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Abstract: Support vector machine (SVM) and maximum entropy (MaxEnt) machine learning
techniques are well suited to model the habitat suitability of species. In this study, SVM and
MaxEnt models were developed to predict the habitat suitability of Juniperus spp. in the Southern
Zagros Mountains of Iran. In recent decades, drought extension and climate alteration have led to
extensive changes in the geographical occurrence of this species and its growth and regeneration
are extremely limited in this area. This study evaluated the habitat suitability of Juniperus through
spatial modeling and predicts appropriate regions for future cultivation and resource conservation.
We modeled the natural habitat of Juniperus for an area of 700 ha in Sepidan Area in the Fars province
using (1) data regarding the presence of the species (295 samples) collected through field surveys and
GPS, (2) habitat soil information and indices derived from 60 soil samples collected in the study area,
and (3) climatic and topographic datasets collected from various sources. In total, 15 conditioning
factors were used for this spatial modeling approach. Receiver operator characteristic (ROC) curves
were applied to estimate the accuracy of the habitat suitability models produced by the SVM and
MaxEnt techniques. Results indicated logical and similar area under the curve (AUC)-ROC values for
the SVM (0.735) and MaxEnt (0.728) models. Both the SVM and MaxEnt methods revealed a significant
relationship between the Juniperus spp. distribution and conditioning factors. Environmental factors
played a vital role in evaluating the presence of Juniperus sp. as Max and Min temperatures and
annual mean rainfall were the three most important factors for habitat suitability in the study area.
Finally, an area with high and very high suitability for the future cultivation of Juniperus sp. and for
landscape conservation was suggested based on the SVM model.

Keywords: Juniperus sp.; habitat suitability mapping; support vector machine; maximum entropy;
ecological landscape

1. Introduction

Habitat and biodiversity loss are global concerns related to climate change—especially
drought—and serve as an enormous warnings for the future [1–3]. Based on a continuous rate
of global warming, a temperature increase of ~4 ◦C is anticipated in tropical zones and a mean global
temperature increase of ~2.5 ◦C is anticipated by 2100 AD [4,5], which, in turn, changes the habitat
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of species. Conservation of natural resources and ecological landscapes is a very important measure
to combat the deleterious impact of climate change on ecosystems. Habitat suitability assessment is
a valuable modeling approach that can be used to predict the appropriate conditions for cultivating
plants to help prevent habitat demolition and biodiversity degradation [6–8]. Furthermore, modeling
and habitat mapping are effective and applicable techniques for assessing the relationship between
environmental factors and the environment, creating an ecological landscape with high biological
diversity, and protecting the natural ecosystem [6,9,10]. Statistical modeling and geographic information
systems (GIS) have been widely used in recent years to evaluate the ecological theories in the field
of ecosystem and resource conservation and to predict suitable regions for future cultivation in
accordance with climate change [8,11,12]. Maximum entropy (MaxEnt) [13] and support vector
machines (SVMs) [14,15] are flexible and very powerful techniques. MaxEnt is a machine learning
algorithm with a high capability in artificial fitting rules or functional connections (e.g., nonlinear
relation) according to appearance information, usage of species’ presence, and background data for the
prediction of species distribution and habitat suitability [8,16–18]. The MaxEnt algorithm is applied to
detect the maximum entropy distribution likelihood and is used to forecast the possible distribution of
a target species according to its maximum entropy under different conditions. In addition, MaxEnt can
be used with limited distribution data and its classifications are created using only highly accurate
presence information [13,16]. SVMs are generally controlled classifiers, which require training samples,
and they are not relatively susceptible to training sample size [19,20]. Generally, the self-adaptability,
rapid learning speed, and insensitivity to training size make the SVM a reliable method for the intelligent
processing of remote sensing data [19–21]. Therefore, the SVM algorithm has the deterministic learning
features of nonparametric data, and its high accuracy makes it an important and pleasant tool for
habitat suitability mapping with an impressive predictive accuracy [22–26]. MaxEnt and SVMs yielded
a good performance with the original data, indicating their sufficient regulation of multicollinearity in
spatial distributions studies [25,27]. Their suitability for the assessment of species distribution and
habitat suitability models has led them to become popular methods for evaluating habitat requirements
in recent years. Both methods are applicable for predicting distribution patterns of plants and assessing
their habitat suitability [6,7,15,28,29], biodiversity in the natural landscape [30,31], and the distribution
pattern of living creatures [18,32,33]. Genus Juniperus is a coniferous plant with a variety of species
occurring in the cool and temperate zones of the Northern Hemisphere’s mountainous regions. In recent
years, drought extension and climate change have impacted the native habitat of juniper in all regions,
and many habitats of the Juniperus species are threatened around the world [34–39]. Some species of
juniper trees are distributed in Iran, with a geographical distribution throughout different regions.
In Iran, the north of the Alborz Mountain, the northeast of Kopet Dāg Mountain, the west and southwest
of Zagros Mountain, and the south of Jebale-e-Barez Mountains are recognized as natural habitats
of Juniperus [40–42]. The main objective of the current study was mapping the habitat suitability of
Juniperus spp. based on presence data of the species in its natural habitat using two machine learning
techniques, namely SVM and MaxEnt. The second objective was to compare the performance of two
prediction approaches to identify patterns and determine the models’ capacity for recognizing and
analyzing the habitat suitability of Juniperus spp. The graphical outputs of quantitative data depicting
the natural habitat of Juniperus in Sepidan Area may be used in the decision-making process for
landscape planning, i.e., to detect suitable habitats for future cultivation, and for resource conservation
through habitat optimization, in particular, considering the importance of environmental factors for
species conservation.
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2. Materials and Methods

2.1. Study Area

The study area is located in the Sepidan Area of the Fars province. This area contains approximately
700 ha of the natural habitat of juniper and is located in Southern Iran (Figure 1). As part of the Zagros
mountain range, the studied area has a moderate climate, distinctive seasons, and abundant rainfall
(http://www.irimo.ir). Long-term annual average temperature and rainfall are 12–13 ◦C and 500–550 mm,
respectively. Topographically, the elevation of Sepidan Area ranges from 2183 to 2830 m a.s.l. according to
the digital elevation model (DEM) of the study area, while slope degrees range from 0 to 73◦.
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2.2. Ecology of Juniperus Habitat in Southern Iran

Juniperus species is an evergreen tree with habitats distributed in dry and semi-dry, cold climates
with moderate summer temperatures and an annual rainfall of about 400 mm in the high-mountain
environments of the Irano—Turanian region [43,44]. Drought extension, climate change, human activity
(fuelwood), and overgrazing in the past decades have led to a recession of Juniperus habitats.
Today, the remaining habitats of juniperus—an endangered species—are in scattered spots [44].

