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Abstract: Analysis of Spatio-temporal changes in precipitation (Pre) on the land surface of the earth
was the focus of this study. Thiel-Sen median slopes and Modified Mann-Kendall (MMK) test were
utilized to draw inferences. Majority of the regions were identified to show an increasing trend
of annual precipitation except some of the low to mid-latitude regions in Northern hemisphere.
The trends of wet-day frequency (Wet) were found in agreement with precipitation for most of the
regions, but the inverse relationship was found for the subtropical regions of Northern hemisphere.
These changes were examined for the world climate types based on Koppen-Gieger climate classes.
Also, it was tried to find the probability distribution, which best describes the annual precipitation
pattern in different climate types of the world among 21 commonly assumed probability distributions.

Keywords: Modified Mann-Kendall; Sen slope; precipitation; global; Koppen-Gieger;
probability distribution

1. Introduction

Global warming is found to be responsible for the change in long term climate, which is termed as
climate change. Many observed changes in climatic variables are found to be unprecedented before mid
of 20th Century [1]. Climate change is found to be affecting the atmosphere, oceans, snow, and ice cover.
Precipitation patterns across the globe have changed due to global warming [2,3]. Mishra et al. [4]
reported the increase of heatwaves and a decrease in cold waves in the urban areas of the world.
Warming of permafrost was also reported by Biskaborn et al. [5], which might further amplify global
warming. Gudmundsson et al. [6] reported the significant changes in the mean and extreme values of
streamflow across the globe.

Trend estimation is the primary exercise to understand the changes in climate. Trend estimation
involves the computation of two characteristics of the time series, i.e., (i) trend direction and magnitude
and (ii) significance of the trend. Sen slope estimate [7] has been widely used in climate studies to
estimate the direction and magnitude as it is robust and insensitive to the outliers [8–10]. However,
this method cannot be used to find the significance of the trends. So, Mann-Kendall (MK) test [11,12] is
widely used for this purpose. The presence of serial correlation cannot be ruled out in the observed
hydrometeorological data, but most of the researchers computed the significance of trend without
considering the autocorrelation structure of the data [13–17]. Studies have found that the presence
of positive serial correlation affects the ability of the MK test to correctly assess the significance
of the trend [18]. The pre-whitening process has been used in different studies to remove the
autocorrelation [19–21]. Bayazit et al. [22] argued that pre-whitening procedures are only useful when
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there is little to no trend. The pre-whitening results in the loss of some amount of existing trend [23].
MMK (Modified Mann-Kendall) test [24] is widely used to detect the significance of the trend in the
presence of serial autocorrelation as this test considers the effect of serial correlation [25–27]. MMK and
Sen Slope methods were adopted to find the significance of trends in this study.

The precipitation patterns are also not untouched by global warming. The world faced a high
number of extreme weather conditions, including rare events of rainfall in the last decade [28].
The studies have found that the majority of lands may get stronger precipitation extremes than
weaker [29]. Model simulations also suggest a net increase in global precipitation but the distribution
may not be uniform [30]. Feng et al. [31] used high-resolution simulated data to study the global
changes in the amount, intensity, and frequency of precipitation. They found an increase in precipitation
except for latitude 15–40◦ N. The frequency of light and heavy precipitation was found to be increasing.
Effect of climate change on precipitation has been studied largely on the regional scale than global
scale [2,32,33]. Majority of these studies focused on finding the changes in climate extremes [25,34–36].
Raghvendra et al. [35] reported the increase in number and intensity of thunderstorm in the Congo
Basin, Central Africa; however, the net rainfall was found to be decreased. Thomas and Nigam [37]
reported the expansion of Sahara desert, South Africa, and warming trends of Southern regions than
Northern regions. Choudhary et al. [36] detected a rapid decrease in monsoon rainfall in the wettest
place on the earth, North-East India, in the last four decades. The changes in annual total precipitation
directly affect the water budget of the regions and are crucial for maintaining adequate water resources.
So, we limited our study to find the long-term changes in annual precipitation over the landmass of
the earth.

Wet-day frequency is also an important parameter to assess the changes in precipitation patterns
in the regions. It is defined by the number of rainy days at a particular location. This is a good
parameter indicating the length of wet or dry spells. Change in the frequency of extreme events have
been particularly reported in several studies [6,38,39]; however, the wet spells of moderate-intensity
are equally crucial to maintain the water budget of the region. So, in this study, it was tried to find
the relationship of changes in precipitation with a change in the number of wet days to estimate the
patterns of extreme as well as moderate events and to check the probability of flooding or droughts in
different parts of the world.

As global warming is not affecting every region of the world uniformly, in this study, it was tried
to find the changes in precipitation patterns in different climate types of the world. Koppen-Geiger
world map of climate type [40] is a widely adopted climate map to study different climate types [41–43].
The world climate is divided into five major climate types, i.e., Tropical, Arid, Temperate, Cold, and
Polar, represented by A, B, C, D, and E letter, respectively, based on long monthly record (1901–2000)
of temperature and precipitation. This classification is based on the combined effect of precipitation,
temperature, seasonal variations, and extreme weather conditions. Kottek et al. [44] updated the
Koppen climate type world map using gridded climate data from mid of 20th century. Peel et al. [45]
used long term precipitation and temperature data set to update Koppen climate types. Beck et al. [46]
also presented an updated climate type world map for the present day (1980–2016) and projected
future (2071–2100). As it was required to identify the long term changes in different climate types of
the world, the climate type map updated by Peel et al. [45] was considered in this study.

