These results show that the selected datasets used to calibrate a
lumped hydrological model result in four different representations of the study basin. The different
representations of the basin’s hydrological system will be evaluated in the context of climate change.
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3.3. Climate Change Signal on Meteorological Variables

As mentioned before, each meteorological data set was used as a reference source in the bias
corrected procedure. Figure 6 shows the mean climate change signal (computed with the five-member
ensemble) for bias-corrected meteorological variables. Results show that the climate change signal
(CCS) is similar among datasets for a given period and RCP. For instance, in the case of the 2041–2060
period and RCP 4.5 (rcp45 in Figure 6), the CCS in precipitation ranges from −2.3% to −3% and the
change in temperature is about 2.3 ◦C. The largest change is estimated for 2081-2100 RCP 8.5 (rcp85 in
Figure 6); thus, the CCS in precipitation ranges from −17.5% to −18.9%, while the CCS on temperature
is about 5.9 ◦C. The bias correction procedure may change the climate change signal [39] so it can
be noted that, for a given period and RCP, the evaluated change in precipitation varies slightly in
accordance to the reference data set used.

Despite the similarities in terms of relative change, the absolute values of the future bias-corrected
meteorological variables vary with the meteorological data set considered in the DT method. Figure 7
shows the five-member ensemble mean annual precipitation and temperature over the study basin for
the RCPs and periods considered. From this figure, it can be seen that the lowest bias-corrected future
precipitation is evaluated with data 2, while the highest is estimated with data 4, as in the historic
period (Figure 3a). For example, the precipitation for RCP 85 2041–2060 ranges between data sets from
842 (data 2) to 2136 mm yr−1(data 4), while for the same scenario in 2081–2100 precipitation ranges
from 739 (data 2) to 1890 mm yr−1(data 4). Similarly, the change in the bias-corrected temperature
depends on the source of meteorological data set used, so for RCP 85 2041–2060 the temperature ranges
from 23.5 ◦C (data 2) to 26.4 ◦C (data 1), while for the same scenario in 2081–2100, the temperature
ranges from 27 ◦C (data 2) to 30 ◦C (data 1). These results show the effect of meteorological data set on
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statistical bias correction, based on the main hypothesis of time invariance of the bias, that is, that the
bias in the historical reference period will be the same in future periods [40–42].
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3.4. Climate Change Signal on Hydrological Indicators

In the following step, the calibrated hydrological model was fed with bias-corrected ensemble
climate simulations. Figure 8 shows the mean monthly discharge in reference and future periods as
computed with the hydrological simulations. For the reference period (Figure 8a), the September
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peak is simulated with all the meteorological data sets, with mean discharge values from 383 m3 s−1

to 456 m3 s−1. In this figure, the variability in the hydrological simulations as a result of the use of
the ensemble of climate simulations can be noted. For example, in October, the discharge ranges
from 213 m3 s−1 to 277 m3 s−1 with data 2, and from 222 m3 s−1 to 296 m3 s−1 with data 3; that is, the
discharge values overlap between meteorological datasets. On the other hand, variability in the dry
months is low. Figure 8a also shows that higher values of low flows in the dry season were obtained
with data 2, as observed in the calibration and validation procedure (Figure 5b).

Regarding hydrological simulations 2041–2060 RCP45 (Figure 8b), the change in the September
mean discharge (as compared with reference period) ranges from −19 m3 s−1 (data 3) to −56 m3 s−1