2.3. Methodology

To generate habitat suitability maps, the current study was conducted in five main phases,
(i) creating a species distribution inventory map of Juniperus spp. in their natural habitats, (ii) dataset
preparation, (iii) multicollinearity analysis of different independent variables, (iv) habitat suitability
modeling using MaxEnt and SVM models, and (v) validation and selection of the best model.

2.3.1. Creating a Species Distribution Inventory Map of Juniperus spp. in its Natural Habitats

To create a species distribution inventory map, we first identified the natural habitats of the
Juniperus spp. in the Sepidan Area. Next, we registered the location of 295 samples of this species in
700 ha of the studied site using extensive field surveys and a Handy GPS app Android (version 32.6,
https://www.binaryearth.net/HandyGPS/index.php). We then selected 70% (206 trees) of the identified
samples for modeling and used the remaining 30% (89 trees) to validate two machine learning models
using a random selection method [45]. This selection was conducted using geospatial modeling
environment (GME) tools in ArcGIS 10.6.1 (ESRI, Redlands, CA, USA).

2.3.2. Multicollinearity Analysis among Independent Variables

Next, we conducted a collinearity test among 15 conditioning factors, including topographical,
climatic, and soil data, using two indices. These indices were VIF (variance inflation factor) and
tolerance (T). According to O’Brian [46], when VIF is greater than or equal to five and T is lower
than 0.1, then collinearity exists among independent variables. This status can decrease the accuracy
of models.

2.3.3. Dataset Preparation

Our literature review revealed that different topographical, climatic, and soil data are required
to evaluate a species habitat model [12,47–51]. Therefore, we selected fifteen factors that affect
habitat suitability to model the juniper species habitat, including elevation, slope degree, aspect,
profile and plan curvatures, topographic wetness index (TWI), annual mean rainfall, distance to
streams, distance to urban areas, annual mean Min/Max temperatures, and soil indices such as pH,
electrical conductivity (EC), presence of clay, and organic matter (OM). We extracted topographical
features, such as slope, aspect, plan and profile curvatures, elevation, and TWI, from ALOS-DEM
with 12.5 m × 12.5 m resolution (Figure 2A–F). This DEM was downloaded from the ALOS PALSAR
(The Phased Array type L-band Synthetic Aperture Radar) satellite website (https://vertex.daac.asf.
alaska.edu/). Furthermore, we obtained climate data, including annual mean rainfall and Min and Max
annual mean temperatures (Figure 2G–I), from Fars Meteorological Bureau (http://www.farsmet.ir).
In terms of soil data, we collected 60 soil samples from the study area in a depth of 0–30 cm to
prepare the soil feature maps. These samples were then sent to the Shiraz University Laboratory,
where the values of pH, EC, organic matter, and percentage of clay were measured for each sample.
We then applied the inverse distance weight (IDW) interpolation method to create soil feature maps
(Figure 2J–M). In addition, distance to streams and distance to urban areas were constructed from
the topographical map at a scale of 1:25,000 (Figure 2N–O). A description of these habitat suitability
conditioning factors is shown in Table 1.

https://www.binaryearth.net/HandyGPS/index.php
https://vertex.daac.asf.alaska.edu/
https://vertex.daac.asf.alaska.edu/
http://www.farsmet.ir
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Figure 2. Conditioning factor maps of the study area: slope (A), aspect (B), plan curvature (C), profile
curvatures (D), elevation (E), topographic wetness index (TWI) (F), rainfall (G), Min temperature (H),
Max temperature (I), pH (J), electrical conductivity (EC) (K), organic matter (L), percentage of clay (M),
distance to stream (N), and distance to urban (O).

Table 1. Habitat suitability conditioning factors in the present study.

Category Conditioning Factors Data Scale

Topographic factors

Slope degree Continuous
Aspect Categorical (5 classes)

Plan curvature Continuous
Profile curvature Continuous

Elevation Continuous
TWI Continuous

Climatic factors
Rainfall Continuous

Min temperature Continuous
Max temperature Continuous

Soil factors

pH Continuous
EC Continuous

Clay Continuous
Organic matter Continuous

Environmental factors
Distance to stream Continuous
Distance to urban Continuous
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2.4. Habitat Suitability Spatial Modeling

2.4.1. Maximum Entropy (MaxEnt) Model

To model the species habitat using the MaxEnt model, we first downloaded MaxEnt software
version 3.4.0 from a portal (https://biodiversityinformatics.amnh.org/open_source/maxent/), and used
it to predict the Juniperus habitat suitability. The MaxEnt model has been used to estimate the likelihood
of species livability based on presence data and randomly generated background points to detect
the maximum entropy distribution [7,8,11,12]. Entropy is the property that is well-known as a link
between data and information. The maximum entropy model led to greater utilization of data
entropy, allowing us to explore and extract information and develop unexpected outcomes [45,50].
The MaxEnt model is an advantageous approach to simulating habitat suitability because it can
be used for presence-only data with a small sample size and works very well for inadequate or
incomplete data [48,52]. Moreover, environmental layers in both categorical and continuous format can
be used by MaxEnt, and its likelihood is correct, constant, and reliable even if the sample size is small.
Also, its capability of creating a habitat suitability map with simple commentary and high explicit
result is useful for future species cultivation and conservation programs [49,52,53]. We assessed the
relative importance of conditioning factors using the Jackknife test [12,13].