The trends show the behavior of the time series in the time domain, but global warming is not only
affecting the precipitation patterns in the time domain but also in the frequency domain. In this study,
it was tried to find the changes in the frequencies of the precipitation patterns in different locations
using different probability distributions. The knowledge of correct probability distribution resembling
the rainfall patterns is of the matter of eminent significance as the wrong estimation of design rainfall
may lead to either lower/higher estimation, which in turn may cause the failure of hydraulic structures
or an unnecessary increase in the cost. A good review of previous studies by Ye et al. [47] indicated
that majority of the studies related to finding best-fit probability distribution were focused on daily
time scale or extreme events [48–50]. The widely adopted probability distribution to represent the
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daily extreme rainfall patterns are Normal, Exponential, Log-Normal, Pearson, Log-Pearson (III),
Weibull, Pareto, Generalized Gamma, Generalized Extreme Value (GEV), Logistic, Generalized Logistic,
Wakebay, and Kappa. Only a few of the available studies are focused on finding global patterns of
the best-fit probability distribution for precipitation. A review of available studies focusing on fitting
probability distribution to daily extreme precipitations can be found in available literature [51–53].
It has been communicated that GEV III (Freshet distribution) can be best assumed to fit the daily
extreme precipitation. However, it is known that the assumed best-fit probability distribution at
different scale cannot be adopted to represent the frequency of precipitation at the annual scale. A study
focused on finding a probability distribution function (PDF), which may represent global patterns
of annual total precipitation, could not be found. The annual behavior of precipitation patterns is
important to plan the water resources for the future. Extreme events do not generally affect the annual
amount of rainfall, so even if the frequency of extreme events is found to be changing, the water
availability for the year can be managed if the changes in annual precipitation are known. So, in this
study, we tried to find the probability distribution, which can best define the annual precipitation
across the globe. Here, 21 types of widely used probability distributions, which are assumed to be
describing rainfall patterns by different researchers, were used in this study.

The objective of this study was to find the global-scale variations in annual precipitation (Pre)
corresponding to changes in wet-day frequency (Wet) using high-resolution observed data. Changes in
Pre with Wet might be useful to find the frequency of high or low precipitation events for a particular
region. Changes in precipitation have not been analyzed for different climatic regions of the world
earlier. We tried to find the relationship with increase/decrease in intensity of rainfall with the climate
type of the region. Finally, the frequency distribution of annual precipitation patterns was also found
out by fitting different PDFs.

The article is organized in five sections with the background described in Section 1. Study area,
data used, and methodology are described in Section 2. Results are analyzed in Section 3 and discussed
in Section 4, followed by conclusions in Section 5.

2. Materials and Methods

2.1. Study Area and Data

This study covered the entire landmass of the world, excluding Antarctica. Global high resolution
gridded (0.5◦ longitude and 0.5◦ latitude) Pre and Wet data for years 1901 to 2016 provided by Climatic
research unit (CRU) of East Anglia [54] were used in this study.

CRU provides monthly total values for these variables, which are derived from station data
provided by the World Meteorological Organization (WMO) in collaboration with the US National
Oceanographic and Atmospheric Administration (NOAA). Pre is the primary variable of the CRU
dataset and is solely based on observed station data [55]. The half-degree grid cells were defined where
at least one station data was available within 450 km from the center of the grid. Less interpolation
was required for precipitation because of higher station density. Wet is the second variable of CRU
dataset and is derived from Pre using the empirical formula given by New et al. [56]. Wet varies from
zero to maximum number days in a month, as it counts the number of wet days in a month even if the
amount of precipitation is less. The CRU data have been widely used in different hydrological and
climate change impact studies [57–60]. CRU data was earlier compared with similar global datasets,
i.e., University of Delaware (UDEL) (data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,
USA, from their Web site at https://www.esrl.noaa.gov/psd/) and Global Precipitation Climatology
Center (GPCC) [61] and were found consistent.

2.2. Data Preparation and Methodology

The analysis of annual precipitation patterns of 116 years (1901–2016) for more than 57,000
locations (grid points) across the globe has been done. Several quality checks have already been
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adopted during data preparation by CRU, assuring good quality of data. However, it was observed
that some of the grid points (even though having monthly data) of the same annual series were
repeated for several years. The grid points, having such erroneous data, were not considered in this
study. Monthly total ‘Pre’ and ‘Wet’ were converted to annual totals and used for further analysis.
As previously discussed, autocorrelation highly influences the trend component, so the presence of
autocorrelation was checked in the data.

Autocorrelation may be defined as cross-correlation of the time series with itself at defined time
lag. The time lag by ‘k’ times represents the correlation of the series x1, x2 . . . xN−k with the series
xk, xk+1 . . . xN, where ‘N’ is the total number of data points in the time series. Autocorrelation (r) at lag
k for the time series x1, x2 . . . xN is given by

rk =
ck

σ2 (1)

here, rk is the autocorrelation at lag k, ck is the covariance at lag k,

ck =
1
n

n−k∑
i=1

(xi − µ)(xi+k − µ) (2)

and µ, σ2 are mean and variance, respectively.
Autocorrelation is said to be significant if it is out of the range of ± k

√
N

, where k is the value of
standard normal variate at a defined significance level, and N is sample size [62]. A significance level
of 5% is adopted to check the significance of autocorrelation in this study.