(data 1). The largest change in the September peak flow is evaluated in the horizon 2081-2100 RCP85
(Figure 8e), with values ranging from −252 m3 s−1 (data 3) to −279 m3 s−1 (data 4).
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Figure 9 shows the climate change signal on the OMF indicator as evaluated with each
meteorological data set. The methodology used to evaluate the CCS (see Equation (5)) allows
comparison of the uncertainty related to the meteorological data set to the uncertainty related to natural
variability, which is expressed in the spread of the relative changes on the hydrological indicators.
The median changes in the OMF for the 2041–2060 period range from −11.6% to −20.9% for RCP 4.5,
and from −21.5% to −31% for RCP 8.5, respectively (Figure 9a,b). Moreover, the median CCS evaluated
with data 1 stands out with the highest CCS in all cases, especially for the 2081–2100 period RCP 8.5
(Figure 9d): the CCS median value for data 1 is −63.2%, while the CCS median value ranges from
−41% to −56.9% with the other datasets; additionally, this example shows that uncertainty related to
the dataset implemented is higher than uncertainty associated with the natural variability of climate
simulations. In contrast, in the 2041–2060 period (Figure 9a,b) data 2, data 3, and data 4 the CCS more
closely resemble data 1.
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Figure 9. Climate change signal as computed with Equation (5) for the Overall Mean Flow (OMF).
The central mark in the boxplot is the median.

The CCS in HF2 is depicted in Figure 10. From this figure, it can be seen that the lowest CCS is
evaluated in period 2041–2060 RCP 4.5 (median value from −6.2 to −21.1%, Figure 10a) and the highest
CCS is evaluated in 2081–2100 RCP 8.5 (the median value ranges from −53.8% to −71.8%, Figure 10d).
For this indicator, the most important change in the median CCS is estimated with data 2. For HF10
(Figure 11) the spread of the CCS is outstanding in period 2081–2100 RCP 45 (Figure 11c), ranging from
about −40% to +60% for data 3, which covers the spread of the other boxplots.
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In a subsequent step, a statistical test was performed in order to assess if the CCS from two
datasets could be considered as issued from the same distribution, in order to use either of these
meteorological datasets in the evaluation of the climate change impact on hydrological indicators.

The Wilcoxon test [43] (as computed with Matlab) evaluates if two samples of CCS, obtained from
two different meteorological datasets, are independent samples from identical continuous distributions
with equal medians (the null hypothesis). Table 4 presents the Wilcoxon test results showing the
rejection (or not) of the null hypothesis at a 5% significance level.

Table 4. Results of Wilcoxon test comparing pairs of CCS. The p-value is shown and the shaded area
indicates no rejection of the null hypothesis at significance level of 5%.

Data
1–Data 2

Data
1–Data 3

Data
1–Data 4

Data
2–Data 3

Data
2–Data 4

Data
3–Data 4

OMF
2041–2060

rcp45 <0.001 <0.001 <0.001 0.017 0.815 0.017
rcp85 <0.001 <0.001 <0.001 0.922 0.074 0.107

2081–2100
rcp45 <0.001 <0.001 0.001 0.627 0.876 0.415
rcp85 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

HF2
2041–2060

rcp45 <0.001 0.404 0.332 0.0041 <0.001 0.103
rcp85 0.0137 0.107 0.187 0.001 0.0014 0.741

2081–2100
rcp45 0.0379 0.341 0.180 0.0043 0.0019 0.800
rcp85 0.0416 <0.001 0.0011 <0.001 <0.001 0.268

HF10
2041–2060

rcp45 0.907 0.0088 0.712 0.0043 0.404 0.013
rcp85 0.999 0.0397 0.953 0.0457 0.969 0.071

2081–2100
rcp45 0.938 0.1744 0.831 0.1806 0.892 0.207
rcp85 0.712 <0.001 0.332 <0.001 0.193 0.001

Table 4 shows the results of the CSS pairs comparison. From this table, it can be seen that, for OMF,
the null hypothesis is rejected in all periods and RCPs when the CCS obtained with data 1 (station
data) is compared with the CCS obtained with the other datasets. However, the pair comparisons with
data 2, data 3, and data 4 obtain no rejection for the null hypothesis in several cases when considering
2041–2060 RCP 8.5 and 2081–2100 RCP 4.5. On the other hand, the null hypothesis is rejected for all
comparisons in 2081–2100 RCP 8.5.

For HF2, pairs comparing CCS from data 1 with data 3 and data 4 do not reject the null hypothesis,
except for 2081-2100 RCP 8.5. For HF10, Table 4 shows that in the comparison between data pairs 1–2,
1–4, and 2–4, the null hypothesis is not rejected. The case of HF10 2081–2100 RCP 4.5 is outstanding,
as the null hypothesis is not rejected with any pair combination.
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These results show that for OMF, the CCS obtained from processed gridded data and the reanalysis
is different from the CCS obtained through station data. Results are mixed for high flows, thus, the CCS
obtained with station data is comparable with some of the selected datasets.