2.4.2. Support Vector Machine (SVM) Model

The support vector machine (SVM) model is a controlled machine learning system, which is used
to predict habitat suitability with remote sensing information, and is applicable for handling small data
samples [19]. The SVM model, as a binary classifier, is used to optimize algorithms to determine the
optimal hyperplane of two separate classes [54]. Generalization of limited training samples is a general
restriction in remote sensing, and SVMs are a well-suited model for generalizing the limited samples
in remote sensing applications [15,19,24]. The SVM was used to enhance the accuracy of predictions
while avoiding the drawbacks of overfitting associated with learning algorithms based on statistical
and optimization theories [15,19,55]. The SVM is a desirable model due to its superior experimental
function in comparison to artificial neural network functions. The training process of the SVM is easy
and avoids overfitting bugs, and the model can be applied as a proper algorithmic approach for big
data and to detect the preeminent trade-off between overfitting and over generalization [19].

2.5. Validation of Habitat Suitability Maps (HSMs)

We used the receiver operator characteristic (ROC) curve to validate the HSMs that were created
using two machine learning methods, as mentioned before. In the ROC method, the cumulative
percentage of the suitability classes is located on the X-axis, versus the cumulative percentage of the
training set within those classes on the Y-axis [45,56]. ROC curve analyses have been extensively used
in modeling studies to assess binary classifications and evaluate the diagnostic accuracy of an event
occurrence [57,58]. Moreover, the ROC method has a graphical display with a high discrimination
capability that depicts sensitivity estimates (probability of a true positive) versus one minus specificity
(probability of a false positive) of an occurrence for all possible threshold values, and it is an effective
method for modeling the anticipated distribution of a plant species [58,59].

3. Results

3.1. Collinearity of Conditioning Factors

Results of the multicollinearity test of independent variables are shown in Table 2. These results
indicate that the lowest T and highest VIF for elevation are 0.172 and 5.803, respectively. Therefore, in this
research, there is no multicollinearity among the effective independent factors.

https://biodiversityinformatics.amnh.org/open_source/maxent/
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Table 2. Multicollinearity of the effective factors in the study area.

Model
Unstandardized

Coefficients
Standardized
Coefficients t-statistics Sig.

Collinearity
Statistics

B Std.
Error Beta Tolerance

(T) VIF

(Constant) −149.246 69.238 −2.156 0.032
Distance to urban 6.382 × 10−5 0.000 0.092 0.988 0.324 0.235 4.253

TWI 0.029 0.016 0.119 1.799 0.073 0.469 2.133
Slope degree 0.007 0.003 0.110 1.892 0.059 0.612 1.634

Rainfall 0.039 0.018 0.119 2.174 0.030 0.685 1.460
Distance to Stream 0.000 0.000 0.084 1.401 0.162 0.574 1.743
Profile curvature −0.029 0.034 −0.046 −0.869 0.385 0.728 1.374
Plan curvature −0.006 0.041 −0.009 −0.148 0.882 0.623 1.604

pH −0.453 0.379 −0.069 −1.194 0.233 0.626 1.598
Organic matter 0.039 0.027 0.089 1.451 0.148 0.543 1.842

Min temperature −11.712 3.311 −0.252 −3.537 0.000 0.407 2.459
Max temperature 10.670 3.435 0.205 3.107 0.002 0.473 2.115

EC −0.170 0.273 −0.038 −0.623 0.533 0.541 1.848
Elevation 0.000 0.001 −0.063 −0.580 0.562 0.172 5.803

Clay 0.013 0.009 0.082 1.444 0.150 0.646 1.549
Aspect 0.009 0.023 0.019 0.389 0.697 0.862 1.160

3.2. Implementation of MaxEnt and SVM Models

Subsequent to the models’ implementation, we prepared the HSMs using two machine learning
methods and categorized them into five suitability classes, namely, very low, low, moderate, high, and very
high according to the natural breaks (jenks) classification technique [45,60–62]. According to the created
habitat suitability maps, the examined models showed different patterns in regard to habitat suitability
area (Figure 3). The SVM model achieved the highest areal percentage of the very high suitability class
(36%), whereas the MaxEnt model achieved the highest areal percentage of the very low suitability class
(25%) (Figure 4). The predicted percentage and area for each habitat suitability class within each model are
presented in Figure 4a,b. Therefore, the results of the MaxEnt and SVM comparison showed a significant
difference between the models regarding the anticipated suitability classes and the percentage of predicted
area in two very low and very high classes (Figure 4a). The area of each suitability class was determined,
and the results indicate that the very high class of the SVM model covers the largest area; furthermore,
the predicted area for the very low and very high classes significantly differs among the models (Figure 4b).
However, there is no significant variation between the models regarding the percentage and area in the
low, moderate, and high suitability classes (Figure 4a,b).Water 2019, 11, x FOR PEER REVIEW 10 of 17 
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3.3. Importance of Effective Factors

We assessed the relative importance of the effective factors with the Jackknife variance estimation
method for the area under the curve (AUC), and the analysis results are shown in Figure 5. According to
the results of the relative importance test, the Max and Min temperature factors are deemed most
important for HSM, followed by annual mean rainfall, distance from urban area, TWI, distance
to streams, slope degree, clay percentage, organic matter, elevation, profile curvature, EC, aspect,
plan curvature, and pH (Figure 5).Water 2019, 11, x FOR PEER REVIEW 11 of 17 
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3.4. Validation of MaxEnt and SVM Models

We validated the Juniperus habitat suitability maps using the ROC curve for both the SVM and
MaxEnt models. Figure 6 depicts the validation results of both models. The area under the curve (AUC)
value was used to assess the SVM and MaxEnt models separately and in comparison. According to
the AUC values of SVM (0.735) and MaxEnt (0.728), both models suggested a logical and satisfactory
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output for the prediction of Juniperus habitat suitability (Figure 6). Furthermore, there are no significant
differences between the two approaches for evaluating the species’ habitat suitability.
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4. Discussion

Habitat fragmentation has negative effects on biodiversity. Therefore, the conservation and
restoration of the habitat system is the main objective in future conservation scheduling [63].
Assessing the effective factors of natural habitat and habitat mapping are crucial for enforcing
useful acts. Generally, in the evaluation of habitat suitability, multicollinearity of effective factors
as a negative parameter increases the extra noise in all the models [8,64,65]. In this study, however,
no multicollinearity was detected among any of the climatic, environmental, and soil condition
variables used as conditioning factors for the Juniperus habitat suitability model.