The trends were estimated using non-parametric Sen’s Slope estimate. It is the most popular
nonparametric technique for the estimation of a linear trend as it is robust and insensitive to outliers [63].
The parameter Ti is computed as:

Ti =
Xk −X j

k− j
, i = 1, 2, 3 . . .N data points (3)

where Xi and Xk are data at j and k times in time series k > j.
The N values of Ti are arranged in ascending order, and median of the slopes or Sen’s slope (β) is

computed as

β =


T (N+1)

2
if N is odd

T N
2
+T (N+2)

2
2 if N is even

(4)

The positive or negative sign of β indicates rising and falling trend, respectively, and its value
defines the magnitude of the trend. However, the significance of the trend cannot be directly known
by this method. So, the MK test [11,12] is generally used to estimate the significance of the trend.
The significance of trend is calculated using standard normal test static ‘Zc’, which is compared with
standard normal deviate ‘Zs’ at defined significance level ‘α’. The null hypothesis H0 of no trend is
rejected if |Zc| > Zs|(1− α2 )

.

ZcZc =


S−1√
Var(S)

, if S > 0

0, if S = 0
S+1√
Var(S)

, if S < 0
(5)

where S is the MK test static.

S =
N−1∑
j=1

N∑
k= j+1

sgn(Xk −X j) (6)
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here, N is the size of the series, and X j and Xk are data at j and k times in time series k > j. sgn(Xk −X j)

is the signum function which is 1, 0, −1 when Xk < X j, Xk = X j, and Xk > X j, respectively.
The variance of S is calculated as

Var(S) =
N(N − 1)(2N + 5) −

m∑
i=1

ti(ti + 1)(2ti + 5)

18
(7)

here, m is the number of tied groups, and ti is the number of ties of extent i. It has been found that the
presence of serial correlational significantly affects the MK test static Zc [24]. They proposed Modified
MMK test, which is suitable for autocorrelated data. They proposed to apply a correction factor n

n∗s
to

the variance of S

V∗(S) = Var(S)
n
n∗s

=
n(n− 1)(2n + 5)

18
×

n
n∗s

(8)

here, n∗s is the effective number of observations to be accounted for autocorrelation. The correction
factor n

n∗s
is computed as

n
n∗s

= 1 +
2

n(n− 1)(n− 2)
×

n−1∑
k=1

(n− k)(n− k− 1)(n− k− 2)rk (9)

The probability distribution functions (PDF) considered in this study are described in Appendix A.
Many statistical methods are available to find the parameters of probability distribution fitted to
time series, i.e., least square method (LS), method of moments (Mo), maximum likelihood method
(ML), generalized spacing estimator (GS), percentile estimator (PE), method of L-moments (LMo),
etc. [64–66]. Distributions and their parameter estimation methods used in this study are given
in Table 1. Four methods, i.e., LS, ML, Mo, and LMo, were used to estimate the parameters of
probability distributions. These methods are discussed in detail in Appendix B. Goodness of fit tests,
i.e., Chi-Square (CS), Anderson–Darling (AD), and Kolmogorov–Smirnov (KS), were used to fit the
probability distributions and are described in Appendix C.

Table 1. Different Distributions and their parameter estimation methods used in this study.

Distribution Name Parameter Estimation Method

Gamma ML
Gamma_F Mo

Gen. Extreme Value LMo
Gen. Gamma ML

Gen. Gamma_F ML
Gen. Logistic LMo
Gen. Pareto LMo

Gumbel Max Mo
Gumbel Min Mo
Log-Logistic ML

Log-Logistic_F LS
Log-Pearson 3 Mo

Lognormal Mo
Lognormal_F Mo

Normal ML
Pearson 5 ML

Pearson 5_F ML
Pearson 6 ML

Pearson 6_F ML
Weibull ML

Weibull_F LS



Water 2019, 11, 2092 6 of 21

All statistics and test values were produced from software EasyFit (available at http://www.
mathwave.com/easyfit-distribution-fitting.html). EsayFit software was also used to apply Goodness of
fit tests.

3. Results

3.1. Serial Correlation

The lag1 autocorrelation, the significant autocorrelations up to lag10 at 5% significant level for Pre
and Wet are shown in Figure 1a–d. Only a few of the regions showed significant negative autocorrelation.
More than 60% of locations showed significant positive autocorrelation for precipitation, and out of
them, almost 70% were found to be significantly autocorrelated up to lag2. Much more regions (>75%)
indicated significant serial correlation for Wet data. Far Northern regions showed a higher order of
serial correlation than the rest of the world.Water 2019, 11, 2092 7 of 22 
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level, out of which high increasing trend of ~5–11 mm/year was found for ~68% regions. Significant 
decreasing trend, ~5–16mm/year, was detected for ~13% of entire Pre data. So, Pre was found to be 
increasing for the majority of the regions. Westra et al. [15] and Chou et al. [69] also indicated a 
significant increase in annual precipitation for more than two-thirds of the world stations. 