4. Discussion

In Mexico, as in other countries, historical meteorological data present issues (such as a low
density of gauging stations or missing data) that hinder their use in hydrological modeling. In that
respect, the interpolated meteorological and reanalysis data could be an alternative source of data to
feed a hydrological model to simulate basin hydrology.

This study evaluates the uncertainty related to the choice of the meteorological data source; firstly,
in the calibration and validation of a hydrological model; secondly, in the bias correction of climate
simulations; and finally, in the evaluation of the impact of climate change on the hydrological indicators.
In particular, four data sources were considered: observations, two gridded interpolated data sets, and
one reanalysis data set.

The evaluation of the meteorological data shows that the interpolated datasets underestimate
precipitation while reanalysis overestimates the observed precipitation. Regarding temperature, all
datasets underestimate the observations. However, our results show a good performance of daily
streamflow with the selected lumped hydrological model (GR4J) with all data sets, except reanalysis
data. Comparison of the optimized parameters of the hydrological model shows that GR4J leads to
different hydrological responses of the basin.

Bias correction of climate simulations was performed using each meteorological data set as proxy
for the historical period. Results show that, for a given RCP and horizon, the relative change signal
(i.e., in percentage) on precipitation and change in temperature is similar as it is conditioned by the
difference between climate simulations in reference and future periods; however, the magnitude of
future precipitation and temperature strongly varies due to differences between meteorological data
sets used in the bias correction procedure.

Evaluation of climate change signal on hydrological indicators shows mixed results: in the case
of overall mean flow, the uncertainty resulting from the meteorological source is greater than the
uncertainty related to natural variability; thus, the use of interpolated and reanalysis data instead of
observations leads to a different estimation of the climate change signal. On the other hand, the results
in high flow indicators show that that climate change signals obtained from observations and the
other data sources are comparable in several cases. Therefore, we must be cautious and evaluate the
processed meteorological data sets before their use in the evaluation of climate change impact on water
resources for the calibration of the hydrological model and as source data in the bias correction of
climate simulations.

5. Conclusions

In this study, the uncertainty related to the choice of meteorological data was evaluated in
the calibration and validation of a lumped hydrological model (GR4J), in the correction of climate
simulations, and in the estimation of the climate change impact on hydrological indicators. Four
datasets were evaluated: station observations, two gridded interpolated datasets, and reanalysis data.
The main findings are:

• The meteorological data sets show underestimation (or overestimation in the case of the reanalysis)
of precipitation and temperature. The hydrological model presents, to some extent, a good
performance in terms of the Nash Sutcliffe Efficiency Coefficient. However, the analysis of the
hydrological model’s optimized parameters shows important differences in their values, which
indicates that the model leads to different representations of the basin’s hydrology.

• The use of the different meteorological data sets in the bias correction of climate simulations lead
to a similar relative climate change signal (CCS, i.e., difference between reference and future
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period), but the magnitude of the estimated precipitation and temperature in the future periods
strongly varies with the choice of dataset.

• The impact of climate change on hydrological indicators is influenced by the different model
parameterization and the magnitude of the bias-corrected variables. The uncertainty related to
the choice of the meteorological dataset was compared with the uncertainty related to the natural
climate variability. Results show that, for the overall mean flow, the use of processed gridded
data leads to a different estimation of the climate change signal. Results are mixed for the 2-year
and 10-year return period high flow; thus, the CCS is, in some cases, similar to the CSS obtained
with observations.

• The results on this work highlight that uncertainty related to meteorological data is not negligible
when compared to natural climate variability; thus, the meteorological datasets should be
evaluated before their use in the calibration of the hydrological model and in the bias correction
of climate simulations for the estimation of the change impact. However, future work should
consider other sources of uncertainty, such as the choice of general circulation model or regional
model, the bias correction procedure, and the hydrological model.
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