MaxEnt and SVM have been widely used for modeling the habitat suitability of
species [8,10,15,48,66]. Therefore, recent and future occurrences of species can be quickly and easily
evaluated using MaxEnt [67]. Moreover, Mollalo et al. [21] suggested that the SVM classifier—when
joined with GIS and remote sensing data—is a beneficial and inexpensive method for identifying the
habitat suitability of species. Previous studies indicated a higher accuracy of the SVM [21,68] model
compared to the MaxEnt [69] model for evaluating Papatasi habitat suitability. The findings of our
study suggest the habitat suitability map generated by the SVM model has the largest suitable area for
future cultivation of Juniperus. SVM is an efficient classifier with a strong capability of recognizing and
detecting the habitat suitability of Juniperus. In this regard, previous studies comparing the SVM and
random forests (RF) methods determined the highest overall accuracy of the SVM classifier for modeling
coastal habitats, with a minor misclassification occurring in the SVM model [22]. Also, SVM and
MaxEnt were comparatively used to spatially model landslide occurrence, and the results show
that the highest areal percentage was allocated to the high susceptibility class by the SVM model,
whereas the MaxEnt model allocated the lowest areal percentage to the high susceptibility class [45].
Therefore, this result highlights the superior performance of SVM in detecting the habitat suitability
of Zataria multiflora Boiss [25]. Hence, the SVM is a useful tool for future planning regarding the
conservation and management of plant species habitats.

Moreover, SVM optimization will be carried out in the shortest time and the SVM method requires
a training sample, hence it needs to segregate the optimization of training patterns for each proximity,
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density, and inhomogeneity variable. Preparing the training data can lead to improving the results of
the SVMs [15,68]. In presence and absence classification models (MaxEnt and SVM), the AUC-ROC is
an important threshold for related indices to assess a model’s capability of distinguishing presence from
absence [21,48,70]. Hence, the AUC statistically prepares a single differentiation measure for all ranges
of thresholds that is equal to the nonparametric Wilcoxon test [71]. Models with AUC < 0.5 showed
the worst performance (which rarely occurred in reality), while models with AUC > 0.5 performed
better than random [8]. Our results showed a nonsignificant difference between the AUC value of the
SVM (0.735) and MaxEnt (0.728) models, and both models had logical and acceptable AUC values.
Previous studies confirmed a slight difference in outcomes of AUC for the SVM, Logistic regression
(LR), and RF classifiers [21], but other studies suggested a better performance of the MaxEnt model
when dealing with a small sample, and it tends to create restricted predictions [72].

Environmental factors have important effects on the distribution of species within their
habitat [73,74]. Previous studies indicated the strong dependence between the ecogeographical
variables (EGV) and the size of the training dataset on habitat suitability predictions using MaxEnt
and SVM models [8,10,74,75]. In general, temperature and precipitation factors were found to have a
more damaging impact on environmental factors related to species distribution [76]. The distribution
pattern of Juniperus species in natural habitats depends on climatic and ecological conditioning
factors [77,78]. Miller et al. [79] reported that temperature changes in the long-term, rainfall amount
and distribution, and the expanse and duration of fire events are the main effective factors determining
abundance and distribution of forests of Juniperus occidentalis Hook. Furthermore, temperature, rainfall,
and altitude are the most effective factors determining the distribution of J. drupacea Labill. [76,78].
Moreover, the distribution patterns of J. excelsa Bieb. in Lebanon were affected by humidity and
slope degrees [77]. The results of our importance analysis of efficient factors indicated that Max
and Min temperatures are the most important variables in habitat suitability modeling of Juniperus.
In this regard, Wei et al. [8] used the MaxEnt model to predict suitable regions for current and future
cultivation of safflower (Carthamus tinctorius L.), and their results showed that Max temperature and
rainfall played an important role in forecasting the possible distribution of safflower. Also, effects of
environmental variables on modeling the distribution pattern of native (Morella Faya L.) and invasive
(Pittosporum undulatum Vent., and Acacia melanoxylonin R. Br.) woody species in the Azorean forests
showed that annual mean temperature (TM) and annual mean relative humidity (RHM) played the
most important role in the distribution pattern of species in the final model [74].

Furthermore, other conditioning factors, including the amount of rainfall, distance to urban areas,
TWI, distance to streams, and slope degree, were recognized as important variables influencing juniper
habitat suitability. This result is in line with the previous results of studies assessing the importance
of various environmental factors on distribution patterns and habitat suitability modeling [76–78].
Consequently, although the models correctly analyzed the effects of different possible conditioning
factors on habitat suitability, the areas predicted by the models are not definite. On the other hand,
regarding species conservation and future cultivation, landscape planners should make correct and
farsighted decisions about target species and their relationships with the conditioning factors, suitability
of the cultivation area, and climate change.

5. Conclusions

In this study, two different machine learning models, namely, SVM and MaxEnt, were used to
assess the habitat suitability of Juniperus sp. using 295 occurrence records and 15 effective habitat
factors. Results suggested that the abilities of SVM and MaxEnt are similar for assessing the habitat
suitability of this species based on its presence data and the effective factors used in this study.
The SVM is a sensible model for assessing habitat ecosystems, even with a comparatively limited
dataset. The results indicated that the most important input factors for modeling the habitat suitability
of Juniperus sp. are climatic variables. The study area of Juniperus sp. in this research ranged in
elevation between 2180–2830 m a.s.l. Therefore, in these conditions, results indicated that Max and
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Min temperatures and rainfall are the three most important climatic factors, and TWI and slope degree
are the two most important topographical factors, as they had the strongest effect on habitat suitability.
Accordingly, landscape and conservation managers should pay more attention to Max and Min air
temperature and rainfall. Otherwise, these habitats will become unmanageable within a relatively
short period of time. Moreover, future cultivations should pay particular attention to the parameters
TWI index, slope degree, and distance to streams.