Figure 1. Lag1 autocorrelation and significant autocorrelation up to lag10 of annual Pre (a,b) and Wet
(c,d), respectively. Lag1 autocorrelation for Pre and Wet data (a,c) is divided to show the variation from
lower to higher magnitude in either direction. The autocorrelation close to 0 (up to 0.01, positive or
negative) is marked by cyan color. The darker shades of the green and red show an increasingly higher
amount of negative and positive autocorrelation.

So, it can be observed that the majority of the regions are not free from serial correlation.
The autocorrelation indicates the persistence in the time series, so the positive serial correlation
indicates that the precipitation is following the patterns of previous years in the succeeding years, that
is, if the annual precipitation is decreasing, there is a higher probability of it to be decreasing in coming
years as well and vice-versa [67,68]. However, this statement cannot be fully justified by observing
only serial correlation, so the trends magnitude, direction, and significance were computed.

3.2. Trends

Instead of computing least-square-linear trend using simple linear regression, median slopes were
calculated using Sen Slope method as the later one is robust to outliers. As it was found that the data
was serially correlated and thus simple MK test could not be used to estimate the significance of the
trends, so the MMK test was used which considers the autocorrelation effect on the significance of
trends. The median slope ‘ß’ and Z score ‘Zc’ of the MMK test are shown in Figure 2a–d. The value of
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|Zc| more than or equal to 2.576, 1.96, and 1.645 indicated the significance level of trends at 1%, 5%, and
10%, respectively.Water 2019, 11, 2092 8 of 22 
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Figure 2. Sen’s slope trends and its significance using MMK test for Precipitation (a,b) and Wet-day
frequency (c,d). The presented trends in subplot (a,c) are divided to represent the magnitude of the
trend, that is, the trends close to zero are shown by light shades of green and red (green for decreasing
and red for increasing). The darker shade of the green and red color shows higher trend magnitude.
The legends of subplots (b,d) are divided according to the significance level of MMK tests, i.e., α = 1, 5,
and 10%, standard Z static is ±2.576, ±1.96, and ±1.645, respectively.

More than 46% of Pre data showed significant increasing or decreasing trends at 5% significance
level, out of which high increasing trend of ~5–11 mm/year was found for ~68% regions.
Significant decreasing trend, ~5–16mm/year, was detected for ~13% of entire Pre data. So, Pre
was found to be increasing for the majority of the regions. Westra et al. [15] and Chou et al. [69] also
indicated a significant increase in annual precipitation for more than two-thirds of the world stations.

Significant decreasing trends of Pre were found in the majority of the regions of world largest
deserts, i.e., Sahara at Africa, Arabian at the Middle East, Thar at South Asia, Peruvian and Patagonian
at South America, and Great Basin at North America. It might indicate a further decrease in the
precipitation in the regions, which already were receiving less precipitation. Similar results for the
world arid regions were found in the previous studies [70,71]. The regions of comparatively higher Pre,
such as Northern and North-Eastern states of India—Bhutan and Myanmar, were found to be receiving
lesser Pre, indicating a change in climate in these regions. However, on the contrary, the Pre was found
to be significantly increased in the Great Sandy Simpson desert at Australia. Colder regions of the
worlds like Russia, Europe, Central Asia, North America, and some Southern regions of South America
were found to be experiencing significantly higher precipitation than past [72]. These results are similar
to the model results, which identified the effect of anthropogenic activities on the increase in global
mean precipitation at the regions near high latitudes and decrease in sub-tropical latitudes [73,74].

Increase or decrease in Pre alone cannot signify the extreme events until trends of the number of
wet days are not closely analyzed with trends of precipitation. It was tried to find the relationship
between the trends of Pre and Wet. The trends of Wet (ßWet) and the significance of these trends
using MMK test are shown in Figure 2c,d, respectively. The significant trends of Wet were more or
less similar to the Pre trends for the majority of the regions. The decreasing trend of Wet was found
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mostly in the regions of Africa, Asia, Russia, and Europe, and increasing trends were detected in some
regions of North and South America, Australia, some parts of Europe, and some regions of South Asia.
Lucero et al. [75] also found increasing wet days in Argentina (South America), but no change was
detected in daily rainfall. However, opposite trends of Wet with Pre were found in the regions of North
and East Asia. The Pre was found to be increasing, while the frequency of wet days was detected to
be decreasing. This suggests the increase in high magnitude precipitation spells and decrease in the
wet season.

The ratio of the trend of Pre to the trend of Wet shows the change in Pre with a unit change in Wet.
Different possible combinations of Pre and Wet were made to analyze the results. These combinations
were divided into two major sets, (i) Pre increasing and (ii) Pre decreasing. These major sets were
further divided into four possible cases based on the magnitude and sign of ßPre/ßWet.

Case-1 −1 ≤ ßPre/ßWet ≤ 0

Case-2 0 ≤ ßPre/ßWet ≤ 1

Case-3 ßPre/ßWet < −1

Case-4 ßPre/ßWet > 1

Case-1 and 2 indicate that the magnitude of ßPre is lower than the magnitude of ßWet. As the
trends of Wet were between −0.57 to 0.84 days/years, the trend of Pre lower than ßWet was found to be
insignificant for most of the regions at 10% significance level, so these cases were not presented and
discussed in this article. The variation of a trend in Pre with trends of Wet is shown in Figure 3a,b.

3.2.1. Pre Increasing (ßPre > 0)

The ratio of trends, i.e., ßPre/ßWet, is shown in Figure 3a. Case-3 and 4 are presented by shades of
green and red color, respectively. The regions with dark green color represent a higher rate of increase
in Pre and moderate rate of decrease in Wet, suggesting an increase in the high-intensity precipitation
events. The regions with the high increasing trend with moderate or low increasing Wet are shown by
dark red color, indicating moderate to the high intensity of precipitation events. Most of the regions of
Russia, Central Asia, and Southern Canada were found to be experiencing a higher intensity of Pre
events and longer duration of the dry season.

3.2.2. Pre Decreasing (ßPre < 0)

The ratio of trends, ßPre/ßWet, for the regions, which indicated a decrease in Pre at significance
level ≤10%, is shown in Figure 3b. Regions showing a high decrease in precipitation with low to
moderate increase in wet-day frequency are shown by dark green color. These regions indicate a
slightly higher number of wet spells with low intensity of rainfall. The regions represented by dark
red color denotes a high decrease in precipitation with low to moderate decrease in the number of
wet days, indicating drier season and wet season with lesser precipitation. These climatic conditions
may impose drought-like situations. Some regions of South-East Asia, i.e., Myanmar, North India,
Afghanistan, East and Central Africa, and some coastal regions of Australia, North and South America
were found to be receiving a much lesser amount of precipitation with lesser number of wet spells.

It was also tried to find the relationship between Pre trends in different climates of the world.
Different climate types of the world [45] are shown in Figure 4.
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Figure 3. Relative change in trends of Pre with the trend of Wet. (a) Pre trend positive, (b) Pre trend
negative. The value of ßPre/ßWet close to unity (indicated by light shades of green and red color) is
assumed insignificant as it suggests a lesser amount of Pre trend than Wet. As represented in Figure 2a,c
the magnitude of the ßWet is much lesser than ßPre, so the ßPre/ßWet close to unity (also lesser than
unity) indicates very small Pre trend.
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The falling trend of Pre for climate class ‘BWh’ (represents Arid ‘B’, desert ‘W’, and hot climate
‘h’ type) at 10% significance level was detected except for Australia where an increase in Pre was
detected. This climate type represents the deserts having much lesser Pre, so the regions of North
Africa, Middle East, and South Asia have started receiving lesser precipitation, and the chances of
drought events might get an increase. However, the dry regions of Australia were found to be receiving
higher precipitation. The first letter ‘D’ of the climate class was defined by a cold climate with a
temperature of the hottest month ≥10 ◦C and the temperature of the coldest month ≤0 ◦C. The second
letter ‘f’ represent regions without dry seasons and the third letter a, b, c, d represents hot, warm,
cold summer and very cold winter respectively. More than 70% of cold climate type regions without
dry seasons, i.e., ‘Dfa’, ‘Dfb’, ‘Dfc’, and ‘Dfd’, showed increasing Pre trends at 1% significance level.
So, the cold regions started to be receiving comparatively higher precipitation. The first letter ‘C’ of
climate type represents temperate climate, which was defined by the temperature of the hottest month
≥18 ◦C and the temperature of the coldest month between 0 ◦C–18 ◦C. Decreasing trends in the Pre
were found for temperate regions, which receives comparatively lesser rainfall than other temperate
regions, i.e., climate type ‘Cwa’ (‘w’ for dry winter and ‘a’ for hot summer). Tropical climate type was
represented by the first letter ‘A’ and defined by coldest month temperature ≥18 ◦C. Decreasing trends
of Pre were found at a 5% significance level for most of the Tropical Savannah regions characterized by
‘Aw’, which receives comparatively lesser dry season rainfall.

Generally, it has been found that the regions with high magnitude of increasing trends are more
prone to high-intensity precipitation spells and the regions with high magnitude of decreasing trends
are highly susceptible to receive much lesser precipitation and longer dry seasons. These findings are
fulfilling the criteria of rainfall intensification defined by [34], which refers to the more extreme climate
of longer dry spells and more extreme rainfall.

3.3. Best-Fit Distribution

Three most popular goodness of fit (GoF) tests, i.e., AD, KS, and CS test, were applied to find
the best-fit probability distributions. A significance level of 5% was adopted in this study for GoF
tests. AD test is considered to be best a suitable GoF test because it gives more weights to the tails
of the distribution [76]. CS test is not considered to be high power GoF test [77]. A summary of the
percentage of precipitation data best fitted for a particular probability distribution is given in Table 2.
Best-fit probability distributions for annual precipitation data for the landmass of the world is shown
in Figure 5.

Almost entire Madagascar was found to be best fitted with Log-Logistic (LL) distribution. GEV,
Generalized-Logistic (GL), and LL distributions were best fitted to more than 68% regions of the
world for precipitation data. GEV distribution was mostly best fitted in regions of North America,
Russia, Europe, India, and Eastern China. Most of the regions of Northern and Eastern Russia,
Mongolia, Northern and Central China, Bangladesh, Indonesia, Middle East, Madagascar, Central
Africa, Northern South and North America, and Northern Greenland showed more similarity with GL
and LL distributions.