Author Contributions: Conceptualization, A.R.B., H.S., and H.R.P.; Methodology, A.R.B., H.S., and H.R.P.;
Software, A.R.B., and H.R.P.; Validation, A.R.B., H.S. and H.R.P.; Formal analysis, A.R.B., H.R.P., H.S., T.B.;
investigation, A.R.B., H.S., and H.R.P.; Writing—original draft preparation, A.R.B., H.S., and H.R.P., T.B.;
Writing—review and editing, A.R.B., H.R.P., T.B.; Project administration, A.R.B., H.R.P., and T.B.; Funding
acquisition, T.B.

Funding: This research was partly funded by the Austrian Science Fund (FWF) through the Doctoral College
GIScience (DK W 1237-N23) at the University of Salzburg.

Acknowledgments: The authors are thankful to Farhad Nikbakht and Kihan Mafakheri for their fieldwork
support and laboratory works.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cahill, A.E.; Aiello-Lammens, M.E.; Fisher-Reid, M.C.; Hua, X.; Karanewsky, C.J.; Yeong Ryu, H.; Sbeglia, G.C.;
Spagnolo, F.; Waldron, J.B.; Warsi, O.; et al. How does climate change cause extinction? Proc. R. Soc. B Biol.
Sci. 2013, 280, 1–9. [CrossRef] [PubMed]

2. Skogen, K.; Helland, H.; Kaltenborn, B. Concern about climate change, biodiversity loss, habitat degradation and
landscape change: Embedded in different packages of environmental concern? J. Nat. Conserv. 2018, 44, 12–20.
[CrossRef]

3. Sosa, V.; Loera, I.; Angulo, D.F.; Vásquez-Cruz, M.; Gándara, E. Climate change and conservation in a warm
North American desert: Effect in shrubby plants. PeerJ 2019, 7, e6572. [CrossRef] [PubMed]

4. Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by
2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742. [CrossRef] [PubMed]

5. Füssel, H.M. Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity,
and Impacts; World Development Report; Potsdam Institute for Climate Impact Research (PIK): Potsdam,
Germany, 2010; pp. 1–35.

6. Duflot, R.; Avon, C.; Roche, P.; Bergès, L. Combining habitat suitability models and spatial graphs for more
effective landscape conservation planning: An applied methodological framework and a species case study.
J. Nat. Conserv. 2018, 46, 38–47. [CrossRef]

7. Sharma, S.; Arunachalam, K.; Bhavsa, D.; Kala, R. Modeling habitat suitability of Perilla frutescens with
MaxEnt in Uttarakhand—A conservation approach. J. Appl. Res. Med. Aromat. Plants 2018, 10, 99–105.
[CrossRef]

8. Wei, B.; Wang, R.; Hou, K.; Wang, X.; Wu, W. Predicting the current and future cultivation regions of Carthamus
tinctorius L. using MaxEnt model under climate change in China. Glob. Ecol. Conserv. 2018, 16, e00477.
[CrossRef]

9. Graham, C.H.; Hijmans, R.J. A comparison of methods for mapping species ranges and species richness.
Glob. Ecol. Biogeogr. 2006, 15, 578–587. [CrossRef]

10. Sadeghi, R.; Zarkami, R.; Sabetraftar, K.; Damme, P.V. Use of support vector machines (SVMs) to predict
distribution of an invasive water fern Azolla filiculoides (Lam.) in Anzali wetland, southern Caspian Sea, Iran.
Ecol. Model. 2012, 244, 117–126. [CrossRef]

11. Abolmaali, S.M.R.; Tarkesh, M.; Bashari, H. MaxEnt modeling for predicting suitable habitats and identifying
the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol. Inform.
2018, 43, 116–123. [CrossRef]

12. Zhang, K.; Zhang, Y.; Zhou, C.; Meng, J.; Sun, J.; Zhou, T.; Tao, J. Impact of climate factors on future
distributions of Paeonia ostii across China estimated by MaxEnt. Ecol. Inform. 2019, 50, 62–67. [CrossRef]

http://dx.doi.org/10.1098/rspb.2012.1890
http://www.ncbi.nlm.nih.gov/pubmed/23075836
http://dx.doi.org/10.1016/j.jnc.2018.06.001
http://dx.doi.org/10.7717/peerj.6572
http://www.ncbi.nlm.nih.gov/pubmed/30867993
http://dx.doi.org/10.1073/pnas.0606292104
http://www.ncbi.nlm.nih.gov/pubmed/17389402
http://dx.doi.org/10.1016/j.jnc.2018.08.005
http://dx.doi.org/10.1016/j.jarmap.2018.02.003
http://dx.doi.org/10.1016/j.gecco.2018.e00477
http://dx.doi.org/10.1111/j.1466-8238.2006.00257.x
http://dx.doi.org/10.1016/j.ecolmodel.2012.06.029
http://dx.doi.org/10.1016/j.ecoinf.2017.10.002
http://dx.doi.org/10.1016/j.ecoinf.2019.01.004


Water 2019, 11, 2049 14 of 17

13. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions.
Ecol. Model. 2006, 190, 231–259. [CrossRef]

14. Hoang, T.H.; Lock, K.; Mouton, A.; Goethals, P.L.M. Application of classification trees and support vector
machines to model the presence of macroinvertebrates in rivers in Vietnam. Ecol. Inform. 2010, 5, 140–146.
[CrossRef]

15. Muñoz-Mas, R.; Fukuda, S.; Pórtoles, J.; Martínez-Capel, F. Revisiting probabilistic neural networks: A
comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian
chub (Squalius valentinus). Ecol. Inform. 2018, 43, 24–37. [CrossRef]

16. Hallgren, W.; Santana, F.; Low-Choy, S.; Zhao, Y.; Mackey, B. Species distribution models can be highly
sensitive to algorithm configuration. Ecol. Model. 2019, 408, 108719. [CrossRef]

17. Jayasinghe, S.L.; Kumar, L. Modeling the climate suitability of tea [Camellia sinensis (L.) O. Kuntze] in
SriLanka in response to current and future climate change scenarios. Agric. For. Meteorol. 2019, 272, 102–117.
[CrossRef]

18. Zhen, J.; Wang, X.; Meng, Q.; Song, J.; Liao, Y.; Xiang, B.; Guo, H.; Liu, C.; Yang, R.; Luo, L. Fine-Scale
Evaluation of Giant Panda Habitats and Countermeasures against the Future Impacts of Climate Change
and Human Disturbance (2015–2050): A Case Study in Ya’an, China. Sustainability 2018, 10, 1081. [CrossRef]

19. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm.
Remote Sens. 2011, 66, 247–259. [CrossRef]

20. Chao, L.; Zhipeng, J.; Yuanjie, Z. A novel reconstructed training-set SVM with roulette cooperative coevolution
for financial time series classification. Expert Syst. Appl. 2019, 123, 283–298. [CrossRef]

21. Mollalo, A.; Sadeghian, A.; Israel, G.D.; Rashidi, P.; Sofizadeh, A.; Glass, G.E. Machine learning approaches
in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous
leishmaniasis in Golestan province, Iran. Acta Trop. 2018, 188, 187–194. [CrossRef] [PubMed]

22. Poursanidis, D.; Traganos, D.; Reinartz, P.; Chrysoulakis, N. On the use of Sentinel-2 for coastal habitat
mapping and satellite-derived bathymetry estimation using downscaled coastal aerosol band. Int. J. Appl.
Earth. Obs. Geoinf. 2019, 80, 58–70. [CrossRef]

23. Buck, O.; Garcia Millán, V.E.; Klink, A.; Pakzad, K. Using information layers for mapping grassland habitat
distribution atlocal to regional scales. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 83–89. [CrossRef]

24. Fukuda, S.; De Baets, B. Data prevalence matters when assessing species’ responses using data-driven species
distribution models. Ecol. Inform. 2016, 32, 69–78. [CrossRef]

25. Edalat, M.; Jahangiri, E.; Dastras, E.; Pourghasemi, H.R. Prioritization of Effective Factors on Zataria multiflora
Habitat Suitability and its Spatial Modeling. In Spatial Modeling in GIS and R for Earth and Environmental
Sciences; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 411–427.

26. Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and
pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [CrossRef]

27. Farrell, A.; Wang, G.; Rush, S.A.; Martin, J.A.; Belant, J.L.; Butler, A.B.; Godwin, D. Machine learning of
large-scale spatial Distributions of wild turkeys with high-dimensional environmental data. Ecol. Evol.
2019, 9, 5938–5949. [CrossRef] [PubMed]

28. Byeon, D.H.; Jung, S.; Lee, W.H. Review of CLIMEX and MaxEnt for studying species distribution in South
Korea. J. Asia Pac. Biodivers. 2018, 11, 325–333. [CrossRef]

29. Pratumchart, K.; Suwannatrai, K.; Sereewong, C.; Thinkhamrop, K.; Chaiyos, J.; Boonmars, T.;
Suwannatrai, A.T. Ecological Niche Model based on Maximum Entropy for mapping distribution of
Bithynia siamensis goniomphalos, first intermediate host snail of Opisthorchis viverrini in Thailand. Acta Trop.
2019, 193, 183–191. [CrossRef]

30. Redon, M.; Luque, S. Presence-only modelling for indicator species distribution: Biodiversity monitoring
in the French Alps. In Proceedings of the 6th Spatial Analysis and Geomatics International Conference
(SAGEO), Toulouse, France, 17–19 November 2010; pp. 42–55, hal-00558859.

31. Dunn, J.C.; Buchanan, G.M.; Stein, R.W.; Whittingham, M.J.; McGowan, P.J.K. Optimising different types
of biodiversity coverage of protected areas with a case study using Himalayan Galliformes. Biol. Conserv.
2016, 196, 22–30. [CrossRef]

32. Mamun, M.; Kim, S.; An, K. Distribution pattern prediction of an invasive alien species largemouth bass
using a maximum entropy model (MaxEnt) in the Korean peninsula. J. Asia Pac. Biodivers. 2018, 11, 516–524.
[CrossRef]

http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1016/j.ecoinf.2009.12.001
http://dx.doi.org/10.1016/j.ecoinf.2017.10.008
http://dx.doi.org/10.1016/j.ecolmodel.2019.108719
http://dx.doi.org/10.1016/j.agrformet.2019.03.025
http://dx.doi.org/10.3390/su10041081
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.1016/j.eswa.2019.01.022
http://dx.doi.org/10.1016/j.actatropica.2018.09.004
http://www.ncbi.nlm.nih.gov/pubmed/30201488
http://dx.doi.org/10.1016/j.jag.2019.03.012
http://dx.doi.org/10.1016/j.jag.2014.10.012
http://dx.doi.org/10.1016/j.ecoinf.2016.01.005
http://dx.doi.org/10.1016/j.compag.2019.104943
http://dx.doi.org/10.1002/ece3.5177
http://www.ncbi.nlm.nih.gov/pubmed/31161010
http://dx.doi.org/10.1016/j.japb.2018.06.002
http://dx.doi.org/10.1016/j.actatropica.2019.03.004
http://dx.doi.org/10.1016/j.biocon.2016.01.015
http://dx.doi.org/10.1016/j.japb.2018.09.007


Water 2019, 11, 2049 15 of 17

33. Afify, H.M.; Al-Masni, M.A. Taxonomy metagenomic analysis for microbial sequences in three domains
system via machine learning approaches. Inform. Med. Unlocked 2018, 13, 151–157. [CrossRef]

34. García, D.; Zamora, R.; Hódar, J.A.; Gómez, J.M. Age structure of Juniperus communis L. in the Iberian peninsula:
Conservation of remnant populations in Mediterranean mountains. Biol. Conserv. 1999, 87, 215–220.

35. Milios, E.; Pipinis, E.; Petrou, P.; Akritidou, S.; Smiris, P.; Aslanidou, M. Structure and regeneration patterns
of the Juniperus excelsa Bieb. stands in the central part of the Nestos valley in the northeast of Greece. Ecol. Res.
2007, 22, 713–723. [CrossRef]

36. El-Juhany, L. Forestland degradation and potential rehabilitation in southwest Saudi Arabia. Aust. J. Basic
Appl. Sci. 2009, 3, 2677–2696.