The best-fit distributions for different regions showed significant changes in precipitation patterns
that might be divided into two groups.

3.3.1. Regions with Significant Decreases in Annual Precipitation

Pre patterns for the arid lands of North Africa showed similarity with GEV and GL distributions.
The regions of the Middle East showed agreement with the GL and LL distributions. GL distribution
was found to be the best fit for eastern regions of India and Myanmar. Regions of Greenland and South
America showing significant decreasing trend were found to follow the frequency of GEV distribution.
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Table 2. Percentage distribution of best-fit probability distribution with different tests.

Distribution AD KS CS

Gamma 1.2% 2.3% 2.6%
Gamma_F 1.4% 2.4% 3.1%

GEV 23.0% 14.7% 6.8%
Gen. Gamma 6.5% 5.6% 4.7%

Gen. Gamma_F 1.0% 2.3% 3.0%
Gen. Logistic 27.2% 16.3% 10.3%
Gen. Pareto 0.5% 1.7% 0.2%

Gumbel Max 0.1% 1.6% 5.2%
Gumbel Min 0.0% 0.2% 1.8%
Log-Logistic 17.9% 20.3% 10.7%

Log-Logistic_F 0.2% 2.8% 6.7%
Log-Pearson 3 2.9% 2.9% 3.0%

Lognormal 2.1% 2.3% 2.1%
Lognormal_F 0.8% 2.7% 4.0%

Normal 3.8% 4.1% 6.7%
Pearson 5 2.9% 2.8% 2.4%

Pearson 5_F 0.4% 1.7% 4.7%
Pearson 6 1.6% 1.9% 2.1%

Pearson 6_F 0.5% 1.3% 2.3%
Weibull 4.9% 5.2% 4.6%

Weibull_F 0.7% 4.3% 7.4%
#N/A 0.3% 0.5% 5.6%
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3.3.2. Regions with Significant Increases in Annual Precipitation

Most of the mid to high latitude regions showed significant increasing trends in annual Pre.
These regions were found to be the best fit with GEV and Generalized Gamma (GG) distributions.
High latitude regions of Southern hemisphere were found to be showing similarity with GEV, GG, and
LL distributions.
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4. Discussion

The hydrological cycle is changing due to climate change at a global scale, and the precipitation
is one of the most vulnerable hydrometeorological variable [78]. In this study, a net increase in total
annual precipitation for the last century was observed in more than two-third landmasses of the world,
supporting the findings of other previous studies [15,69]. However, large variations in the seasonal
patterns were observed, including shifting of monsoon season [79], increase in the frequency of extreme
events, i.e., floods, droughts, etc. [28,80]. The present study also indicated a decrease in moderate
precipitation events and an increase in extreme precipitation with a decreasing number of rainfall
events, leading to the long spell of dry summers and short spell of the high rainfall season. However,
the inference of “dry become drier and wet become wetter” [73,81] could not be justified in the present
study, as some arid regions showed an increase in the precipitation events (arid regions in Australia),
while others showed an increase in the desert land, supporting the findings of Greve et al. [82].

As long-term prediction of rainfall data is not feasible deterministically, the assumed probability
distribution functions are fitted to find the magnitude and/or frequency of precipitation [83].
The prediction of precipitation is required for efficient water-resource management and to optimize
the infrastructure designs. A wide range of PDF was adopted, in this study, to find the distribution
which might best describe the precipitation. GEV, LL, and GL PDFs were best fitted to more than
two-thirds of the locations, indicating that these distributions might be adopted for annual rainfall
predictions rather than general events. Similar studies also indicate that the GEV distribution may
be the best choice for the representation of precipitation [84]. It is recommended to find the best-fit
distribution among a variety of PDFs to predict the rainfall at a local scale. The findings of this study
are limited to only annual total precipitation, which may differ if the temporal scale is changed, such
as daily, seasonal, extreme events, etc.

5. Conclusions

The present study assessed the changes in annual Pre patterns and found the simple probability
model that could best describe the annual Pre patterns in different Koppen-Giger world climate types
across the globe. Based on this study, the following can be inferred:

• The relationship of the trends of Pre with Wet showed an increase in the intensity of Pre and
longer duration of dry seasons for most of the cold regions in mid to high latitude regions.

• Drought-like conditions, i.e., low-intensity wet spells and long dry spells, were found to be
prevailing in the arid and semi-arid regions of the world.

• The best-fit probability distribution for the regions showing significant decrease or increase (at a
5% significance level) in annual Pre indicated that GL and GEV distributions were two competent
models followed by LL distribution.

• Widely considered probability distributions by different climatologists, i.e., Gamma, Log-Normal,
Extreme Value and 3, and Generalized Pareto distributions, were best fitted to less than 1%
(individually) of global regions, while Normal and Log-Pearson 3 distributions best fitted to 2–5%
regions only. So, the authors conclude that instead of simply assuming the probability distribution
for statistical analysis and forecasting long-term precipitation at any location of the world, either a
wide range of PDFs should be fitted to data to find the best-fit PDF or simply the results of this
study may be referred.

This study may be helpful for not only the researchers but also planners to predict the annual
behavior of precipitation patterns across the globe, and this could help in designing the economic
infrastructure and saving lives.
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Appendix A. PDF of Distributions

For a time series x1, x2, . . . xn, where n represents the number of data points in the time series

Default z =
x− µ
σ

(A1)

Appendix A.1. Generalized Gamma, Generalized Gamma_F, Gamma and Gamma_F

Four-Parameter Generalized Gamma distribution PDF is given by

f (x) =
k(x− γ)kα−1

βkαΓ(α)
exp

−( (x− γ)β

)k (A2)

here, k, α, β and γ are shape, shape, scale, and location parameters, respectively.
Special Cases:

γ = 0 yields three-parameter Generalized Gamma distribution, Generalized Gamma_F
k = 1 yields three-Parameter Gamma Distribution
γ = 0 and k = 1 yields two-parameter Gamma distribution, Gamma_F

Appendix A.2. Generalized Extreme Value Distribution (GEV)

f (x) =

 1
σ exp

(
−(1 + kz)

−1
k

)
(1 + kz)−1− 1

k

1
σ exp(−z− exp(−z))

k , 0
k = 0

(A3)

here, k, σ and µ are shape, scale, and location parameters, respectively. If k < 0, GEV is equivalent to
Extreme Value Type III; if k > 0, it is equivalent to EV Type II; if k = 0, GEV is equivalent to EV Type
I distribution.

Appendix A.3. Gumbel Max and Gumbel Min

Gumbel Distribution is a special case of Generalized Extreme Value Distribution with parameter
k = 0

Gumbel Max f (x) =
1
σ

exp(−z− exp(−z)) (A4)

Gumbel Min f (x) =
1
σ

exp(z− exp(−z)) (A5)

Appendix A.4. Generalized Logistic Distribution (GL)

f (x) =


(1+kz)(−1− 1

k )

σ

(
1+(1+kz)

−1
k

)2 k , 0

exp(−z)
σ(1+exp(−z))2 k = 0

(A6)

here, k, σ and µ are shape, scale, and location parameters, respectively.
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Appendix A.5. Log-Logistic and Log-Logistic_F

f (x) =
α
β

(
x− γ
β

)α−1(
1 +

(
x− γ
β

)α)−2

(A7)

here, α, β and γ are shape, scale, and location parameters, respectively. γ = 0 yields two-parameter
Log-Logistic distribution, Log-Logistic_F.

Appendix A.6. Normal

f (x) =
exp

(
−

1
2

( x−µ
σ

)2
)

σ
√

2π
(A8)

here, σ and µ are scale and location parameters, respectively.

Appendix A.7. Lognormal and Lognormal_F

f (x) =
exp

(
−

1
2

(
ln(x−γ)−µ

σ

)2
)

(x− γ)σ
√

2π
(A9)

α, µ and γ are scale, location, and shape parameters, respectively. γ= 0 yields two-parameter Lognormal
distribution, Lognormal_F.

Appendix A.8. Log-Pearson Type III

f (x) =
1

x
∣∣∣β∣∣∣Γ(α)

(
ln(x) − γ

β

)α−1

exp
(
−

ln(x) − γ
β

)
(A10)

here, α, β and γ are shape, scale, and location parameters, respectively.

Appendix A.9. Pearson-5 and Pearson-5_F

f (x) =
exp

(
−β

(x−γ)

)
Γ(α)β((x− γ)/β)(α+1)

(A11)

here, α, β and γ are shape, scale, and location parameters, respectively. γ = 0 yields two-parameter
Pearson Type 5 distribution, Pearson-5_F.

Appendix A.10. Pearson-6 and Pearson-6_F

f (x) =
((x− γ)/β)α1−1

βB(α1,α2)(1 + (x− γ)/β)α1+α2
(A12)

here, α1,α2, β and γ are shape, shape, scale, and location parameters, respectively. γ = 0 yields
three-parameter Pearson Type 6 distribution, Pearson-6_F.

Appendix A.11. Weibull and Weibull_F

f (x) =
α
β

(
x− γ
β

)α−1

exp
(
−

(
x− γ
β

)α)
(A13)
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here, α, β and γ are shape, scale, and location parameters, respectively. γ = 0 yields two-parameter
Weibull distribution, Weibull_F.

A more detailed description of this distribution can be found in previous studies [65,85,86].

Appendix B. Parameter Estimation Methods

Appendix B.1. Method of Least-Squares (LS)

For a time series x1, x2 . . . xn, where n represents the number of data points in the time series,
a probability distribution, whose cumulative distribution function (CDF) is given by F(θ), is being
fitted. Let λ1,λ2 . . . λk are the parameters of the fitted probability distribution. To estimate the values
of parameters, the squared difference of theoretical and empirical CDF is minimized.

The empirical cumulative distribution function (ECDF) is defined as

F(Xi) =
Ri

N + 1
, i = 1, 2 . . . n (A14)

here, Ri is rank of variable, Xi is arranged in ascending order, and N is the total number of data points
in time series.

The error between theoretical and empirical CDF is given by

E =
n∑

i=1

{
F(θ) − ECDFXi }

2 (A15)

Minimization of the error gives the best choice of the fitted distribution parameters.
Partial derivatives of the error with respect to each parameter generate different sets of equations.
These equations are used to find the distribution parameters.