37. Mao, K.; Milne, R.I.; Zhang, L.; Peng, Y.; Liu, J.; Thomas, P.; Mill, R.R.; Susanne SRenner, S.S. Distribution
of living Cupressaceae reflects the breakup of Pangea. Proc. Natl. Acad. Sci. USA 2012, 109, 7793–7798.
[CrossRef]

38. Wazen, N.; Fady, B. Technical Report, Geographic Distribution of 24 Major Tree Species in the Mediterranean; FAO
Forest and Landscape Restoration Mechanism, Forestry Department, Forestry Policy and Resources Division:
Rome, Italy, 2016; pp. 1–59.

39. MacLaren, C.A. Climate change drives decline of Juniperus seravschanica in Oman. J. Arid Environ.
2016, 128, 91–100. [CrossRef]

40. Pirani, A.; Moazzeni, H.; Mirinejad, S.; Naghibi, F.; Mosaddegh, M. Ethnobotany of Juniperus excelsa M. Bieb.
(Cupressaceae) in Iran. Ethnobot. Res. Appl. 2011, 9, 335–341. [CrossRef]

41. Adams, R.P.; Hojjati, F. Taxonomy of Juniperus in Iran: Insight from DNA sequencing. Phytologia
2012, 94, 219–227.

42. Ahani, H.; Jalilvand, H.; Hosseini Nasr, S.M.; Soltani Kouhbanani, H.; Mohammadzadeh, H. Reproduction
of juniper (Juniperus polycarpos) in Khorasan Razavi, Iran. For. Sci. Pract. 2013, 15, 231–237. [CrossRef]

43. Heshmati, G.A. Vegetation characteristics of four ecological zones of Iran. Int. J. Plant Prod. 2007, 1, 215–224.
44. Jafari, M. Forests Genetic Resources in Iran. The Report on the State of the World’s Forest Genetic Resources.

2012. Available online: www.fao.org/documents (accessed on 13 June 2012).
45. Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new

ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [CrossRef]
46. O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant.

2007, 41, 673–690. [CrossRef]
47. Heubes, J.; Schmidt, M.; Stuch, B.; García Márquez, J.R.; Wittig, R.; Zizka, G.; Thiombiano, A.; Sinsin, B.;

Schaldach, R.; Hahn, K. The projected impact of climate and land use change on plant diversity: An example
from West Africa. J. Arid Environ. 2013, 96, 48–54. [CrossRef]

48. Yi, Y.J.; Cheng, X.; Yang, Z.F.; Zhang, S.H. Maxent modeling for predicting the potential distribution of
endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [CrossRef]

49. Aguilar, G.D.; Blanchon, D.J.; Foote, H.; Pollonais, C.W.; Mosee, A.N. A performance based consensus
approach for predicting spatial extent of the Chinese windmill palm (Trachycarpus fortunei) in New Zealand
under climate change. Ecol. Inform. 2017, 39, 130–139. [CrossRef]

50. Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt modeling to predict the potential distribution
of the endemic plant Rosa arabica Crép. in Egypt. Ecol. Inform. 2019, 50, 68–75. [CrossRef]

51. Mousazade, M.; Ghanbarian, G.; Pourghasemi, H.R.; Safaeian, R.; Cerdà, A. Maxent Data Mining Technique
and Its Comparison with a Bivariate Statistical Model for Predicting the Potential Distribution of Astragalus
Fasciculifolius Boiss. in Fars, Iran. Sustainability 2019, 11, 3452. [CrossRef]

52. Fois, M.; Cuena-Lombraña, A.; Fenu, G.; Bacchetta, G. Using species distribution models at local scale to
guide the search of poorly known species: Review, methodological issues and future directions. Ecol. Model.
2018, 385, 124–132. [CrossRef]

53. Bosso, L.; Rebelo, H.; Garonna, A.P.; Russo, D. Modelling geographic distribution and detecting conservation
gaps in Italy for the threatened beetle Rosalia alpina. J. Nat. Conserv. 2013, 21, 72–80. [CrossRef]

54. Sanchez-Hernandez, C.; Boyd, D.S.; Foody, G.M. Mapping specific habitats from remotely sensed imagery:
Support vector machine and support vector data description based classification of coastal saltmarsh habitats.
Ecol. Inform. 2007, 2, 83–88. [CrossRef]

http://dx.doi.org/10.1016/j.imu.2018.05.004
http://dx.doi.org/10.1007/s11284-006-0310-7
http://dx.doi.org/10.1073/pnas.1114319109
http://dx.doi.org/10.1016/j.jaridenv.2016.02.001
http://dx.doi.org/10.17348/era.9.0.335-341
http://dx.doi.org/10.1007/s11632-013-0307-6
www.fao.org/documents
http://dx.doi.org/10.1016/j.geoderma.2017.06.020
http://dx.doi.org/10.1007/s11135-006-9018-6
http://dx.doi.org/10.1016/j.jaridenv.2013.04.008
http://dx.doi.org/10.1016/j.ecoleng.2016.04.010
http://dx.doi.org/10.1016/j.ecoinf.2017.04.004
http://dx.doi.org/10.1016/j.ecoinf.2019.01.003
http://dx.doi.org/10.3390/su11123452
http://dx.doi.org/10.1016/j.ecolmodel.2018.07.018
http://dx.doi.org/10.1016/j.jnc.2012.10.003
http://dx.doi.org/10.1016/j.ecoinf.2007.04.003


Water 2019, 11, 2049 16 of 17

55. Sousa, R.; Yevseyeva, I.; da Costa, J.F.P.; Cardoso, J.S. Multicriteria models for learning ordinal data: A
literature review. In Artificial Intelligence, Evolutionary Computing and Metaheuristics; Yang, X.-S., Ed.; Springer:
Berlin, Germany, 2013; pp. 109–138.

56. Blahut, J.; Westen, C.J.V.; Sterlacchini, S. Analysis of landslide inventories for accurate prediction of debris-flow
source areas. Geomorphology 2010, 119, 36–51. [CrossRef]

57. Xu, W.; Dai, J.; Hung, Y.S.; Wang, Q. Estimating the area under a receiver operating characteristic (ROC)
curve: Parametric and non-parametric. Signal Process. 2013, 93, 3111–3123. [CrossRef]

58. Zhang, X.; Li, X.; Feng, Y.; Liu, Z. The use of ROC and AUC in the validation of objective image fusion
evaluation metrics. Signal Process. 2013, 115, 38–48. [CrossRef]

59. Khanum, R.; Mumtaz, A.S.; Kumar, S. Predicting impacts of climate change on medicinal asclepiads of
Pakistan using Maxent modeling. Acta Oecol. 2013, 49, 23–31. [CrossRef]

60. Całka, B. Comparing continuity and compactness of choropleth map classes. Geod. Cartogr. 2018, 67, 21–34.
61. Chun, Y.; Koo, H.; Griffith, D.A. A comparison of optimal map classification methods incorporating

uncertainty information. In Proceedings of the Spatial Accuracy, Avignon, France, 20–22 April 2016;
pp. 177–181.

62. Jenks, G.; Coulson, M. Class Intervals for Statistical Maps. Ann. Assoc. Am. Geogr. 1963, 3, 119–134.
63. Hirzel, A.H.; Hausser, J.; Perrin, N. Biomapper 4.0. Lab. of Conservation Biology; Department of Ecology and

Evolution, University of Lausanne: Lausanne, Switzerland, 2007.
64. Tuv, E.; Borisov, A.; Runger, G.; Torkkola, K. Feature selection with ensembles, artificial variables, and

redundancy elimination. J. Mach. Learn. Res. 2009, 10, 1341–1366.
65. Wang, R.; Li, Q.; He, S.; Liu, Y.; Wang, M.; Jiang, G. Modeling and mapping the current and future distribution

of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE 2018, 13, e0192153. [CrossRef]
66. Zhang, X.Q.; Li, G.Q.; Du, S. Simulating the potential distribution of Elaeagnus angustifolia L. based on climatic

constraints in China. Ecol. Eng. 2018, 113, 27–34. [CrossRef]
67. Fourcade, Y.; Engler, J.O.; Rodder, D.; Secondi, J. Mapping species distributions with MAXENT using

a geographically biased sample of presence data: A performance assessment of methods for correcting
sampling bias. PLoS ONE 2014, 9, e97122. [CrossRef]

68. Muñoz-Mas, R.; Lopez-Nicolas, A.; Martínez-Capel, F.; Pulido-Velazquez, M. Shifts in the suitable habitat
available for brown trout (Salmo trutta L.) under short-term climate change scenarios. Sci. Total Environ.
2016, 544, 686–700.

69. Sofizadeh, A.; Rassi, Y.; Vatandoost, H.; Hanafi-Bojd, A.A.; Mollalo, A.; Rafizadeh, S.; Akhavan, A.A.
Predicting the distribution of Phlebotomus papatasi (Diptera: Psychodidae), the primary vector of zoonotic
cutaneous leishmaniasis, in Golestan Province of Iran using ecological niche modeling: Comparison of
MaxEnt and GARP models. J. Med. Entomol. 2016, 54, 312–320.

70. Yuan, H.; Wei, Y.; Wang, X. Maxent modeling for predicting the potential distribution of Sanghuang, an
important group of medicinal fungi in China. Fungal Ecol. 2015, 17, 140–145. [CrossRef]

71. Lobo, J.M.; Jimenez-Valverde, A.; Real, R. AUC: Amisleading measure of the performance of predictive
distribution models. Glob. Ecol. Biogeogr. 2007, 17, 145–151. [CrossRef]

72. Václavík, T.; Meentemeyer, R.K. Invasive species distribution modeling (iSDM): Are absence data and
dispersal constraints needed to predict actual distributions? Ecol. Model. 2009, 220, 3248–3258. [CrossRef]

73. Fortunel, C.; Paine, C.; Fine, P.; Kraft, N.; Baraloto, C. Environmental factors predict community functional
composition in Amazonian forests. J. Ecol. 2014, 102, 145–155. [CrossRef]

74. Silva, L.D.; Costa, H.; de Azevedo, E.B.; Medeiros, V.; Alves, M.; Elias, R.B.; Silva, L. Modelling Native and
Invasive Woody Species: A Comparison of ENFA and MaxEnt Applied to the Azorean Forest. In Modeling,
Dynamics, Optimization and Bioeconomics II, Proceedings in Mathematics & Statistics; Pinto, A.A., Zilberman, D.,
Eds.; Springer: Berlin, Germany, 2017; Volume 195, pp. 415–444.

75. Chiogna, G.; Marcolini, G.; Liu, W.; Ciria, T.P.; Tuo, Y. Coupling hydrological modeling and support vector
regression to model hydropeaking in alpine catchments. Sci. Total Environ. 2018, 633, 220–229. [CrossRef]
[PubMed]

76. Bradie, L.; Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species
distribution models. J. Biogeogr. 2017, 44, 1344–1361. [CrossRef]

77. Douaihy, B.; Restoux, G.; Machon, N.; Dagher-Kharrat, M.B. Ecological characterization of the Juniperus
excelsa stands in Lebanon. Ecol. Mediterr. 2013, 39, 169–180.

http://dx.doi.org/10.1016/j.geomorph.2010.02.017
http://dx.doi.org/10.1016/j.sigpro.2013.05.010
http://dx.doi.org/10.1016/j.sigpro.2015.03.007
http://dx.doi.org/10.1016/j.actao.2013.02.007
http://dx.doi.org/10.1371/journal.pone.0192153
http://dx.doi.org/10.1016/j.ecoleng.2018.01.009
http://dx.doi.org/10.1371/journal.pone.0097122
http://dx.doi.org/10.1016/j.funeco.2015.06.001
http://dx.doi.org/10.1111/j.1466-8238.2007.00358.x
http://dx.doi.org/10.1016/j.ecolmodel.2009.08.013
http://dx.doi.org/10.1111/1365-2745.12160
http://dx.doi.org/10.1016/j.scitotenv.2018.03.162
http://www.ncbi.nlm.nih.gov/pubmed/29573688
http://dx.doi.org/10.1111/jbi.12894


Water 2019, 11, 2049 17 of 17

78. Walas, Ł.; Sobierajska, K.; Ok, T.; Dönmez, A.A.; Kanoğlu, S.S.; Dagher-Kharrat, M.B.; Douaihy, B.; Romo, A.;
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