∂E
∂λ1

=
∂E
∂λ2

= . . . =
∂E
∂λk

= 0 (A16)

Appendix B.2. Maximum Likelihood Method (ML)

The principle of maximum likelihood says that for a given dataset, find the model parameter(s) in
such a way that dataset is most likely. The likelihood of true model parameters (given the data set) is
the same as the probability of getting the data given the true model parameter value.

L(λ
∣∣∣∣xi) =

∏
f (xi

∣∣∣∣λ) (A17)

here L is the likelihood of parameter λ, and
∏

f (xi
∣∣∣λ) is the product of probabilities of getting xi.

Equating the partial derivative of the likelihood function (with respect to each parameter
λ1,λ2 . . . λk) to zero gives the model parameters values.

Maximization of likelihood function gives the best model parameter. As it is difficult to maximize
the likelihood function, so maximization of log-likelihood is done.

ln L(λ
∣∣∣∣xi) =

∑
ln f (xi

∣∣∣λ) (A18)

Appendix B.3. Method of Moments (Mo)

In this method, the parameters are estimated by equating sample and theoretical moments.
E
[
(X − µ)k

]
is the kth theoretical moment of the distribution about the mean, k = 1, 2 . . .

Mk =
1
N

n∑
i=1

(
Xi −X

)k
is the kth sample moment about the mean, k = 1, 2 . . .
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First, second, third, and higher-order sample moments are equated to respected higher-order
theoretical moments until we get the required number of equations to estimate the parameters.
Parameters values for different distributions are estimated by solving the equations [86].

Appendix B.4. Method of L-Moments (LMo)

Probability weighted moments (PWM) are first calculated to estimate the distribution parameters
using the method of L-moments. Data is first arranged into ascending order to calculate PWM.
PWMs are given by [64,86].

β0 =
1
N

N∑
i=1

Xi (A19)

β1 =
1
N

N∑
i=1

(i− 1)
(N − 1)

Xi (A20)

β2 =
1
N

N∑
i=1

(i− 1)(i− 2)
(N − 1)(N − 2)

Xi (A21)

β3 =
1
N

N∑
i=1

(i− 1)(i− 2)(i− 3)
(N − 1)(N − 2)(N − 3)

Xi (A22)

where N is the data size, i is the rank of data, Xi is arranged in ascending order.
L-Moment equation based on PWMs is defined by flowing equations [76].

L-Mean = λ1 = β1 (A23)

L-Scale = λ2 = 2β2 − β1 (A24)

λ3 = 6β3 − 6β2 + β1 (A25)

λ4 = 20β4 − 30β3 + 12β2 − β1 (A26)

L-Skewness = τ3 =
λ3

λ2
(A27)

L-Kurtosis = τ4 =
λ4

λ2
(A28)

L-CV(coefficient of L-Variation) = τ =
λ2

λ1
(A29)

The distribution parameters can be found by using different equations of parameter estimation
based on L-moments [65,86].

Appendix C. Goodness of Fit Tests

The goodness of fit tests measure the closeness of fitted distribution to the data with a theoretical
probability distribution. Following three goodness of fit tests are most commonly used:

Appendix C.1. Anderson–Darling Test (AD Test)

The AD test compares the observed CDF of the data with expected CDF for a particular probability
distribution. This test is powerful than the KS test because it gives more weights to the tails. The AD
Test statistic (A2) is

A2 = −n−
1
n

n∑
i=1

(2i− 1)[ln F(Xi) + ln(1− F(Xn−i+1))] (A30)
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The null hypothesis (H0) for the test states that the data follow the particular distribution, and the
alternate hypothesis defines that the data don’t follow the specified distribution. The null hypothesis is
rejected if the test is a statistic, and A2 is greater than the critical value at a defined significance level α.

Appendix C.2. Kolmogorov–Smirnov Test (KS Test)

This test measures the largest vertical distance between empirical CDF (ECDF) of the data and the
theoretical CDF of the particular distribution. For a time series, where n represents the number of data
points in time series, the ECDF is given by

Fn(x) =
1
n
[Number of Observations ≤ x] (A31)

The KS test statistic (D) is defined as

D = max
(
F(xi) −

i− 1
n

,
i
n
− F(xi)

)
, i = 1, 2 . . . n (A32)

The null hypothesis (H0) states that the data follow the specified distribution. The null hypothesis
is rejected if D is greater than the critical value at a defined significance level.

Appendix C.3. Chi-Squared Test (CS Test)

This test compares the observed frequency (Oi) of the data with expected frequency (Ei) of the
particular distribution at different bins. The CS test statistic χ2 is defined as

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei
(A33)

Ei = F(x2) − F(x1) (A34)

here, F(x1) and F(x2) are CDF values of the particular probability distribution for a bin limit x1 and x2.
The null hypothesis (H0) states that the data follow the specified distribution. The null hypothesis

is rejected if χ2 value is more extreme than the critical value of χ2 at a specified significance level.
The critical value of χ2 is found from the standard tables of χ2 for specified significance levels and
k − 1 degrees of freedom.

The data can be binned into groups of equal probability or equal width. The former approach is
better since it handles the peak data effectively. This test is not considered a high power statistical test
for goodness of fit [77].
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